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 
Abstract—Continuously differentiable radial basis functions 

(RBFs) are meshfree, converge faster as the dimensionality increases, 
and is theoretically spectrally convergent. When implemented on 
current single and double precision computers, such RBFs can suffer 
from ill-conditioning because the systems of equations needed to be 
solved to find the expansion coefficients are full. However, the 
Advanpix extended precision software package allows computer 
mathematics to resemble asymptotically ideal Platonic mathematics. 
Additionally, full systems with extended precision execute faster 
graphical processors units and field-programmable gate arrays 
because no branching is needed. Sparse equation systems are fast for 
iterative solvers in a very limited number of cases. 

 
Keywords—Meshless spectrally convergent, partial differential 

equations, extended arithmetic precision, no branching. 

I. INTRODUCTION 

 
HIS paper attempts to clarify the differences between 
Platonic, ideal mathematics practiced in universities and 

the finite precision mathematics residing on electronic 
computers. Firstly, in Platonic mathematics, rational and 
irrational numbers exist with infinite precision. Any piece-
wise continuous function, F(x), can be represented perfectly as 
a linear combination of a convenient set of basis functions, 
ϕ(x), as [1]-[9]: 
 

 F(x) = ∑ϕj(x)αj,    (1) 
 
where ϕ j (x) is the basis function and α j is its corresponding 
expansion coefficient. For transcendental functions, the 
expansion includes an infinite number of terms. 
 

 rij = { ∑n
k (x

k
i- y

k
j)

2 }½    (2) 
 

ϕg= exp( -[rij/cj]
2), 

and ϕmq = [ 1+ (rij/cj )² ]
s where cj ̇> 0 and s ≥-1/2.  (3) 

II. MATHEMATICS IN THE COMPUTER WORLD 

No electronic computer has either infinite memory or 
infinite precision. Although beings existing in electronic 
computers are intended to mimic their counterparts in the 
Platonic world, this mimicking process is only a crude 
approximation and only partially interchangeable. All 
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transcendental functions on electronic computers must be 
finite length programs that act during a non-zero duration. 
Branching operations can be classified as either conditional or 
unconditional that requires the expenditure of time for the 
targeted conditions to arise, sometimes stalling the logical 
procedural flow. All numbers represented in computers 
occupy a finite number of bits in the computer memory. Bits 
are electronic memory space that form computer words, see 
[5], whether they are half, single, double, or quadruple 
precision words. In the ideal Platonic world, rational and 
irrational numbers have an infinite number of digits, such as 
the number π. However, the computer representation of 
asymptotically approaches the ideal Platonic number , with 
increasingly more digits. A computer cannot store an infinite 
number of digits. The next class of important material beings 
is functions that relate an independent real, imaginary, or 
complex number to a dependent real, imaginary or complex 
number by a given correspondence. Functions are specialized 
computer programs that occupy circuit space and require a 
finite amount of computer processing time. Elementary 
operations such as add, subtract, multiply, divide, etc. are 
stored and executed as machine language programs that enable 
the activities of more complex computer beings; these can be 
either simple polynomials or vectors, matrices, and their 
associated operations. 

Splines are piecewise continuous functions for which all 
derivatives up to order, p, are continuous over the domain of 
definition. Some computer basis functions can range from 
piecewise constant, linear, quadratic, or triangles, trapezoids, 
and pyramids. A general interpolation function from 
polynomials trigonometric functions can be constructed from 
the expansion coefficients by either a least-squares procedure 
or solving a set of linear equations at specified data centers at 
which the unknown function is specified. Typically, low order 
polynomials are used because of the notorious polynomial 
snaking that makes differentiation very unreliable. A more 
advanced class of functions is computer transcendental 
functions. Other types of basis functions are the multi-
resolution wavelets that are either compactly supported 
wavelets polynomials or transcendental one-dimensional 
functions. This paper will concentrate on RBFs that can be: 1. 
compactly supported polynomial, 2. globally supported 
polynomial functions and, 3. globally supported, conditionally 
positive definite transcendental basis functions (CD-RBFs).  

All classes of RBFs can operate in any dimensional space 
because the independent variable is either the Euclidean pair 
or the geodesic pair separation. All classes of RBFs can be 
used for not only interpolations and approximations, but also 
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for integral equations (IEs) and partial differential equations 
(PDEs), see [5], [6]. However, the procedure to find the 
unknown set of expansion coefficients, {α}, can yield round-
off errors if the machine precision is not sufficient for the 
solution procedure. This problem occurs when the condition 
number of a system of equations having a matrix A has a 
condition number, κ, greater than the inverse of the machine 
epsilon, εm. During the numerical solution of a system of 
linear or nonlinear equations, unstable numerical results may 
occur due to the accumulation of rounding errors, see [9].  

Branching redirects the computational flow to another 
direction, see [10]. Branching can be either conditional or 
unconditional. In the computer world, a branch instruction can 
change the program counter of a central processing unit (CPU) 
that stores the memory address of the next instruction to be 
executed. Therefore, a branch can cause the CPU to begin 
fetching its instructions from a different sequence of the 
memory, thereby changing the control flow. When a branch is 
not taken, the CPU's program counter is unchanged; the flow 
of control is unchanged. The CPU does not know which path 
will be taken ahead of time. Whenever a branch is 
encountered, the CPU must stall until the decision has been 
resolved, and discards everything in the pipeline that is behind 
the branch instruction. This stalling lowers performance that is 
often ignored.  

III. SOME COMPUTER SCIENCE TOOLS 

Modern computers use a variety of techniques. One 
common method, especially on higher-end processors with 
floating point units, is to combine a rational fraction 
approximation (an approximation to an infinite series) with 
range reduction and a table lookup, and then use the 
polynomial to compute the correction. Devices that lack 
hardware multipliers often use an algorithm called CORDIC 
and related techniques that use only addition, subtraction, bit-
shift, and table lookup. These methods are commonly 
implemented in hardware floating-point units for enhanced 
performance. For very high precision calculations, when series 
expansion convergence becomes too slow, trigonometric 
functions can be approximated by the arithmetic-geometric 
mean that approximates the trigonometric function by the 
complex elliptic integral. 

Several scientific applications that involve transcendental 
functions require a very high degree of arithmetic precision. 
The hardware implementation of a parameterizable floating-
point library for computing transcendental functions employs 
both the CORDIC algorithm and Taylor series expansions. 
Unfortunately, many RBF users are unaware of the computer 
science aspects of computer mathematics, see [10]. The weak 
form of the PDEs requires integration with a test function. 
Integration has the benefit of smoothing any numerical noise 
caused by differentiation. When utilizing Gauss’s divergence 
theorem, volume integration is transformed into the difference 
of two surface integrals. The weak form may involve the blend 
of analytic and numerical integration methods with CD-RBFs 
going beyond one-dimension; this complication should be 
considered beforehand. In the computer world, the expansion 

coefficients are found from the discretization of the IE, the 
PDE, or integral PDEs, see [7] for examples and details. Some 
basis functions can range from piecewise constant, linear, 
quadratic functions, or triangles, trapezoids, and pyramids. 
Typically, low order polynomials are used because of the 
notorious polynomial snaking that makes differentiation very 
unreliable. It was documented in [6], [7] that for the numerical 
solutions of PDEs, the strong form numerical solution is 
sufficient since the partial derivatives can be calculated with a 
high degree of accuracy. However, the procedure to find the 
unknown set of expansion coefficients can yield round-off 
errors if the machine precision is not sufficient for the solution 
procedure, such as solving a system of linear or nonlinear 
equations, unstable numerical results may occur due to the 
accumulation of rounding errors, see [9]. Modern computers 
use a variety of techniques. One common method, especially 
on higher-end processors with floating point units, is to 
combine a rational fraction approximation (an approximation 
to an infinite series) with range reduction and a table lookup, 
and then use the polynomial to compute the correction. 
Devices that lack hardware multipliers often use an algorithm 
called CORDIC and related techniques that use only addition, 
subtraction, bit-shift, and table lookup. These methods are 
commonly implemented in hardware floating-point units for 
enhanced performance. For very high precision calculations, 
when series expansion convergence becomes too slow, 
trigonometric functions can be approximated by the 
arithmetic-geometric mean that approximates the 
trigonometric function by the complex elliptic integral. 
Several scientific applications that involve transcendental 
functions require a very high degree of arithmetic precision. 
The hardware implementation of a parameterizable floating-
point library for computing transcendental functions employs 
both the CORDIC algorithm and Taylor series expansions. 
Unfortunately, many RBF users are unaware of the computer 
science aspects of computer mathematics, see [10]. The weak 
form of the PDEs requires integration with a test function. 
Integration has the benefit of smoothing any numerical noise 
caused by differentiation. When utilizing Gauss’s divergence 
theorem, volume integration is transformed into the difference 
of two surface integrals. The weak form may involve the blend 
of analytic and numerical integration methods with CD-RBFs 
going beyond one-dimension; this complication should be 
considered beforehand. 

IV. METHODS FOR SOLVING EQUATIONS SUBSYSTEMS 

Direct methods compute the solution to a problem in a finite 
number of steps. These methods would give the precise 
answer if they were performed in infinite precision arithmetic. 
Examples include Gaussian elimination, the QR factorization 
method for solving systems of linear equations, and the 
simplex method of linear programming. In practice, finite 
precision is used, and the result is an approximation of the true 
solution (assuming stability). In contrast to direct methods, 
iterative methods are not expected to terminate in a finite 
number of steps. Starting from an initial guess, iterative 
methods form successive approximations that converge to the 
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exact solution only in the limit. A convergence test, often 
involving the residual, is specified in order to decide when a 
sufficiently accurate solution has been found. Even using 
infinite precision arithmetic these methods would not reach 
the exact solution within a finite number of steps. Examples 
include Newton's method, the bisection method, and the 
Jacobi iteration. In computational matrix algebra, iterative 
methods are generally needed for large problems. With 
iterative methods, one needs to decide if the current 
approximate solution is sufficiently convergent to terminate 
the iterative procedure, see [11]. Iterative methods, such as the 
GMRES and the conjugate gradient method, are more 
commonly used instead of direct methods. For iterative 
methods, the number of steps needed to obtain the exact 
solution is so large that an approximation is acceptable. 
Furthermore, the original continuous problem must be 
replaced by a discrete problem whose solution is known to be 
an approximation. 

V. COMPUTING ERRORS 

Computing errors may be either rounding errors, truncation 
errors, or stability errors. As discussed previously, computer 
words are finite sized beings that occupy a finite amount of 
computer memory. Truncation errors are committed whenever 
a mathematical procedure is approximated, and the 
approximate solution differs from the exact solution. 
Similarly, discretization induces a discretization error because 
the solution of the discretized problem does not coincide with 
the solution of the continuous problem. A process is called ill-
conditioned if a very small error in the input parameter results 
in a huge error in the output parameter. Addition, 
multiplication, exponentiation, and division of positive 
numbers are all well-conditioned operations, whereas 
subtraction is ill-conditioned. No matter how carefully these 
operations are performed, there is a rounding error that 
depends upon the number of digits being used. Once any error 
is generated, it will propagate through the calculation. Any 
approximate numerical algorithm will create a truncation error 
because either the exact algorithm was unknown or not 
utilized. A good example of a computational instability error 
is the negative diffusion that causes the numerical solution to 
accumulate successively larger errors in time that the 
computer code will eventually crash. Integration was 
developed in academic mathematics by constructing a large 
sequence of trapezoids under a curve, f(x), of width, Δx, then 
letting both the number, N, of trapezoids go to infinity while 
simultaneously letting the trapezoidal width, Δx, go to zero. 
The integral of f(x) is the limiting sum of an infinite number 
of trapezoids in the nonphysical Platonic world. However, on 
an electronic computer, this procedure is not possible because 
of both memory and execution speed restrictions. The process 
of calculating the integral of function exactly requires one to 
find the sum of infinite sum of trapezoids. But numerically, 
one can only find the sum of a finite number of trapezoids. 
The computer world approximation of the mathematical 
procedure can only approach the exact solution 
asymptotically. Similarly, to differentiate a function, the 

differential element approaches zero, but numerically one can 
only choose a non-zero value of the differential element. Both 
the original problem and the algorithm used to solve that 
problem can be either well-conditioned or ill-conditioned. An 
algorithm that solves a theoretically well-conditioned, well-
posed problem may be either numerically stable or unstable. 
One art of numerical analysis is to find a stable algorithm for 
solving a well-posed mathematical problem.  

VI. OPTIMIZING DATA CENTERS 

The discretization poses three problems: (1) Is the 
discretization sufficiently representative in ℜn to capture the 
local and global extremes of the desired unknown solution? 
(2) Can the total number of data centers be minimized to 
control the magnitude of the condition number? (3) Can the 
curse of dimensionality be mitigated? Let L be either the 
partial differential or integral operator over the interior domain 
and let B be the appropriate well posed boundary operators on 
the boundaries. The appropriate set of governing equations is: 

 
LU(x,t) = f(x,t) over, Ω\∂Ω,  (4) 

 
BU(x,t) = g(x,t) on ∂Ω.    (5) 

 
If both the interior and boundary forcing functions are set to 

zero, the exact solution for the Laplace equation would be a 
quadric equation; for a hyperbolic equation, the exact solution 
would be a wave equation with constant characteristics. These 
nonzero forcing functions forces local changes in the solution, 
often producing extrema and saddle points near or act the 
region upon which they interact. Such local regions require 
sufficient spatial resolution. For CD-RBFs, the accuracy 
improves if some data centers that are used to calculate the IE, 
PDE, or IPDE can extend slightly beyond the boundary, see 
[12]. Increasing the exponent, s in the MQ RBF, causes the 
MQ basis function to become flatter near the data center, yj. in 
the same study, two sets of shape parameters, {cI}, interior 
shape parameter set, {cI}, and a boundary shape parameter set, 
{cB}, are used with improved errors, see [13].  

VII. CONTROL OF ROUNDING ERRORS 

Rounding is a process by which there is a loss of significant 
digits in floating point operations. Relevant to the rounding 
procedure, is the machine epsilon, εm, that is defined as the 
maximum relative error. The goal is to control and correct the 
rounding errors during numerical computations. A summary 
of the procedures and algorithms to control the accumulation 
of round-off errors is found in [19]-[23]. Historically, CPU 
architectures were designed without any intention to use 
arbitrary-precision computations because of very small market 
demands. Most computer applications such as games and 
social networking do not require extended precision. 
Consequently, software methods must be employed to obtain 
extended precision that is limited to the miniscule scientific 
computing market. Higham [24] has praised the Advapix 
Multiprecision Computing Toolbox (AMCT), see [10], as the 
best multi-precision software package to date. AMCT employs 
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the best computer science practices for a large suite of multi-
precision applications. If implemented properly, extended 
precision computations can be very fast. The traditional 
method to enhance the convergence finite difference, finite 
element, or finite volume methods as well as compactly 
supported RBF methods is to refine greatly the discretization 
to make the average point separation, <h>, as small as 
possible, thereby increasing the total number of discretization 
points, N. This approach works well as long as there is 
sufficient computer memory. However, as higher dimensional 
problems are attempted, the curse of dimensionality 
dominates. Then the option of increasing the average value of 
the shape parameter, <c>, is very attractive, except increasing 
the average of the shape parameter may make the condition 
number so large as to render any calculations meaningless. 
Some authors treat the double precision condition number, of 
O(1016), as an impenetrable barrier similar to the vacuum 
speed of light. Some authors [14]-[17] used extended precision 
that enables the computer arithmetic operations and associated 
mathematics to resemble asymptotically the idealized Platonic 
mathematics of academia. The notable exception was [18] that 
used MATLAB’s miserably slow variable precision arithmetic 
(VPA) in the time dependent time integration of 4D Burgers’ 
equations. The simulations were halted after 30 days of 
continuous simulations, and VPA was abandoned. Often 
ignored by academic mathematicians are the role of computer 
science in computer arithmetic, and its role in computational 
mathematics. 

VIII. EXAMPLES OF AMCT PERFORMANCE 

The calculation of eigenvectors and eigenvalues, and 
especially its eigenvectors of a general matrix, A, may give 
erroneous results even though the matrix, A, is well 
conditioned, see [25]. The eigenvalues of the Grcar matrix 
were computed by MATLAB in double precision and by the 
AMCT in extended precision, respectively. In ideal Platonic 
mathematics, the eigenvalues and the Grcar matrix and its 
transpose should be identical. The eigenvalues of the Grcar 
matrix are displayed in dots, and the eigenvalues of the 
transposed matrix in open circles. In theory the dots and open 
circles should coincide, especially since the condition number, 
κ, of the Grcar matrix is small, κ(AG) = 3.61. 

The second example is the Noschese-Pasquini-Reichel 
(NPR) matrix which is a tridiagonal Toeplitz matrix. In ideal 
Platonic mathematics, the eigenvalues and eigenvectors of this 
tridiagonal Toeplitz matrix must give identical eigenvectors 
and eigenvalues, especially since κ(ANPR) = 1.81. When both 
the Gcrar and the tridiagonal Toeplitz matrices are calculated 
with 50 digits of accuracy, then the eigenvalues of both 
matrices and their transposes coincide. Single and double 
precision are not reliably capable of resembling ideal Platonic 
mathematics. 

IX. LUH’S SHAPE PARAMETER THEORY 

Luh [26]-[28] made a significant achievement by 
developing a theory to find the optimal CD-RBF shape 

parameters by greatly expanding the original work of Madych 
and Nelson [3]. Luh considered factors such as the type CD -
RBF spatial dimension, fill distance, etc. to construct the MN 
(Madych-Nelson) curve. For example, Luh constructs an 
MN(c) curve for the generalized MQ-RBF and searches for 
the minimum region of MN curve where c is optimal. Luh 
used Mathematica's extended precision features to calculate 
the interpolating functions, avoiding ill-conditioning caused 
by the theoretically optimal choice of the shape parameter, for 
a variety of interpolation cases obtaining interpolation errors 
of less than 1e-147. With a strong foundational theory for 
choosing the average shape parameter by Luh's theory, 
important multi-dimensional PDE and IE problems can be 
simulated in extended precision on massively parallel 
computers. The guesswork previously employed in choosing 
the optimal shape parameters is now obsolete. 

X. DOMAIN DECOMPOSITON FOR RBFS 

The dominant method to solve very large systems of 
equations on parallel computers is the domain decomposition 
method (DDM). The DDM can be iterative or non-iterative; 
either of which has been successfully implemented on both the 
sparse and full matrices arising from both sparsely and 
globally supported RBF based applications. For convenience, 
the following analysis will be limited to full systems arising 
from CD-RBFs. 

XI. CONSIDERING GLOBAL SYSTEMS 

The DDM splits a huge boundary value problem of rank N 
into K smaller boundary value problems, each of which are of 
rank NK, where NK≪ N. The condition number, κ, of a matrix 
depends upon its rank, distribution of data centers, and the 
distribution of large shape parameters. 

The most prevalent approach for DDM is the iterative 
Picard scheme. Within a Picard iteration loop, the unknown 
function and its normal and tangential derivatives on either 
side of the domain split are iterated until all of the continuity 
discrepancies tend toward zero. The full system requires 
O(N3) operations for a solution, then, on each sub-domain, 
O(N3

K) operations are required using the optimally vectorized 
matrix-vector operations. By operating in parallel, there is a 
huge reduction in the total computational time. A sample of 
the literature in which DDM and CD-RBFs are applied can be 
found in [29]-[37]. Alternatively, [38] used a non-iterative 
domain decomposition approach that can be characterized as a 
block Gaussian elimination method. The direct block Gaussian 
elimination method is a theoretically exact scheme since no 
iteration methods are used. However, the Schur complement 
blocks may become ill-conditioned due to rounding errors, and 
extended arithmetic precision is recommended. 

XII. LOCAL RBF METHODS 

Because global RBFs can become rapidly very ill-
conditioned whenever the average shape parameter and the 
rank become very large, various alternatives to the direct CD-
PDE approach have been investigated. Currently, most RBF 
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applications are limited to three dimensions or less, making 
the curse of dimensionality unimportant. Because of the 
reluctance to utilize extended precision software packages and 
rather use single or double precision computers, alternatives to 
direct RBF methods were developed. Local RBF alternatives 
to direct CD-RBFs such as: RBF-FD, RBF-QR, RBF-RA and 
Hermite based RBFs are among the approaches that were 
developed, see [39]-[44]. Instead of spectral convergence 
rates, the convergence rates are 4th to 8th order. If the PDEs 
and IEs are primarily two and three dimensional, then the 
slower convergence is hardly an issue. There are several 
approaches that reduce the condition number issue using CD-
RBFs by transforming them into more benign basis functions, 
albeit with slower convergence rates; The RBF-rational 
approximation (RBF-RA) of vector-valued analytic functions 
has all components of the vector share the same singularities. 
The RBF-RA is more accurate, robust, and easier to 
implement. In contrast to the stable RBF-QR and RBF-GA 
algorithms that are based on finding a better conditioned base 
in the same RBF-space, the RBF-RA can be used with any 
type of smooth radial kernel. The RBF-GA seeks to find a 
numerically well-conditioned basis function set in the same 
function space that is spanned by the ill-conditioned nearly flat 
original Gaussian RBFs. By exploiting some of the properties 
of the incomplete gamma function, the change of basis can be 
achieved without requiring any infinite expansions or their 
approximations.  

XIII. SPARSE AND FULL SYSTEMS’ SOLVERS 

The performance of direct solvers for sparse matrices, see 
[45]-[47], depends entirely on locations of non-zero elements. 
Bad locations of zeros can require full O(N3) complexity. To 
alleviate this complexity problem, all sparse system 
algorithms use matrix pre-ordering to minimize the fill-in; this 
pre-ordering must be considered in calculating the total 
computational time. The optimal pre-ordering algorithm is 
known only for symmetric-positive definite matrices. But, in 
the case of unsymmetrical matrices, optimal pre-ordering is an 
NP-complete task. All existing direct sparse solvers use 
heuristic ideas to perform the pre-ordering. The complexity of 
direct sparse solvers for sparse matrices can vary wildly from 
O(N3) to O(N{3/2}). Direct sparse solvers have poor capability 
for parallel execution, whereas dense solvers are extremely 
suitable for parallel computers. It is interesting to note in [43] 
that in the process of comparing RBF-QA and direct solvers 
with extended precision, their Fig. 12 demonstrates that direct 
solvers + extended precision +CD-RBFs are more efficient, 
even though RBF-QA produces a sparse system.  

Theoretically, iterative methods are the only way to beat the 
complexity of direct solvers since iterative solvers are 
supposed to converge within O(N2) operations. However, 
iterative solvers suffer from slow convergence and require 
good pre-conditioners. Constructing good pre-conditioners is a 
separate problem that needs to be solved. It may be possible 
that with careful and non-trivial tuning of all parts of sparse 
solvers (direct or iterative), sparse solvers may be faster than 
solving small dense matrix in extended precision on a single 

CPU. However, everything depends on the problem being 
studied and the computational environment for comparison. 
Both GPUs (graphic processing units) and FPGAs (Field-
programmable gate arrays) possess highly parallel structures 
that make them more efficient than general-purpose CPUs for 
algorithms where the processing of large blocks of data are 
operated upon in parallel. However, GPUs and FPGAs have 
very limited functionality for branching operations that are 
abundant in sparse solvers making it very difficult for porting 
and running sparse solvers in parallel. In contrast to the 
various sparse solvers, dense solvers enjoy massive 
parallelism because there is no branching and all 
manipulations can be formulated as efficient BLAS3/GEM 
operations that are well optimized and are designed for 
massive parallelism on all imaginable platforms. With the 
proper implementation, the direct solver CD-RBF algorithm 
can be unbeatable in speed and accuracy. To verify this 
assertion, such codes must be implemented as a specialized 
low-level C/C++ code for RBFs that are heavily optimized for 
CPUs, GPUs, or FPGAs. The extreme option is the creation of 
a specialized processor for RBF based solvers on GPUs and 
FPGAs whose implementation will be even faster than double 
precision computations.  

XIV. DISCUSSION 

A much-neglected area of modelling inquiry is the 
simulation of higher dimensional PDEs and IEs relating to 
plasma fusion, molecular quantum mechanics, cellular 
metabolism, etc. A survey of popular techniques for higher 
dimensional IE, PDE, and I-PDE problems was presented in 
[47]. Unfortunately, Monte Carlo techniques converge 
extremely slowly as N-½, and quasi-Monte Carlo methods 
suffer from biasing. Tensor product finite difference, finite 
element, and finite volume methods in higher dimensions have 
limited applicability and operator splitting does not yield 
meaningful results when processes are coupled dimensionally. 
For both local and global RBF matrices, the condition number 
grows with β increasing number of elements and the shape 
parameter; however, the condition number increases at a faster 
rate with global systems. Luh [27]-[29] developed a shape 
parameter theory for CD-RBFs that is implemented with the 
extended precision feature of MATHEMATICA with 
extremely accurate results having max and RMS errors, O(10-

147), against problems with analytic solutions. Yet, there is a 
very strong reluctance to execute problems on computers with 
extended precision, citing the poor performance of sloppily 
written old extended precision packages that ignored modern 
developments. Many researchers still cling to their beliefs that 
only single and double precision computers are worthwhile 
considering. Another strongly held belief is that RBFs that 
produce sparse systems of equations are superior because of 
faster execution because the system of equations is dominated 
by zero entries. The new GPUs and FPGAs are ideal for full 
equation systems such as those arising from s since there is no 
branching involved that is opposite of that with sparse 
systems. If the problem being solved is a two- or three-
dimensional one, it is possible that the local RBF method 
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would execute faster even using direct sparse solvers. 
However, if the problem being solved is in four dimensions or 
higher, the combination of extended precision using shape 
parameter refinement, non-iterative DDMS, full matrix solvers 
based upon block Gaussian elimination methods with full 
vectorization on dedicated GPUs and FPGAs has a very high 
probability to outperform sparse single or double precision 
solvers. There is now evidence in Fig. 12 of [43] that direct 
solvers + extended precision + CD-RBF s can outperform 
sparse RBF-QA, contrary to intuition.  
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