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Abstract—The proper number and appropriate locations of 

service centers can save cost, raise revenue and gain more 
satisfaction from customers. Establishing service centers is high-cost 
and difficult to relocate. In long-term planning periods, several 
factors may affect the service. One of the most critical factors is 
uncertain demand of customers. The opened service centers need to 
be capable of serving customers and making a profit although the 
demand in each period is changed. In this work, the capacitated 
location-allocation problem with stochastic demand is considered. A 
mathematical model is formulated to determine suitable locations of 
service centers and their allocation to maximize total profit for 
multiple planning periods. Two heuristic methods, a local search and 
genetic algorithm, are used to solve this problem. For the local 
search, five different chances to choose each type of moves are 
applied. For the genetic algorithm, three different replacement 
strategies are considered. The results of applying each method to 
solve numerical examples are compared. Both methods reach to the 
same best found solution in most examples but the genetic algorithm 
provides better solutions in some cases.  
 

Keywords—Location-allocation problem, stochastic demand, 
local search, genetic algorithm.  

I. INTRODUCTION 

HE classical location-allocation problem combines two 
well-known problems: the facility location problem and 

the allocation problem. Both locations of facilities and their 
allocation are considered simultaneously. This problem was 
introduced by Cooper in 1963 [1]. In his work, the number of 
sources and the location and capacity of each source were 
determined from the given sets of destination locations, 
requirements and shipping costs. The goal was to obtain the 
minimum total cost of operating sources and supplying 
destinations. After that there have been various aspects, 
assumptions, restrictions and applications considered in the 
location-allocation problem.  

For the potential locations or candidates of facilities, they 
can be classified as: discrete locations and continuous 
locations. The discrete locations mean that the potential 
locations are already fixed. On the other hand, the continuous 
locations are considered as Cartesian coordinates. Therefore, 
the potential locations can be anywhere in the xy-plane. Many 
studies, including this work, deal with the fixed potential 
locations. Nevertheless, Goodchild [2] studied retail site 
selection on a continuous space. He took customer behaviors, 
competitive locations and cost-effectiveness into 
consideration. Gokbayrak and Kocaman [3] also focused on 
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continuous locations with limited distance. Brimberg and 
Salhi [4] also considered the continuous locations but they 
used dependent fixed cost. Mousavi and Niaki [5] applied 
stochastic locations and fuzzy demand to their location-
allocation problem.  

The studies related to the location-allocation problem can 
be classified according to the number of layers or levels of the 
networks. Each layer represents each supply chain actor in the 
network such as plants, distribution centers, collection centers 
and customers. In general, networks contain only two layers: 
supplier’s facilities and customers’ locations [1]-[5]. 
Therefore, resource allocation is decided between facilities 
and customers. However, the supply chain networks may be 
complicated in real-life problems. They may consist of more 
than two layers. Fard and Hajaghaei-Keshteli [6] studied a tri-
level location-allocation problem for a forward/reverse supply 
chain. In their problem, products were passed through 
manufacturers, distribution centers, customer zones and 
recovery centers.  

Besides single-period planning, which the locations and 
allocation of facilities are decided once for the whole plan, 
multi-period planning is also applied in the location-allocation 
problem. Khodaparasti et al. [7] considered locating facilities 
and assigning customers in multiple periods. Moreover, the 
opened facilities and assigned customers can be changed in 
each period to deal with uncertain demand. Similarly, multi-
period planning was considered by Ghasemi et al. [8]. They 
proposed the mixed-integer programming for a multi-echelon 
relief logistic supply chain. Their model was used for setting 
temporary centers and allocating available resources after 
disaster which was flexible and suitable to the real situations 
in each period.  

Some studies on the location-allocation problem take more 
than one objective functions into consideration. Instead of 
minimizing only the total cost, Ghasemi et al. [8] minimized 
both the total cost for establishing relief facilities and the 
amount of shortage relief supplies. Baharmand et al. [9] 
proposed the model with two objective functions minimizing 
total logistics costs and response time for the immediate 
aftermath of sudden-onset disasters. The model presented by 
Jenkins et al. [10] contained three objective functions, 
including maximizing total expected covered demand, 
minimizing the number of located facilities and minimizing 
the number of facility relocations.  

One of the most important factors to make a decision for the 
location-allocation problem is demand. If the amount of 
demand of each customer is constant or known in advance, the 
plans for opening facilities and their allocation can be simply 
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made even in the long term. If the demand is known, it is 
called deterministic demand. In reality, the amount of demand 
is not deterministic. The amount of demand of each customer 
is usually not constant. It may be changed over time or 
affected by several factors such as product price, income, 
customer preference and satisfaction and expectation of 
changes of product price in the future. However, the factors 
that influence demand may vary with different types of 
products and services. Welble et al. [11] studied the factors 
affecting school milk demand in primary schools in Germany. 
Benjamin and Lin [12] investigated the factors that affected 
electricity demand in the nonmetallic mineral product industry 
of China. Inganga et al. [13] examined the factors affecting 
customer demand of financial services offered by commercial 
banks in Nairobi.  

It is a challenge to estimate or predict customer demand 
accurately. Some studies estimated the demand by applying 
forecasting methods. Cano-Belmán and Meyr [14] applied 
forecasted demand to their multi-period allocation models for 
multi-stage customer hierarchies. New approaches based on 
machine learning [15] and data mining [16] were also used to 
predict customer demand. The location-allocation problems 
with fuzzy demand were studied by Mousavi and Naiki [5] 
and Ghodratnama et al [17]. A number of studies on the 
location-allocation problem considered stochastic demand. In 
these cases, the demand was uncertain but its distribution was 
known. Yan et al. [18] determined the sizes of rental bike 
locations based on stochastic demand. Different distributions 
of demand were considered in the location-allocation problem. 
Wang et al. [19] studied a two-echelon supply chain and used 
lognormal distributed demand. Alzadeh et al. [20] applied the 
demand with Bernoulli distribution. The distribution of user 
demand arrival and general service time of immobile servers 
studied by Vidyarthi and Jayaswal were Poisson [21].  

The location-allocation problem has been applied to various 
real-life problems. Setting different types of facilities contains 
different restrictions. Özceylan et al. [22] determined the new 
locations of pharmacy warehouses and their coverage area. 
Kaveh and Mesgari [23] applied the location-allocation 
problem to set urban emergency centers. Sarker et al. [24] 
found the optimal number and locations of storage hubs for 
biogas production. The location-allocation problem was 
applied to end-of-life vehicle recovery in a reverse supply 
chain by Lin et al. [25]. Recently, the location-allocation 
problem is widely applied to humanitarian supply chain 
management. It helps to obtain suitable plans, including 
setting temporary facilities and allocating resources, in 
emergency situations in a short time. The evacuation planning 
for disasters such as earthquake in different countries were 
considered [8]-[10]. Barzinpour and Esmaeilli [26] were 
interested in setting relief locations for urban disaster 
management and considered multiple objectives. Sharma et al. 
[27] studied the dynamic temporary blood facility location-
allocation during post-disaster period.  

Applying the location-allocation problem to a real problem 
makes it complicated and difficult to obtain the optimal 
solution in reasonable time. Therefore, a novel method called 

a heuristic method was proposed to find a near-optimal 
solution in a short time. Various heuristic methods were 
developed and applied to solve the location-allocation 
problems. Ghasemi et al. [8] modified the genetic algorithm 
and particle swarm optimization for solving the multi-
objective problem. Wang et al. [19] applied the genetic 
algorithm to their two-echelon location-allocation problem. 
Kaveh and Mesgari [23] proposed a new heuristic method and 
compared its performance with other heuristic methods, 
including biogeography-based optimization, genetic algorithm 
and particle swarm optimization. Their method provided better 
results to determine the locations that maximized population 
coverage. Lin et al. [25] improved an artificial bee colony 
optimization to find the solutions of their location-allocation 
problem for end-of-life vehicle recovery network. Their 
method was compared with other heuristic methods by solving 
the real problem.  

The remainder of this paper is organized as follows. Section 
II describes the characteristics and assumptions of this 
problem. Section III presents a mathematical model for the 
capacitated location-allocation problem with stochastic 
demand. Section IV explains the heuristic methods used in the 
work. Section V shows results of applying the heuristic 
methods to numerical examples. Finally, Section VI provides 
the conclusion and suggestion of this work.  

II. PROBLEM STATEMENT 

This work considers a single echelon supply chain network 
in multiple planning periods. There are potential locations of 
service centers and customers. The locations of customers and 
potential locations are known. An example of the network of 
the location-allocation problem considered in this work is 
given in Fig. 1. Fig. 1 (a) shows the locations of potential 
service centers and customers in the network before choosing 
the suitable service centers. The demand of each customer in 
each period is stochastic. Each potential location of service 
center has limited capacity. The opened service centers are 
selected from set of potential locations as demonstrated in Fig. 
1 (b). Each customer is served by only one opened service 
center as can be seen in Fig. 1 (c).  

This location-allocation problem contains locating service 
centers and assigning customers to each opened service center 
to maximize the total profit of the provider. Note that each 
service center cannot be relocated. When it is opened, it has to 
serve customers for the whole planning period. Moreover, 
shortage is allowed and there is no backorder. The demand of 
some customers may not be fulfilled in some periods if the 
maximum capacities of the service centers are already 
reached. These customers will be served only some of their 
demand and the provider needs to pay the penalty cost for the 
amount of unsatisfied demand. The amount of unsatisfied 
demand of customers is considered as lost sales. It cannot be 
served in the succeeding periods. Moreover, the number of 
opened service center is fixed. The optimal number of opened 
service centers can be found by varying this number.  
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Fig. 1 An example of the location-allocation problem 

III. MATHEMATICAL FORMULATION 

According to the characteristics and assumptions of the 
location-allocation problem given in Section II, a 
mathematical model can be formulated by using the following 
notations. 

A. Set and Indices 

 𝐼: set of potential locations of service centers indexed by 
𝑖, 

 𝐽: set of customers indexed by 𝑗, 
 𝑇: set of planning periods indexed by 𝑡.  

B. Parameters 

 𝑁:  the number of opened service centers,  
 𝑄௜:  the maximum capacity of potential location 𝑖, 
 𝐷௝௧: demand of customer 𝑗 during planning period 𝑡, 
 𝐶௜௝: transportation cost for traveling between potential 

location 𝑖 and customer 𝑗,  
 𝐹௜: fixed cost for opening service center 𝑖,  
 𝑅: revenue of covered demand (per unit),  
 𝑃: penalty cost of uncovered demand (per unit).  

C. Decision Variables 

𝑦௜ ൌ ൜
1, if potential location 𝑖 is opened,
0, otherwise,

  

𝑥௜௝ ൌ ൜
1, if service center 𝑖 serves customer 𝑗,
0, otherwise.

  

D. Mathematical Model 

Maximize 
 

𝑅 ∑ ∑ min൛∑ 𝐸ൣ𝐷௝௧൧𝑥௝௜௝∈௃ , 𝑄௜ൟ௜∈ூ௧∈் െ
𝑃 ∑ ∑ max൛൫∑ 𝐸ൣ𝐷௝௧൧𝑥௝௜௝∈௃ ൯ െ 𝑄௜, 0ൟ௜∈ூ௧∈்  െ ∑ 𝐹௜𝑦௜௜∈ூ െ

𝑇 ∑ ∑ 𝐶௜௝𝑥௜௝௝∈௃௜∈ூ      (1) 
 
subject to  

 ∑ 𝑦௜௜∈ூ ൌ 𝑁             (2) 
 

      ∑ 𝑥௜௝௜∈ூ ൌ 1   ∀𝑗 ∈ 𝐽        (3) 
 

      𝑥௝௜ ൑ 𝑦௜    ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽     (4) 
 

      𝑦௜ ∈ ሼ0,1ሽ   ∀𝑖 ∈ 𝐼        (5) 
 

      𝑥௜௝ ∈ ሼ0,1ሽ   ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽     (6) 
 

The objective function (1) is to maximize the total profit 
during the whole planning periods. It is computed from the 
revenue obtaining from serving customers’ demand 
subtracting by the penalty cost of uncovered demand, fixed 
opening cost and transportation cost between customer and 
service center. The term 𝐸ൣ𝐷௝௧൧ represents the expectation of 
demand of customer 𝑗 in period 𝑡. The number of opened 
service centers is limited as shown in Constraint (2). Each 
customer is served by only one service center as written in 
Constraint (3). Constraint (4) guarantees that each customer 
can be served by the service center that is opened. The 
possible values of decision variables are given in Constraint 
(5) and Constraint (6).  

IV. HEURISTIC METHODS 

According to the complexity of optimization problems, the 
exact method may not be capable of finding the optimal 
solution in polynomial time. Consequently, heuristic methods 
were developed. Starting with an initial feasible solution, we 
find a new feasible solution by using any methods. If the new 
one is better than the current one, we keep it as the current 
solution. Then we continue to search for a new solution until 
reaching stopping criterion. Although the heuristic method 
cannot guarantee the optimality, they are widely used to find 
reasonable solution within a short time. This work applies two 
well-known heuristic methods, the local search and the genetic 
algorithm, to solve the location-allocation problem.  
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A. Local Search (LS) 

LS is a single-solution based heuristic method. Each time 
only one solution is considered. It searches for a new solution 
within a neighborhood of the current solution. Since the 
location-allocation problem contains two parts, including 
determining the locations of service centers and allocation, 
two types of moves related to each part are applied to obtain 
new solutions. They are called Relocation and Reallocation. 
The detail of each type is given as follows:  
 Type 1: Relocation: An opened service center is randomly 

selected to be closed and a potential location is randomly 
selected to be opened as a service center.  

 Type 2: Reallocation: A customer is randomly selected 
and then randomly assigned to another opened service 
center.  

The procedures of LS used in this work are:  
Step1. Generate an initial feasible solution of the problem and 

compute its total profit.  
Step2. Choose type of move. Given a probability to choose 

Type 1 is 𝛼. (Then the probability to choose Type 2 is 
1-𝛼.)  

Step3. Find a new candidate of solution by applying the 
selected type of move and compute its total profit.  

Step4. If the candidate gives more total profit, keep it as the 
current solution.  

Step5. Check the stopping criterion. If it is met, terminate the 
algorithm. Otherwise, repeat Step 2.  

B. Genetic Algorithm (GA) 

GA is a population-based heuristic method. Each time a set 
of solutions called population is considered. Based on 
concepts of evolution theory, the GA was first introduced by 
Halland [28]. The GA consists of six steps, including 
initialization, fitness evaluation, parent selection, crossover, 
mutation and replacement as shown in Fig. 2.  

The GA begins with initialization. First, a set of initial 
feasible solutions is generated. The population size is denoted 
by 𝑁𝑃. Each solution or individual of the population is 
evaluated for its fitness. The fitness value is used to determine 
how good or fit of each individual to the circumstance. The 
more fitness value, the more chance is to reproduce offspring 
or to survive in the next generation. In this work, the fitness 
value was computed from the objective function (total profit) 
of the location-allocation problem. Then, two individuals are 
selected to be parents and reproduce offspring. This work used 
tournament selection. Given tournament size 𝑘, then, 𝑘 
individuals are randomly chosen from the current population. 
The best two individuals are selected from the tournament.  

A pair of selected parents provides a pair of offspring by 
reproduction or crossover. The characteristics or information 
of parents are passed through their offspring. This work 
applied uniform crossover because each characteristic will 
pass through each offspring according to a chance. An 
example of applying uniform crossover is demonstrated in Fig. 
3. By setting the crossover probability 𝐶𝑅 (0 < 𝐶𝑅 < 1), the 
characteristic of Parent 1 will transfer to Offspring 1 if a 
random chance is less than or equal to 𝐶𝑅.  

 

Fig. 2 The flowchart of the GA 
 
Later, the offspring obtained from crossover may be 

changed some of their characteristics. This is called mutation. 
Given the mutation probability, 𝑀𝑈 (0 < 𝑀𝑈 < 1). Each 
characteristic will be changed if a random chance is less than 
or equal to 𝑀𝑈. After mutation, all offspring and parents are 
pooled together to choose 𝑁𝑃 individuals that will survive and 
act as parents in the next generation. The current population 
will be replaced with these chosen individuals. The algorithm 
will be repeated as the flowchart in Fig. 2 until it reaches the 
stopping criterion.  

 

 

Fig. 3 An example of applying uniform crossover 
 
There are many strategies for the replacement procedure. 

This work considered three types of replacement strategies as 
follows:  
 Strategy 1: Remove Oldest: The oldest individual is 

removed from the pool. 
 Strategy 2: Remove Randomly: A half of individuals in 

the pool are removed by random.  
 Strategy 3: Conservative: The 2-tournament selection is 

applied to remove individuals from the pool.  

V.  NUMERICAL EXAMPLES 

The proposed mathematical model for the capacitated 
location-allocation problem in Section III was solved by using 
the heuristic methods presented in Section IV. The numerical 
examples used in this work were adapted from the instances of 
Prodhon [29]. Five scenarios with different sizes of problem 
were considered. The numbers and locations (xy-coordinates) 
of customers and potential locations of service centers, the 
maximum capacities in each period and fixed costs of service 
centers were used from the instances. Twelve planning periods 
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were considered in each example. The demand of each 
customer in each period, 𝐷௝௧, was assumed to be normal 
distribution. The demand data applied in the examples were 
generated from 𝐷௝௧~𝑁ሺ15,2.5ሻ. The number of opened service 
centers were varied from 1 to |𝐽| െ1, where |𝐽| is the total 
number of potential locations of service centers. The numbers 
of customers and potential locations of each scenario are 
shown in Table I. The maximum capacity of fixed opening 
cost of service centers for each scenario in Table I is given as 
intervals if they are not identical. 

 
TABLE I 

PROBLEM SIZES AND PARAMETER VALUES OF NUMERICAL EXAMPLES 

Scenario 
No. of 

customers 

No. of 
potential 
locations 

Capacity of 
service 
centers 

Opening cost of 
service centers 

1 20 5 140 [6091, 11961] 

2 50 5 [350, 420] [5029, 13647] 

3 100 5 [700, 770] [41688, 52810] 

4 100 10 [420, 560] [47865, 59082] 

5 200 10 [910, 1190] [71504, 124443] 

 

Both the LS and the GA were implemented by coding in C. 
All numerical examples were run on a 2.5 GHz Intel Core i5-
7200U CPU with 4 GB of RAM and Window 10 Pro. For the 
LS, the probability that choosing the Relocation move was 
varied as 0.2, 0.4, 0.6, 0.8 and 1.0. The stopping criteria were 
set as 200 thousand iterations. For the GA, the population size 
was 100. The crossover probability was used as 0.9 and the 
mutation probability was 0.2. The stopping criteria were set as 

200 generations or 200 thousand times of function evaluation.  
The results of each example were obtained from 50 

replications. Table II shows the total profit of the best found 
solution obtained from the LS and GA in Scenario 1. The 
names S1, S2 and S3 refer to the replacement strategies, 
Strategy 1, Strategy 2 and Strategy 3 described in Section VI, 
respectively. The best value of the total profit obtained from 
each heuristic method in each case is written in bold. The 
better value of the total profit compared between the LS and 
the GA is shown in highlight.  

 In Scenario 1, the LS and the GA provide the same best 
found solution in most cases. However, the GA reaches a 
better solution when opening three service centers as grey 
highlighted in Table II. Comparing among different parameter 
values of the LS, using 𝛼 as 0.6 gives the best result. For 
different replacement strategies of the GA, S3 or Conservative 
Strategy provide the best results among other replacement 
strategies and the LS.  

The results of solving the numerical examples in Scenario 2 
by the LS and the GA are displayed in Table III. They are 
similar to the results of Scenario 1 given in Table II in the 
sense that the GA reaches the better best found solution. 
Furthermore, the best found solution also obtained from the 
replacement strategy S3. This is because the Conservative 
Strategy chose the new parents by applying the tournament 
selection. It leads to the diversity of the population. Then new 
characteristics that may be fit to the better solutions can be 
found by using this strategy.  

 
TABLE II 

COMPARISON OF BEST FOUND SOLUTION BETWEEN LS AND GA IN SCENARIO 1 

𝑵 
LS GA 

𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 S1 S2 S3 

1 66,742 66,742 66,742 66,742 66,742 66,742 66,742 66,742 

2 252,876 252,876 252,876 252,876 252,876 252,876 252,876 252,876 

3 271,070 271,070 272,653 271,936 268,664 269,187 268,664 274,865 

4 268,886 268,886 268,886 268,886 268,886 268,886 268,886 268,886 

 
TABLE III 

COMPARISON OF BEST FOUND SOLUTION BETWEEN LS AND GA IN SCENARIO 2 

𝑵 
LS GA 

𝛼 = 0.2 𝛼 = 0.4 𝛼 = 0.6 𝛼 = 0.8 𝛼 = 1.0 S1 S2 S3 

1 209,481 209,481 209,481 209,481 209,481 209,481 209,481 209,481 

2 672,696 669,135 669,574 667,007 658,191 658,191 658,191 673,164 

3 688,203 688,203 688,203 688,203 688,203 688,203 688,203 688,203 

4 689,417 689,417 689,417 689,417 689,417 689,417 689,417 689,417 

 

The results of Scenario 3 are similar to those of Scenario 1 
and Scenario 2. For Scenario 4 and Scenario 5, every 
replacement strategy of the GA reaches the same best found 
solution in every example. The LS also gives these best found 
solutions by some values of 𝛼. However, it cannot be 
concluded the most suitable value of 𝛼 from these numerical 
examples.  

The LS is easy to implement and takes less running time 
than the GA. Nevertheless, it may not reach as a good solution 
as the GA because it may be stuck in a local optimum. Even 
though the GA is more complicated and takes longer time to 

find a solution, it can escape from the local optimum.  

VI. CONCLUSION 

The location-allocation problem aims to find the suitable 
locations of facilities and their service areas in order to cover 
the customer demand. It is considered as a NP-hard problem. 
Even when the demand is deterministic, it is difficult to obtain 
the optimal solutions, especially for large-scaled problems. 
This work considered the capacitated location-allocation 
problem with stochastic demand in multiple planning periods. 
The goal of locating the facilities called service centers was to 
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obtain the maximum profit during the whole planning periods 
although the demand is uncertain.  

The mathematical model was formulated for the single-
echelon multi-period location-allocation problem. The 
heuristic methods, LS and GA, were applied to solve 
numerical examples of this problem. Different values of 
parameters were considered in utilizing the LS. The chance to 
select each move had an impact on the best found solution. 
However, there was no remarkable value of chance found in 
solving these numerical examples. On the other hand, the 
Conservative replacement strategy applied in GA provided 
outstanding results compared with other replacement 
strategies considered in this work.  

Comparing two heuristic methods, LS and GA, GA spent 
longer running time but provided better results. Its best found 
solutions had higher total profit than those obtained from LS. 
This derived from the fact that the GA contained some 
procedures that helped escaping the local optimum. For further 
work, other heuristic methods may be developed to solve this 
problem, and also, compare their performance in solving other 
instances. Moreover, the capacitated location-allocation 
problem can be applied to several real-life problems and case 
studies.  
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