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 
Abstract—This paper presents an iteration method for the 

numerical solutions of a one-dimensional problem of generalized 
thermoelasticity with one relaxation time under given initial and 
boundary conditions. The thermoelastic material with variable 
properties as a power functional graded has been considered. 
Adomian’s decomposition techniques have been applied to the 
governing equations. The numerical results have been calculated by 
using the iterations method with a certain algorithm. The numerical 
results have been represented in figures, and the figures affirm that 
Adomian’s decomposition method is a successful method for 
modeling thermoelastic problems. Moreover, the empirical parameter 
of the functional graded, and the lattice design parameter have 
significant effects on the temperature increment, the strain, the stress, 
the displacement. 
 

Keywords—Adomian, Decomposition Method, Generalized 
Thermoelasticity, algorithm, empirical parameter, lattice design.  

I. INTRODUCTION 

N the last decade, much attention has been devoted to the 
numerical methods which do not require discretization of 

time-space variables or to the linearization of the nonlinear 
equations [1]. Adomian constructed the decomposition method 
to solve the linear and nonlinear partial and ordinary 
differential equations [2]-[4]. This method leads to 
computable, accurate, approximately convergent solutions to 
linear and nonlinear partial and ordinary differential equations. 
The solution can be verified to any degree of approximation. 
Recently, Adomian decomposition approach has been applied 
to obtain formal solutions to a wide class of partial and 
ordinary differential equations [5]-[16]. Adomian solved 
mathematical models of the dynamic interaction of immune 
response with a population of viruses, bacteria, antigens or 
tumor cells which had been modeled as systems of nonlinear 
differential equations or delay-differential equations by the 
ADM [4]. 

Adomian’s decomposition method (ADM) is to divide the 
given equation into linear and nonlinear parts of the equation, 
invert the highest-order derivative in both sides, calculate 
Adomian’s polynomials, and find the successive terms of the 
series solution by recurrent relation [1], [13]. Several 
modifications have been done to the Adomian decomposition 
method by many researchers to improve the accuracy and to 
expand its applications [10], [12], [16]. Recently, the 
decomposition method has been used in fractional differential 
equations [17]-[19]. 
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II. FORMULATION OF THE PROBLEM BY USING LAPLACE 

TRANSFORM TECHNIQUES 

An isotropic and thermo-elastic body in one-dimensional 
has been considered to fill the region  which is defined by 

 : 0x x     where the body is initially at rest and has 

been loaded by a harmonic thermal wave and the surface 
traction free [20].  

The displacement components for one-dimensional medium 
have the form:  

 

   , , , 0x u zu x t u x t u u          (1) 

 
The equation of motion is: 
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The generalized equation of heat conduction has the form: 
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which gives: 
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In (2)-(4),  0T T    is the temperature increment where 0T  
is the reference temperature such that 

0/ 1T   reference 

temperature, and e is the cubical dilation given by: 
 

   ,
,

u x t
e x t

x





,        (5) 

 

 is the density,  and  are Lame’s constants, K is the thermal 
conductivity,  is a material constant given by  3 2 T     , 
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t being the coefficient of linear thermal expansion, and Ec is 

the specific heat at constant strain, 0 is the relaxation time. 

The constitutive relation takes the form: 
 

           
,

, 2 ,
u x t

x t x x x x t
x


    


     .    (6) 

 
We consider that all the material parameters depend on the 

position with a power-function as: 
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where 0  is a small constant which is called empirical 

parameter and “n” is a positive parameter depends on the 
lattice design of the materials. 

Substitute from (7) into (1)-(4) and (6), we get: 
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where  0 0 0 03 2 T       

The heat equation takes the form: 
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For a small value of 0 1x  , we have 
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Thus, we obtain: 
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and 
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For simplicity, the following non-dimensional variables will 

be used [20]: 
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The primes have been canceled for simplicity. Thus, we get 

the governing equations in the forms: 
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To solve the governing equations (14)-(16), we will apply 

the following boundary conditions: 
The thermal boundary conditions are: 
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and the mechanical boundary conditions are: 
 

   
0

0

,
, 0, 0

x

x

e x t
x t

x






 


       (18) 

III. ADOMIAN’S DECOMPOSITION METHOD  

Adomian’s decomposition method usually defines the 
equation in an operator form by considering the highest-
ordered derivative in the problem. We define the differential 
operator L in terms of the two derivatives contained in the 
problem [4], [5].  

We consider (14) and (15) in the operator form as: 
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where 
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Assuming that the inverse of the operators 1

xL  and 1

xxL

exists and are taken as definite integrals as [1], [4], [5], [8]: 
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Thus, applying the inverse operator on both the sides of 

(19), (20) and using the boundary and the initial conditions in, 
we obtain: 
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Now, we will decompose the unknown functions  ,x t

and  ,e x t by a sum of components defined by the following 

series: 
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and, 
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The zero-components are defined by the terms that arise 

from the boundary conditions, which give: 
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Substituting from (27) and (28) in (25) and (26), we get 
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We obtain these components of  ,ke x t and  ,k x t as 

recursive formulas: 
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We calculate the zero components by using the boundary 

conditions in (27) and (28), hence, we obtain: 
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and, 
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also, the first components take the forms: 
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The rest of the components of the iteration formulas, (31) 

and (32), have been calculated similarly by using MAPLE 17 
program. Moreover, the decomposition series solutions, (29) 
and (30), are convergent very rapidly in real physical 
problems [9]-[11]. The convergence of the decomposition 
series has been investigated by several authors [10], [12], [16].  

In an algorithmic form, the ADM can be expressed and 
implemented in linear coupling in thermoelasticity models as: 
Algorithm 

Set a suitable value for the tolerance 610Tol   and let k be the 

iteration index, 
Step1. Compute the initial approximations  0 0, t  and 

 0 0,e e t  by using (33) and (34). 

Step2. Use the calculated values of k and ke to compute 1k  and
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1ke   from (31) and (32). 

Step3. If 1max k k Tol     and 1max k ke e Tol    stop, 

otherwise continue and go back to step 2. 

Step4. Calculate and e  which complete the solution. 

IV. THE NUMERICAL RESULTS  

The copper material has been chosen for the numerical 
evaluations, and the values’ constants were taken as [20]: 

 

 386 /K W mK , 5 11.78 10T K    ,  383.1 /Ec J kg K , 
28886.73 /s m  , 0 293T K , 10 23.86 10 /N m   , 

10 27.76 10 /N m   , 38954 kg/m    , 14

0 6.5 10 s   . 
 
Thus, we get the following dimensionless parameters: 
 

0 0.01  , =0.0104443 , 1.60862  ,   , 0 1.0  . 
 
We calculate the numerical solutions when the non-

dimensional value of the time is 2.0t  , and the non-
dimensional value of the distance is 0 2.0x  . According to 
the above algorithm, we stopped the calculation on the 7th 

component  7 ,e x t and  7 ,x t .  

Fig. 1 represents the temperature increment, the strain, the 
stress, the displacement distributions when n = 1, and for 
various values of the parameter  0 0,0.01   to stand on the 

effect of the empirical parameter on all the studied functions. 
It is observed that the empirical parameter has significant 
effects on all the studied functions. In the presence of the 
constant 0 , the values of the temperature increment 

distribution curve decrease as the distance increases and this 
appears at the end of the curve, but the situation is reversed in 
the case of strain, stress, and displacement, where the absolute 
value of those functions increases as the coefficient is valued. 
We also find the effect of the coefficient on the values of the 

maximum points of the curves, as the coefficient works to 

increase the value of the maximum points while in the 
distribution of the temperature it is in inverse mode. 

Fig. 2 has the same discerption of Fig. 1 but when n = 3 to 
stand on the effect of this parameter on all the studied 
functions. By comparing Fig. 1 with Fig. 3, it is noticed that 
when the value of the parameter n increases, the parameter 0
got more impact on all the distributions and the difference 
between the two cases of 0 0.0  and 0 0.01  will be more 

visible.  
Fig. 3 shows the significant effects of the parameter n on all 

the studied functions and that effects are more obvious on the 
strain, the stress, and the displacement. 

Fig. 4 shows all the studied function on 3D-figures with a 
wide range of x  0 2.0x  and wide range of the parameter n 

 0 3.0n   when the time 2.0t  . Those figures represent 

that the parameter n has significant effects on all the studied 

functions. 
 

 

(a) The temperature increment 
distribution 

(b) The strain distribution 

 

(c) The stress distribution (d) The displacement distribution 

Fig. 1 The temperature increment, the strain, the stress, the 
displacement distributions when n = 1 

 

 

(a) The temperature increment 
distribution 

(b) The strain distribution 

 

(c) The stress distribution (d) The displacement distribution 

Fig. 2 The temperature increment, the strain, the stress, the 
displacement distributions when n = 3 
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(a) The temperature increment 
distribution 

(b) The strain distribution 

 

(c) The stress distribution (d) The displacement distribution 

Fig. 3 The temperature increment, the strain, the stress, the 

displacement distributions when 0 0.01   

 

 

(a) The temperature increment distribution 

 

(b) The strain distribution 

 

(c) The stress distribution 

 

(d) The displacement distribution 

Fig. 4 The temperature increment, the strain, the stress, the displacement distributions when 2.0t   
 

V. CONCLUSIONS 

This work introduced the numerical solutions of a one-
dimensional problem of generalized thermoelasticity with 
power-functionally graded. The material properties have been 
dependent on the lattice shape. Adomian’s decomposition 
method has been used. It is noted that, this method is a 
successful method with successful iteration to solve 
thermoelasticity models. The empirical parameter and the 
lattice design parameter have significant effects on the 
temperature increment, the strain, the stress, the displacement. 
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