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Abstract—Engagement is one of the most important factors in 

determining successful outcomes and deep learning in students. 
Existing approaches to detect student engagement involve periodic 
human observations that are subject to inter-rater reliability. Our 
solution uses real-time multimodal multisensor data labeled by 
objective performance outcomes to infer the engagement of students. 
The study involves four students with a combined diagnosis of 
cerebral palsy and a learning disability who took part in a 3-month 
trial over 59 sessions. Multimodal multisensor data were collected 
while they participated in a continuous performance test. Eye gaze, 
electroencephalogram, body pose, and interaction data were used to 
create a model of student engagement through objective labeling 
from the continuous performance test outcomes. In order to achieve 
this, a type of continuous performance test is introduced, the Seek-X 
type. Nine features were extracted including high-level handpicked 
compound features. Using leave-one-out cross-validation, a series of 
different machine learning approaches were evaluated. Overall, the 
random forest classification approach achieved the best classification 
results. Using random forest, 93.3% classification for engagement 
and 42.9% accuracy for disengagement were achieved. We compared 
these results to outcomes from different models: AdaBoost, decision 
tree, k-Nearest Neighbor, naïve Bayes, neural network, and support 
vector machine. We showed that using a multisensor approach 
achieved higher accuracy than using features from any reduced set of 
sensors. We found that using high-level handpicked features can 
improve the classification accuracy in every sensor mode. Our 
approach is robust to both sensor fallout and occlusions. The single 
most important sensor feature to the classification of engagement and 
distraction was shown to be eye gaze. It has been shown that we can 
accurately predict the level of engagement of students with learning 
disabilities in a real-time approach that is not subject to inter-rater 
reliability, human observation or reliant on a single mode of sensor 
input. This will help teachers design interventions for a 
heterogeneous group of students, where teachers cannot possibly 
attend to each of their individual needs. Our approach can be used to 
identify those with the greatest learning challenges so that all students 
are supported to reach their full potential. 
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I. INTRODUCTION 

T is often a challenge to keep children engaged in learning 
activities, especially if the activity requires them to retain 

focus and active participation for a continuous period of time. 
Researchers reported that students with learning disabilities do 
not display any significant attention deficiency compared to 
non-disabled students – these students can complete the same 
activities if given more processing time [1]. Despite this 
outcome, student engagement can vary greatly depending on 
the activity, and understanding when the student is engaged, 
and when they are not, is not a straightforward task. 

While research has focused significantly on the ability of 
children with learning difficulties to recognize [2], perceive 
[3] and interpret [4] emotional cues, there is little to no 
research on the recognition of the emotional state of these 
students. The importance of carers being able to interpret the 
emotional cues and states of such students has been 
documented in [5]. It is found that carers made significantly 
more critical and ‘fundamental attribution’ [6] errors in the 
emotional expression of their clients with learning disabilities 
in comparison to their clients without learning disabilities. 
This affects the quality and quantity of their client’s treatment 
[5] and has a negative effect on the provisional treatment [7], 
[8]. Currently, carers rely on their expert understanding and 
personal experience of the students to interpret their voices, 
expressions, and gestures. Dependent on the personal 
experience with a particular client, a carers internal modeling 
of the emotional expression of that client can vary widely and 
demonstrate inter-rater reliability issues. 

One of the main ways to measure engagement in students 
with special educational needs is to use the Special Schools 
and Academies Trust (SSAT) Engagement Scale [9]. The 
Engagement Profile and Scale is a classroom tool developed 
through SSAT’s research into effective teaching and learning 
for children with complex learning difficulties and disabilities. 
It allows educators to focus on the child’s engagement as a 
learner and create personalized learning pathways [10]. The 
authors describe seven components of engagement namely, 
awareness, curiosity, investigation, discovery, anticipation, 
persistence, and initiation. Teachers assign a score out of four 
for each component giving a total score out of 28. One 
potential issue with the use of this scale is that teachers assign 
a subjective rating to each component, which will be subject to 
inter-rater variability. 

The scale has been used to assess the impact of new 
technologies in special education – especially in studies 
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investigating the suitability of humanoid robots to support 
learning in students with Profound and Multiple Learning 
Disabilities (PMLD). The approach of using an engagement 
scale to create personalized learning pathways has been 
examined by others [11]-[13]. 

One way to overcome the variation in observer inter-rater 
reliability in tracking emotional expression is to introduce a 
reliable indicator of that emotion. In this research, a robust 
methodology for tracking engagement levels of children with 
PMLD or Cerebral Palsy (CP) is proposed using Signal 
Detection Theory (SDT) [14]. The application of this theory 
gives quantifiable information on the improvement of 
deterioration or attention in response to a Continuous 
Performance Test (CPT) specifically adapted to the abilities of 
such students [1], [15]. Performance in this test will provide 
objective labels to train machine learning algorithms using 
sensor data (e.g., on eye gaze and body pose) collected whilst 
the students are interacting with a PC. After obtaining a 
labeled dataset, machine learning models can be applied to the 
data so that in the future new unlabeled data can be presented 
to the model and engagement can be inferred. 

Many traditional interactive systems use devices such as a 
keyboard and mouse and are constructed to emphasize the 
transmission of explicit messages while ignoring implicit 
information about user interaction. The emerging science of 
affective computing can only be accelerated with the 
abundance of sensor data [16], [17] and wearables [18]. These 
multimodal human cues [19]-[21] provide the multimodal 
multisensor data points necessary for enhanced emotional 
modeling. Multimodal multisensor data have been 
instrumental in determining user affective states [19], [22]-
[28] including engagement [29]-[31]. There are a number of 
challenges to develop such a model including understanding 
the relationship between the terms used in educational 
contexts (e.g., ‘flow’ and ‘engagement’), developing 
appropriate CPTs suitable for the abilities of students with the 
most profound learning disabilities, selection of appropriate 
sensors and features derived from these data streams from 
which emotional states can be inferred, finding a suitable 
population of end-users to collect data with to train the 
machine learning algorithms, and finally comparing the 
performance of a range of machine learning methods to infer 
flow and engagement. This paper addresses each of these 
challenges. 

II. ENGAGEMENT, FLOW AND LEARNING 

In education, the use of the term ‘engagement’ is more 
familiar to teachers than flow. D’Mello and Graesser [32] see 
considerable overlap between the two terms: “we 
conceptualize engagement/flow as a state of engagement with 
a task such that concentration is intense, attention is focused, 
and involvement is complete” (p.146). Contrary to 
engagement, the concept of flow is well defined in 
Csíkszentmihályi’s works [33], [34]. One is in flow when one 
is engaged [31], and steady performance has been maintained 
at the comfortable limits of one’s skill limitations [35], [36] 
for the duration of time - making flow the optimal 

psychological state of engagement. This results in immersion, 
concentrated focus and deep learning [37], [38]. The 
relationship between flow and engagement has been illustrated 
in Bianchi-Berthouze’s [31] engagement model, a simplified 
version that has been shown in (1): 
  
𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 → 𝐹𝑙𝑜𝑤 → 𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡  (1) 
 

Performance trend tracking can be used as an indicator of 
flow [36]. This approach has been used in [39]-[41] as a 
model for relating affect (flow/engagement) to user 
performance in a pre-defined activity/task challenge. 

Engagement’s crucial role in learning was recognized by 
Carpenter [42], stating that “Sustainable learning can occur 
only when there is meaningful engagement”. Learner 
engagement in the classroom is the single, most reliable 
indicator of deep learning [40], [43], [44] and learner 
satisfaction [33], [37], [38]. Its role is central to classroom 
performance and the achievement of learning outcomes [45]-
[48]. For these reasons, flow, a sub-state of Engagement [31], 
[33], [49], is a more suitable measure to follow or track the 
quality of experience; firstly it can be objectively monitored, 
and secondly, through its monitoring, engagement is also 
established. Flow is the optimal state of engagement, where 
engagement meets productivity [37], [50]. Maintaining flow in 
learning is especially significant because it is the most reliable 
indicator for determining successful learning [36], [45]-[48]. 
In the absence of learner engagement, deep conceptual 
learning is also not present [48], [51], which is an essential 
attribute to long-term learning and new skill achievement [51]. 

III. CHALLENGES IN UNDERSTANDING ENGAGEMENT IN 

STUDENTS WITH LEARNING DISABILITIES  

Abrams stated [52], "The vast majority of children with 
learning disabilities have some emotional problem associated 
with the learning difficulty.” Generally, however, teachers 
have prioritized the diagnosis and remediation of learning 
disabilities [53]. 

Studies have considered self-reported affect states as the 
ground truth for inter-rater agreement studies [54], [55]. These 
studies have looked at the level agreement and correlation 
between self-rated affect states and peers, clinicians, and long-
term partners. The level of correlation even though significant 
between the 40th and 70th percentiles [54], [55], still leaves 
room for improvement. In addition, self-rated affect states 
may carry bias or not be representative of the true affect state. 
Therefore, an automated method that would base its ground 
truth on self-rated affect states would thus be impacted by 
such bias and unknown reliability factors. The validity of a 
machine learning method based on clinician, or peer-rated 
affect states would inherit even greater bias, reliability, and 
interrater reliability uncertainty, as it is one more level 
separated. Importantly, a machine learning method with 100% 
classification accuracy trained with clinician-rated affect data 
would at best achieve around 70% correctness of the self-rated 
affect states. Furthermore, the self-rated affect states may 
themselves have a bias or be unrepresentative. This creates a 
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problem for both the clients and care workers as it has been 
shown that observation is not a reliable method of determining 
a person’s mood and affect state [6]. This can only be more 
intensified with PMLD and CP users, as their behaviors, body 
language and voice may not have the same cues as mainstream 
people. Moreover, the levels of skill and experience between 
care workers and teachers vary widely, as does their capacity 
and accuracy of interpretation of others’ behaviors. This 
uncertainty of interpretation and inaccuracy in the observation 
of the affect state of a person experiencing PMLD or CP 
(mood and emotional well-being) can be detrimental to their 
quality of life [5], [7], [8]. Hence, the well-being of a student 
with PMLD or CP can be improved if their levels of interest 
and engagement could be determined and tracked by more 
independent and repeatable means, such as using technology, 
and in our case sensors. This added interpretation of a 
student’s state of affect is not meant to replace teachers’ or 
carers’ interpretation, but more to augment this judgment. 

Monitoring a person's level of interest and engagement in 
activity allows carers, teachers, and parents to be responsive to 
those levels. In this study, we investigate the ability of sensor-
based technology to detect and track sustained attention in a 
repetitive demanding activity, with a multimodal multisensor 
platform. This allows us to make inferences on the attention 
level of the student throughout the length of this activity 
through their responses to the challenges presented in the 
repetitive activity. 

An objective approach to the reporting of engagement is the 
use of a standardized test to monitor for indicators of flow. We 
demonstrate the possibility of tracking and then modeling 
body movements, eye gaze, electroencephalogram (EEG) and 
interaction data from students with PMLD and CP to estimate 
their level of engagement, as a good indicator of what interests 
them and positively influences the quality of that experience. 

IV.  A PLATFORM TO MEASURE ENGAGEMENT USING 

MULTIMODAL MULTISENSOR DATA FOR PMLD 

A gamified platform is proposed that monitors the qualities 
of flow, namely engagement through performance tracking 
using SDT [14] measures and outcomes. For the remainder of 
the paper, we will refer to this engagement tracking platform 
as ‘the platform’.  

The participant is required to pay continuous attention to a 
computer screen where an interactive game provides them 
with a pre-defined signal detection challenge. The participant 
is in control of the response they give, and feedback is given 
to them regarding the correctness of their response to the 
challenge. This is the basis for Swanson’s CPT [15]. The CPT 
is an integral component of the platform, and we have 
therefore created a version, the ‘Seek-X’ type. This test has 
been created to be used specifically as an objective tool for 
engagement tracking using the CPT test outcomes to label 
multisensor data.  

We have named this CPT ‘Seek-X type’ because the 
participant is asked to seek the target image between other 
non-target images acting as a matrix of noise. ‘Type-Seek-X’ 
exercises engage eye gaze as a crucial element of answering 

the SDT challenge. The Seek-X type CPT is of the non-rare 
target type, see (2): 
 

CPT test types  
𝐵𝑦 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 

𝑇𝑦𝑝𝑒 𝑋 ⟶ 𝑆𝑒𝑒𝑘 𝑋    
𝑇𝑦𝑝𝑒 𝐴𝑋 ⟶ 𝑆𝑒𝑒𝑘 𝐴𝑋      

𝐵𝑦 𝑡𝑎𝑟𝑔𝑒𝑡 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑎𝑟𝑒               
𝑁𝑜𝑛 𝑟𝑎𝑟𝑒   

              
  (2) 

 
In summary, the period of sustained engagement is marked 

by participants' attention and interest being maintained in an 
interactive interaction. Maintaining sustained attention 
indicates the key foundation for recognizing lasting 
engagement. For this reason, this work explores classical 
methods for attention tracking using a neuropsychological test 
that measures a person's sustained and selective attention (the 
CPT) [15]. The CPT is reported to be the most popular 
measure of sustained attention or vigilance—the ability to 
sustain attentional focus and remain alert to stimuli over time 
[56], [57]. The first attempt to objectively evaluate the 
relationship between maintaining attention in students with 
learning disabilities using CPTs was introduced by Swanson 
in [15], [58] and later expanded by Eliason and Richman [1]. 
Using SDT [14], [15], [58]-[62], quantifiable objective data on 
the improvement or deterioration of attention are collected and 
analyzed using SDT detailed in [60], [61].  

A. Data Collection 

Four students were recruited for data collection (see 
Participants). They took part in an 11-week long study with 
up to four sessions weekly, depending on participant 
availability. 

Each session included 48 challenges. Each test lasted 
between 6-32 minutes depending on participant readiness or 
other setting-up challenges. Every session recorded nearly 4 
minutes of data. A total of 59 sessions of the CPT test were 
carried out (average of 15 sessions per participant). A series of 
48 slides with pauses in between were displayed for each 
participant.  

This CPT test design was based on Rosvald and Mirsky’s 
original paper [63]. Recommended time alterations to the 
experiment length were made to match the shorter length 
activities that students with PMLD are accustomed to at 
school [15]. The CPT test was therefore shortened to about 4 
minutes for our participants, and the whole process takes 
around 15 minutes. This is compared to other research, which 
suggests a 30-minute test for neurotypical participants [64]. 

The difficulty of the CPT was also adapted for each 
participant by making the maximum response time (slide 
display time + blank slide display time) shorter or longer or by 
adjusting the image matrix grid size. These times are initially 
1.8 s and 1 ± 0.1 s, respectively, and are increased or 
decreased depending on participant capacity. These times 
(seen in Table I) were established in a series of pilot tests 
where the aim was to reach close to the 85% rule for learning, 
where the participant makes around 15% mistakes and 85% 
correct responses [35] when in flow. The Seek-X type CPT 
slide timeline is demonstrated in Fig. 1. 
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TABLE I 
CPT SETTINGS ADJUSTED PER PARTICIPANT CAPACITY 

Participant 
alias 

P scales 
mean 

Slide display time/ 
Stimulus duration (s) 

Blank slide display time/ 
Interstimulus interval (s) 

Will 6.93 1.8 1.1  0.1 

Jen 19.45* 1 1.1  0.1 

Mark 3.7 8 2.1  0.1 

Rick 6.76 1.8 1.1  0.1 

*Jen is enrolled in the National Curriculum.  
 

 

Fig. 1 Seek-X type CPT slide timeline 
 

It is important in SDT that the participant can demonstrate 
that they understand the difference between the target and 
noise, given enough time. To establish this, the game objective 
was re-introduced to the participants at the start of every 
session using a paper-based mockup to test the participants’ 
understanding of the challenge and validate their response.  

B. Experimental Platform and the CPT  

The platform tracks student performance in a repetitive 
game, which rewards them with exciting visual and audio 
feedback when they answer correctly, but ultimately fatigues 
the student by being exhausting over a long period. The 
student is required to pay attention to the game dynamic, 
which challenges them to pay selective and sustained attention 
to the elements on the screen and respond appropriately. This 
induces different states of affect, with lower levels of valence, 
as the game carries on and the students’ attention capacity 
naturally decreases. During this game, real-time multimodal 
multisensor data are collected within the experimental 
platform, which are used later to create a machine learning 
model of flow. The experimental platform was developed in 
MATLAB to collect data from various consumer-grade sensor 
hardware. The experimental platform and the relative student 
position are visualized in Fig. 2. 

The type of CPT, ‘Seek-X’, was designed for this study. 
Each slide has a mixture of three images, comprising of the 
target image, the target imitation and the contrast image, as 
seen in Fig. 3. The target imitation bears a close resemblance 
to the target image (similar colors, general shape); however, 
the contrast image can easily be identified. 

The ratio of the mixture of the main image to the filler 
image in all slide types is always 9 to 1 or as close as possible 
to this ratio, depending on the grid size and limited spaces 
available. We found that for our test user group, a grid of 4 x 4 
introduced enough difficulty to allow for participant 
responses, without being so easy that the participant would not 
make any mistakes when fatigued.  

 

Fig. 2 The multimodal multisensor experimental platform with the 
eye gaze, body pose, EEG sensor and the CPT 

 

 
Target image Target imitation image Contrast image 

Fig. 3 CPT image types 
 

The distribution of the Hard Target (HT) pattern among the 
other random patterns has an occurrence probability of 50%. 
The other CPT occurrences are standardized [63] as Hard Foul 
(HF), Easy Target (ET) and Easy Foul (EF). These patterns 
and their corresponding labels are seen in Table II.  

 
TABLE II 

THE DISTRIBUTION OF PATTERNS IN THE SEEK-X TEST 
Pattern HT HF ET EF 

Distribution 50% 25% 12.5% 12.5% 

CPT Label HT: Target 
image mixed in 
with imitations 
targets with a 
few contrast 

images. 

HF: Imitation 
target images 

with some 
contrast 
images. 

ET: Target 
Image mixed 

in contrast 
images with 

some imitation 
targets. 

EF: Contrast 
images with 

some 
imitation 
targets. 

 
The participants were seated in a chair in front of a 20” 

computer monitor, at a controlled distance of 50 cm to 80 cm 
from the screen. Each participant was asked to press the 
keyboard spacebar, or a big button if wheelchair-bound, 
whenever they saw the target image on the screen, and not to 
press the button when they did not see the target image on the 
screen. During this activity, participant eye gaze, body pose, 
EEG measurements and button interaction data were 
continuously recorded. 

The participant was then presented with 48 instances of 
images displayed in a controlled random sequence on the 
screen. Each image was displayed for a stimulus duration 
(slide display time) followed by a blank slide displayed for an 
interstimulus interval.  

Real-time eye gaze position using Tobii EyeX [65], body 
pose data using Kinect v2, EEG data from the Muse headband 
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[66] and interaction data from the USB button are recorded in 
MATLAB [67]. The Muse EEG headband streams 16-bit 
voltage data in microvolt (µV) units at 500 Hz, which are 
equal or comparable to medical-grade EEG specifications 
[68]. The Tobii EyeX eye gaze tracking controller [69] uses 
near-infrared light to track the eye movements and gaze point 
of a student [70]. It works in variable light conditions and 
allows for student head movement while maintaining 
accuracy, which is crucial for our target user group. It has a 
frequency of 70 Hz and uses backlight assisted near-infrared 
(NIR 850 nm + red light (650 nm)) to achieve a 95% tracking 
population [71]. The Kinect 2 sensor [72] is a motion-sensing 
peripheral for body tracking. Using structured light and 
machine learning it can infer body position [72]. Kinect 2 is 
reported with an average depth accuracy of under 2 mm in the 
central viewing angle and increases to 2-4 mm in the range of 
up to 3.5 mm [73]. The furthest distance captured by Kinect 2 
is 4.5 mm, where the average error typically increases beyond 
4 mm. The experimental platform was designed to replicate 
the majority of the CPT test variations reported in relevant 
studies [1], [15], [63], [74]-[78]. The features extracted from 
these sensor data streams are described under feature 
extraction. 

C. Participants 

Four participants with PMLD were recruited to collect 
labeled sensor data whilst using the gamified platform. These 
four participants have a wide range of abilities, from extreme 
mobility restrictions to moderate learning disabilities. Our four 
participants are given pseudonyms, referred to in this paper as 
Will, Jen, Mark, and Rick.  

The four participants are made up of three boys, and one 
girl, aged 16 to 19 years. Information leaflets were sent to the 
special educational needs school from which they were 
recruited to inform staff and parents about the project.  

Students were selected based on their performance in 
scales, which represent a set of descriptions used to record and 
assess the progress of children who have special educational 
needs (P-scales) [79], [80] (see Table I). Permission for the 
study was given by Nottingham Trent University’s ethics 
committee. The user characteristics of each participant are 
now described in detail. 

Will is 18 years old, has a diagnosis of global development 
delay (GDD) and learning disability. These impact on his 
speech, language, and social interaction with others. This 
means his ability to concentrate on a single activity for an 
extended period is limited, which in turn, limits his sustained 
attention. His body mobility is not restricted, however slightly 
imprecise. His speech sounds imprecise and is limited in the 
selection of words. His capability in conducting particular 
tasks in quick succession is good; however, he struggles to 
maintain sustained attention.  

Jen is 19 and has a rare form of epilepsy. She is one of the 
more capable students at the school; she is very cooperative 
and shows an interest in being involved in the study. She also 
talks about music and theater and has interests in fashion and 
celebrities. 

Rick is 19 and has a global delay, a rare form of epilepsy 
and a severe learning difficulty. Rick has problems processing 
information and communication. His attention is usually 
committed to a single concept (an activity, a memory, a 
sound). He is incredibly reliant on routine, and he will try to 
avoid any disruptions to it. He enjoys loud motor sounds, 
power tools, and garden work. He often reflects on activities 
he has done in the past or will do in the future with single 
words or short phrases. His mobility is not constrained but is 
delayed and processing time needs to be allowed for any 
response. Physical objects and sounds help him associate with 
new concepts. 

Mark is 16 years old and has myotonic dystrophy; this 
makes his muscles very weak. Myotonic dystrophy is a 
progressive and life-limiting condition. Mark uses a 
wheelchair and is at risk of chest infections and sudden heart 
failure. He uses a specialized CP wheelchair for body support 
and transportation. The wheelchair supports his body frame 
and keeps him upright and secure with a safety belt. His head 
is rested against his right ear on a padded headrest. His 
mobility disability is extreme; however, he has some 
imprecise movement in his neck and arms. At the school, he 
uses both eye gaze technology and switches to interact with 
computer interfaces. Mark uses his voice to communicate; he 
likes sharing his sense of humor, he laughs when things go 
wrong, and makes the sound ‘uh-oh’ to signal mistakes. He 
enjoys making choices and can become frustrated when he is 
not offered choices. Mark likes interacting with computers, 
however, shows sensitivity to anything resting on his forehead 
like the EEG headband. Because of his CP, he required a 
member of staff to be present during the study. Mark shows a 
definite progression with communication and is now very 
accepting of and participating in a wider variety of activities, 
events, and opportunities in school. 

D. Feature Extraction 

Brain-Computer Interfaces (BCIs) represent a novel mode 
of communication that has been used in emotional 
classification [81], and cognitive aware applications [82]. 
BCIs are also considered unique in augmentative and 
alternative communication (AAC) as they do not require 
physical movement from a user. This makes BCIs a suitable 
AAC method for people with Severe Speech and Physical 
Impairments (SSPI) [83], or CP [84]-[87] who do not have 
access to conventional means of communication including 
speech and typing [86]. 

The quality of a BCI — to offer a direct mode of 
information from the brain — makes it especially ideal as an 
element in potential real-time affective user state detection 
[88], computer interaction for rehabilitation [89] and in brain 
multimedia interaction [90]. A BCI can also be a 
complementary source of information towards multimodal 
interaction systems as well, used in conjunction with other 
modalities such as gesture, facial expressions, gaze and body 
posture [91]-[93]. 

EEG frequency has been used as a feature to determine the 
active brain state [94]-[96]. In this study, five channels of 
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EEG data are recorded, TP9, AF7, FPz, AF8 and TP10 [97] at 
a frequency of 500 Hz. EEG Kalman filtering has been shown 
to be useful in removing EMG induced artifacts [98]-[104]. A 
robust Adaptive Autoregressive (AAR) model with an order of 
six detailed in [104] was used. The AAR model estimate of 
the EEG Kalman filter was utilized to reduce the impact of 
Electromyography (EMG) spikes from body movement, eye 
blinks and other facial muscle movements. These EMG spikes 
are isolated in a few samples, which make the data ideal for 
AAR Kalman filtering. In Fig. 4, we see that it has removed 
the EMG artifact that can be seen between samples points A 
and B, enhanced the EEG spikes, and revealed an EEG peak 
between C and D.  

By using an AAR Kalman filter on the data, we estimate the 
EEG wave during the EMG incident artifacts using 
surrounding neighboring EEG samples and correct those 
affected samples. This is done by evaluating a moving set of 
samples and checking for EMG contamination. The 
contamination is then removed by estimating a normal rate of 
progression for the signal to reach from point A to point B 
using a sliding window for the length of the recording. 

Studies [105]-[108] show that the EEG beta rhythm (14–30 
Hz) is activated when the brain is in a state of arousal. In other 
EEG studies, mental fatigue related features are associated 
with decreased alpha band (8-13 Hz) power at one or more 
parietal locations (e.g., P7 and P8). Liu et al. [109] connected 
these two factors in their study and showed that alertness can 
be measured by the signal power of α divided by the signal 
power of β. McMahan et al. [110] also demonstrated that the 
ratio is related to arousal.  

Using the signal power of α divided by the signal power of 
β as the EEG feature, the EEG recordings are labeled with the 
CPT outcomes. A Butterworth bandpass filter was employed 
to extract the frequency response of the α and β bands from 
the EEG signal as demonstrated in [111]. Discrete Fourier 
Transform (DFT) was used to calculate the Power Spectral 
Density (PSD) of the α and β time series.  

DFT periodogram methods for estimating the spectrum 
power density are prone to variation [112]. Periodogram 
estimate variation is correlated to the square of the value of the 
spectrum itself. Welch’s method reduces this variance by 
averaging independent periodogram estimates. Each Welch 
window covers 50% of the next, which results in the 
smoothed-out average of independent periodogram spectrum 
estimations. We use a Hamming window as it produces the 
least amount of overshoot δ δ δ  [112] 

with the most accurate results for EEG data [111], [113].  
A Hamming window of M = 100 samples was chosen with 

a 50% overlap, and since the EEG frequency is 500 Hz, this 
Hamming window is equivalent to 200 ms of data. To help 
illustrate, an average data interval length is 2.3 seconds long 
and would have 2300 200 2 23 overlapping Hamming 
windows. Let 𝑥𝑑 𝑛  be the sequence, 𝑑 1, 2, 3 ⋯ 𝐿 signal 
intervals and 𝑀 the interval length. Welch’s method to 
estimate the power spectrum discrete time sequence is shown 
in (3) where 𝑈 is the normalization factor (4) and the 

Hamming window calculation is shown in (5). Using the 
Welch method, the ratio of the alpha band power 𝑓  to the beta 
band power 𝑓  can be simplified as (6).  

 

 

Fig. 4 AAR Kalman filtering reduces EMG noise and enhances EEG 
spikes 

 
Welch Method: 

 

�̂�𝑑 𝑓  ∑ 𝑥𝑑 𝑛 𝑤 𝑛 𝑒  (3) 

 
𝑈 is the normalization factor for Welch Method: 
 

𝑈 ∑ |𝑤 𝑛 | (4) 
 

Hamming window: 
 

𝑤 𝑛  0.54 0.46 cos , 0 𝑛 𝑀,

0                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (5) 

 
The EEG Alertness feature: 

 

Alertness =  (6) 
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Body pose can be one of the strongest communication 
channels [114]. Body pose is acquired through the Kinect v2.0 
SDK [72], which will provide joint tracking data at 30 Hz. 
Tracking of the head, neck, mid-spine, right and left shoulders 
and left and right hands are recorded. Lower joints are not 
included as occlusion from the table as part of the platform 
prevents such recordings. Studies have shown that body 
posture and gesture can communicate affective modalities and 
also specific emotional categories [115]. They have also been 
indicators of a firm or weak correlation of engagement during 
Human-Computer Interaction in gameplay [31]. In this study, 
the student is positioned in front of a computer system and is 
challenged to press a button when they identify the target. This 
type of interaction setup restricts the range of body 
movements and gestures a student can engage in. Numerous 
studies [116]-[121] have investigated the importance of body 
fidgeting in detecting attention for students with PMLD. 
Fidgeting is an indicator of the onset of attention loss, 
boredom and engagement deterioration [116], [122]-[125]. We 
calculate rapid body movement from body pose to assess 
fidgeting levels. The equation to extract this feature is seen in 
(7) where ∆𝑑  is the displacement vector of joint 𝑗 out of 𝑁 
joints and ∆𝑡 is the time passing between the displacement 
samples.  
 

Body fidgeting = ∑
∆

∆
 (7) 

 
Eye gaze data are recorded at 70 Hz. The data include 

Cartesian information regarding the eye gaze location relative 
to the bottom left corner of the screen. We track gaze, which is 
both on and off-screen. The combination of off-screen gaze 
tracking and eye detection provides information on when the 
user turns their head away from the screen. Three features 
were extracted from the eye gaze data: ‘eye scanning’, ‘eye 
dwelling’ and ‘eyes off-screen’. These features are commonly 
used in eye gaze technologies to understand attention, interest 
and engagement [126], [127].  

Scanning represents the eye gaze behavior of when the gaze 
tracks across more than one image element. The scanning 
feature is calculated in (8) and represents the sum of the 
inverse distance from the center of each element where 𝑟  is 
that distance; from the eye gaze location to the center of image 
𝑖 out of 𝐼 16 total image elements, for sample n, out of 𝑁 
total discrete sensor samples. This is demonstrated in Fig 5.  
 

Scanning = ∑ ∑  (8) 

 
Dwelling represents the eye gaze behavior of when the gaze 

stays relatively in the same position for a duration of time. 
This behavior is independently calculated from the location of 
image elements on the screen. The dwelling feature is 
calculated in (9), which is the sum of the inverse distance from 
each eye gaze position to the next where 𝑛 is the sample 
number out of 𝑁 total discrete sensor samples, and ∆𝑑 is the 
distance the eyes have moved since the previous sample, as 
demonstrated in Fig. 6. 

Dwelling = ∑
∆

 (9) 

 

 

Fig. 5 Scanning calculation with respect to the active elements on the 
screen 

 

 

Fig. 6 Dwelling calculation independent of active elements on the 
screen 

 
The third feature extracted from the eye gaze data is ‘eyes 

off screen’. This continuous but binary feature determines if 
the participant is looking within the screen area, regardless of 
whether there was a slide or blank slide on the display. This 
feature is calculated as in (10): 
 

Eyes off screen  
1     𝑒𝑦𝑒𝑠 𝑜𝑓𝑓 𝑠𝑐𝑟𝑒𝑒𝑛
0     𝑒𝑦𝑒𝑠 𝑜𝑛 𝑠𝑐𝑟𝑒𝑒𝑛    (10) 

 
Interaction data features were extracted from the 

participants’ behavior activating a button press. The type of 
pressing, including quick presses or repetitive presses, was 
recorded as were other sensor data with a view to behavior, 
not just input, but as an independent sensor mode. This makes 
our approach unique as the input device is considered not only 
as an objective indicator of attention but also as a separate 
mode of interaction. We remain impartial to which slide is 
displayed and only consider the interaction behavior. How the 
button is pressed, specifically how fast the button is pressed, 
and how many times it is pressed is of interest. From button 
presses, we extract two features: single fast button presses and 
repetitive button presses. Single fast button presses are 
calculated using (11), with the caveat that they are only 
calculated if the participant presses the button once and only 
once during the response time duration. In other instances, the 
value for this feature is zero. Maximum press count is the 
second feature extracted from the button press data shown in 
(12). This value is calculated for only the allowed response 
time interval and is zero when the button is not pressed.  
 

Single fast press = 
 

 (11) 

 
Max press count = total press attempts (12) 
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High-Level Compound Features (HLCF) were created to 
create a higher dimensionality in the feature space as 
described in the Mudra multimodal framework [128]. The first 
feature is a compound feature, which is simply a normalized 
mean of the features that traditionally serve indicators of 
attention. The High-level Attention feature is calculated as the 
mean of the normalized features of single fast presses, eye 
dwelling, eye scanning and EEG alertness, which are seen in 
(13): 

 

HLA = 𝑛𝑜𝑟𝑚. 𝑆𝑖𝑛𝑔𝑙𝑒 𝑓𝑎𝑠𝑡 𝑝𝑟𝑒𝑠𝑠  𝑛𝑜𝑟𝑚. 𝐷𝑤𝑒𝑙𝑙𝑖𝑛𝑔

 𝑛𝑜𝑟𝑚. 𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑛𝑜𝑟𝑚. 𝐴𝑙𝑒𝑟𝑡𝑛𝑒𝑠𝑠  (13) 
 

High-level Distraction feature is calculated as the mean of 
normalized features of body fidgeting, eyes off-screen and 
press count as seen in (14): 
 

HLD = 𝑛𝑜𝑟𝑚. 𝐵𝑜𝑑𝑦 𝑓𝑖𝑑𝑔𝑒𝑡𝑖𝑛𝑔 𝑛𝑜𝑟𝑚. 𝐸𝑦𝑒𝑠 𝑜𝑓𝑓 𝑠𝑐𝑟𝑒𝑒𝑛 

𝑛𝑜𝑟𝑚. 𝑀𝑎𝑥 𝑝𝑟𝑒𝑠𝑠 𝑐𝑜𝑢𝑛𝑡        (14) 

V. EXPERIMENTAL RESULTS 

A. Labelling and Data Fusion 

The CPT provides an objective means of labeling the 
multimodal sensor data. The CPT outcome measures (correct 
commissions/Hits, False Alarms (FA), correct omissions and 
misses) are objective outcomes of the participant’s attention 
and engagement with the game. Without these labels, there 
would be no objective measure or automated way of 
performing a supervised learning method on the data. An 
overview of how the data streams are collected and labeled 
against CPT outcome measures is shown in Fig. 7. Each slide 
from the moment it is displayed until the moment of the first 
button press, or until the moment of a new slide being shown 
(in case of no press), represents a sample of data. Overall, 
there were 2615 samples collected from the 59 sessions of 
data collection. The data from all four participants were 
collated together. 

B. Machine Learning Results 

A robust cross-validation method ensures that the results are 
not subject to overfitting. Leave-one-out [129] classification is 
a state of the art cross-validation methodology and is widely 
accepted not to be susceptible to overfitting. We show 
(regardless of the classification method), that there is a 
relationship between affective state and the multimodal 
multisensor data features. In this study, 2615 frames, over the 
length of 59 sessions, were collected and classified into two 
categories (engaged and disengaged) using nine features (7 
low-level and 2 HLCF). The aim of classification is to 
determine the affective state by predicting the CPT outcome. 
With two classes, the random classifier classification accuracy 
to beat is 50%. The overall approach used to evaluate the fit of 
the different architectures was leave-one-out cross-validation. 
Impartial scoring metrics were used to competitively compare 
the performance of the machine learning architectures as these 
methods normalize across categories (and are suitable for 

imbalanced datasets). The evaluation parameters used for 
determining the comparative performance of the machine 
learning architectures were Area Under the ROC Curve 
(AUC), Negative Log-likelihood and Kappa. The software 
used to create this architecture is Python 3.7 and two high-
performance computers, which ran in parallel over several 
weeks. The two PCs were both equipped with Intel i7-
7700HQ 2.80 GHz CPUs, and 16 GB of DDR4 RAM. The 
CPU was benchmarked at 82 Gigaflops, with 15 GB/s 
memory transfer rate and 1 GB/s SSD disk transfer rate. 

 

 

Fig. 7 Multimodal fusion diagram shows the temporal connectivity 
between the samples and multi-level feature fusion 

 
The summary of results is shown in Table III. Overall, the 

random forest classification approach achieved the best 
classification results in all modes of data. This was either 
when including high-level features, or when only using a sub-
set of the data modes. This finding is supported by other 
studies [130], which suggest that random forest provides 
consistent pairwise similarity, crucial for multimodal data. 
Pairwise-similarity facilitates the combination of features, 
adding higher dimensionality to the feature space whilst being 
less sensitive to data sample size [131]. The best method, 
random forest, used both high- and low-level features and 
achieved 93.3% classification for flow and a 42.9% accuracy 
for non-flow. The random forest method incorporated 100 
trees and all nine features were included at each of the 255 
nodes, with 128 leaves in total. AdaBoost (another ensemble 
method) outperformed random forest for the single modality 
feature classification. However, in every example, using any 
machine learning method, multimodal data features delivered 
significantly better classification results than any single 
modality.  

When compared to the second-best classification method, 
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random forest outperforms neural network on the 
classification of non-flow classes with a margin of 16.5% and 
has an 11.7% better coverage in AUC (see Table III). Besides 
neural networks, other machine learning methods were also 
assessed; AdaBoost, decision tree, k-Nearest Neighbor, naïve 
Bayes, and support vector machine, however, all had inferior 
performance when compared to random forest. 

Including the two high-level [128] handpicked features 
(HLA and HLD) in the feature space, improved the 
classification in every sensor combination, and every machine 

learning methodology. In the random forest model including 
HLCF increased the AUC by 1.5% more coverage, and the 
classification of True Positives (TP) by 0.9%, and True 
Negatives by 2.8%. On average, if only two modes of sensor 
input were available, including interaction data improves the 
outcome of AUC coverage by 16.8%, compared to any other 
two modes of data, making interaction data the single most 
important secondary feature. The single most important mode 
of data on its own however is eye gaze, with 3.2% better AUC 
coverage compared to interaction data.  

 
TABLE III 

BEST CLASSIFICATION RESULTS ACHIEVED WITH RANDOM FOREST USING MULTI-LEVEL FEATURE FUSION 

Features 
Best Classification 

Method Found 

Negative log-
likelihood for Flow 

(Less is better) 

Negative log-
likelihood for Non-
Flow (Less is better)

Kappa AUC TP TN F1 Precision Recall 

All features 

Random Forest 

0.1377 1.0149 0.418 0.803 93.8% 42.9% 0.819 0.817 0.833 

Low-Level 0.1440 0.9753 0.374 0.788 92.9% 40.1% 0.806 0.802 0.820 

High-Level 0.1250 0.9547 0.237 0.686 93.1% 26.4% 0.768 0.762 0.794 

All features 
Neural Network 

0.1237 0.8191 0.300 0.773 93.6% 31.5% 0.786 0.783 0.808 

Low-Level 0.1203 0.7910 0.273 0.767 95.3% 26.4% 0.781 0.783 0.811 

All features 
AdaBoost 

0.2775 2.1803 0.388 0.794 93.3% 40.7% 0.810 0.807 0.824 

Low-Level 0.2756 2.0422 0.335 0.765 90.7% 39.7% 0.791 0.785 0.802 

All features 
Naïve Bays 

0.1341 0.7574 0.233 0.712 91.3% 28.7% 0.764 0.755 0.784 

Low-Level 0.1097 0.7463 0.095 0.728 98.0% 8.50% 0.732 0.748 0.796 

All features 
k-NN 

0.1105 1.4139 0.207 0.746 96.4% 19.2% 0.763 0.771 0.804 

Low-Level 0.1115 1.5077 0.169 0.730 96.5% 15.9% 0.752 0.760 0.799 

All features 
Tree 

0.2545 1.6061 0.309 0.706 89.9% 38.4% 0.782 0.776 0.793 

Low-Level 0.1157 1.6414 0.258 0.686 89.4% 34.0% 0.767 0.760 0.780 

All features 
SVM 

0.1107 0.6620 0.086 0.454 76.2% 33.2% 0.686 0.701 0.673 

Low-Level 0.1026 0.6750 0.059 0.467 72.7% 34.0% 0.667 0.693 0.647 

Eye + EEG + Inter. Random Forest 0.1429 1.0202 0.349 0.765 92.4% 38.4% 0.793 0.793 0.812 

Eye + Body + Inter. Random Forest 0.1433 1.0784 0.371 0.781 91.6% 41.9% 0.803 0.798 0.814 

EEG + Body + Inter. Random Forest 0.1619 1.5544 0.318 0.730 91.9% 36.0% 0.788 0.783 0.804 

Eye + EEG Random Forest 0.1335 0.7164 0.277 0.679 95.0% 27.1% 0.781 0.783 0.810 

Eye + Body Random Forest 0.1619 1.5544 0.318 0.708 93.7% 27.9% 0.776 0.772 0.801 

EEG + Body AdaBoost 0.4902 2.2224 0.122 0.610 84.2% 27.4% 0.719 0.713 0.725 

Eye + Inter. Random Forest 0.1380 1.1820 0.308 0.765 93.6% 32.2% 0.788 0.785 0.810 

Body + Inter. AdaBoost 0.2579 2.0817 0.327 0.692 83.5% 52.1% 0.776 0.783 0.770 

EEG + Inter. AdaBoost 0.3002 2.0323 0.246 0.708 85.7% 38.3% 0.756 0.753 0.759 

EEG AdaBoost 0.2821 0.8682 0.100 0.559 84.6% 24.8% 0.714 0.706 0.723 

Eye gaze AdaBoost 0.2646 1.3051 0.255 0.637 89.2% 34.0 % 0.766 0.758 0.778 

Body AdaBoost 0.3091 1.0059 0.003 0.488 93.2% 7.10% 0.702 0.674 0.754 

Interaction AdaBoost 0.2491 0.6092 0.035 0.605 95.8% 6.70% 0.713 0.694 0.774 

All Features Constant 
Classifier 

0.1004 0.6854 0.000 0.000 100% 0.00% 0.702 0.630 0.794 
Low-Level 

 

The system developed using these machine learning models 
would not be affected by both sensor fallout and occlusions. 
At best (all high- and low-level features using random forest) 
80.3% AUC coverage is achieved. Using a sub-set of three 
sensor modes 78.1%-73% AUC coverage is achieved, whilst 
with a subset of two sensor modes (including interaction) 
76.5%-69.2% AUC coverage is achieved. Using a subset of 
two sensor modes (not including interaction) 70.8%-61.0% 
AUC coverage is achieved, and with only a single mode of 
sensor data between 63.7%-48.8% AUC coverage is achieved.  

VI. CONCLUSIONS 

An approach to labeling multimodal sensor data to train 

machine-learning algorithms to infer the engagement and flow 
of students with profound and multiple disabilities has been 
presented. We posit that this approach can overcome the 
variation in observer inter-rater reliability when using 
standardized scales in tracking the emotional expression of 
students with such profound disabilities. The accuracy of our 
approach increases with multiple modes of sensor input, and 
our method is robust to sensor occlusion and fall-out. Multiple 
sources of sensor input are provided, to accommodate a wide 
variety of users and their needs. Our model can reliably track 
the flow of students with profound disabilities, regardless of 
the sensors available. A system incorporating this model can 
help teachers design personalized interventions for a very 
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heterogeneous group of students, where teachers cannot 
possibly attend to each of their individual needs. This 
approach could be used to identify those with the greatest 
learning challenges, to guarantee that all students are 
supported to reach their full potential. 

This research was conducted as part of a Ph.D. program of 
research at Nottingham Trent University (NTU) and has been 
adopted as part of the Erasmus+ KA201 Pathway+ project to 
determine the affective state of students with mild and 
moderate learning disabilities (2017-1-UK01-KA201-036761) 
[132]. 
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