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Abstract—Over-parameterized neural networks have attracted a
great deal of attention in recent deep learning theory research,
as they challenge the classic perspective of over-fitting when
the model has excessive parameters and have gained empirical
success in various settings. While a number of theoretical works
have been presented to demystify properties of such models, the
convergence properties of such models are still far from being
thoroughly understood. In this work, we study the convergence
properties of training two-hidden-layer partially over-parameterized
fully connected networks with the Rectified Linear Unit activation via
gradient descent. To our knowledge, this is the first theoretical work
to understand convergence properties of deep over-parameterized
networks without the equally-wide-hidden-layer assumption and
other unrealistic assumptions. We provide a probabilistic lower bound
of the widths of hidden layers and proved linear convergence rate of
gradient descent. We also conducted experiments on synthetic and
real-world datasets to validate our theory.

Keywords—Over-parameterization, Rectified Linear Units (ReLU),
convergence, gradient descent, neural networks.

I. INTRODUCTION

THERE is a recent breakthrough in deep neural networks

theory: the expressivity and generalization of neural

networks become surprisingly good as the number of

parameters exceeds the number of training samples [1]. This

setting, namely over-parameterization, challenges the classic

view that excessive number of parameters leads to over-fitting.

This observation was further supported by empirical results in

various settings [2]–[4].

Despite its empirical success, the theoretical properties of

over-parameterized models remain ill-understood. As one of

the first steps in understanding over-parameterized models, the

training process of fully connected over-parameterized neural

networks with the Rectified Linear Unit (ReLU) activation

and (stochastic) gradient descent optimizer is only partially

understood. For shallow networks where there is only one

hidden layer, the convergence of the training process has been

proven by a few prior works [5]–[9]. For deep networks there

there are ≥ 2 hidden layers, the convergence was endorsed

under the assumption that all hidden layers are equally wide

[10]–[13]. We denote it as the equally-wide-hidden-layer
assumption.

In this work, we provide convergence analysis to training

two-hidden-layer partially over-parameterized ReLU networks

using gradient descent with infinitely small learning rates.
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Different from prior works on deep architectures, we do not

require the equally-wide-hidden-layer assumption in this work.

Particularly, we show convergence when the second hidden

layer is over-parameterized and much wider than the first

hidden layer. Therefore, previous analysis on deep ReLU

networks do not apply to our setting.

The technique in this work is to generalize the

minimum-eigenvalue framework in [6] to the two-hidden-layer

case. We follow the intuition from [5] and [6] that during

training process, the weights and activation patterns do not

change much, and the least eigenvalue λ0 of the Gram

matrix is lower bounded. However, it is not trivial to extend

the one-hidden-layer analysis because the expressions are

much more complicated for two hidden layers. To resolve

this problem, we applied a more fine-grained statistical and

numerical analysis to achieve applicable probabilistic bounds

for certain parameters, and finally provided a lower bound for

the widths of hidden layers.

We make two contributions in this work. First, we show

that when the second hidden layer is over-parameterized

and much wider than the first hidden layer (which could

be either over-parameterized or Θ(1)), gradient descent with

infinitely small learning rates converges with high probability.

We provided a lower bound on the widths of hidden layers

that leads to convergence. Second, we conducted experiments

on synthetic, MNIST [14] and Fashion-MNIST [15] datasets.

Experimental results on the loss, λ0, weight change, and

pattern change rates support our theoretical analysis.

II. RELATED WORKS

It was addressed that expressivity and generalization

of neural networks become surprisingly good under the

over-parameterized setting [1]. As the first fatal property to

understand over-parameterized neural networks, convergence

was empirically studied in various settings [2]–[4].

Specifically, since the ReLU activation by [16] gained huge

success in deep learning, many previous works were presented

to understand the convergence properties of fully connected

over-parameterized ReLU networks trained by (stochastic)

gradient descent. These works can be classified into two

groups based on their network architecture: shallow networks

(where there is only one hidden layer) and deep networks

(where there are multiple hidden layers).

Shallow networks. Widely believed, understanding

the one-hidden-layer (namely two-layer in many papers)
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over-parameterized architecture is crucial to understanding

deeper networks: if there is only one hidden layer, then it

is possible to examine every parameter and every node, so

that the dynamics during training process can be explicitly

analyzed. An early work under this setting by [17] showed

that when data is generated by a linearly separable function,

then stochastic gradient descent finds a global minimum

of the Hinge loss. Later on, a surprising phenomenon was

discovered by [5]: the activation patterns do not change

much during training process. Based on this observation, they

proved that for cross-entropy loss, gradient descent converges

to ε loss if the width of the hidden layer is polynomial in

1/ε. [6], the closest to our work, proved that gradient descent

converges to zero squared error loss under a more practical

setting where the width is independent of the accuracy.

The core idea is that the convergence rate is controlled by

the least eigenvalue of the Gram matrix [18]–[20] when we

analyze the output dynamics (instead of the weight dynamics).

This matrix form was further analyzed by [7] and proved

to approximate an integral operator. If the target function

has a low-rank approximation w.r.t. the eigenspaces of this

integral operator, then gradient descent approximately applies

the powers of this integral operator on the target function,

which yields a linear convergence rate. In other directions,

[8] generalized the convergence results to adaptive gradient

methods, and [9] improved the O(n6) bound on width in [6]

to O(n2), where n is the number of training samples.

Deep networks: As a first step to analyze deep

over-parameterized ReLU networks, deep linear networks

were proved to enjoy the global-minima convergence property

under various settings [21]–[26]. Then, a number of theoretical

works were developed to demystify the optimization landscape

of deep over-parameterized ReLU networks trained with

(stochastic) gradient descent [10]–[13]. In detail, [10] and [12]

proved convergence of (stochastic) gradient descent trained

on deep over-parameterized ReLU networks for classification

and regression problems respectively. In both papers, global

minima is found by (stochastic) gradient descent in polynomial

time with a polynomial bound on width. Their approaches

are different in that [10] followed the observation in [5]

and showed that the parameters are closed to their Gaussian

initialization, while [12] proved equivalence between deep

over-parameterized neural networks and finite-width neural

tangent kernel (NTK) in [18]. Then, [13] improved the

Ω̃(n24) bound on width and O(n6) iteration complexity in

[12] to Ω̃(n8) and O(n2). Besides analysis on general deep

networks, [11] made a specific analysis to three-layer (that is,

two-hidden-layer) over-parameterized ReLU network, which

was proved able to learn three-layer neural networks equipped

with smooth activation functions efficiently via stochastic

gradient descent.

Interestingly, in [6], an approach based on the Gram

matrices was discussed to generalize the convergence analysis

to deep over-parameterized ReLU networks. However, due

to the Hoeffding’s inequality, every hidden layer has to be

equally wide (or at least over-parameterized) to guarantee

that the Gram matrices are closed to initial. In fact, such

equally-wide-hidden-layer assumption exists in all the works

mentioned above regarding convergence properties of training

deep ReLU networks with (stochastic) gradient descent and

squared error loss (see Assumption 3.6 in [10], Theorem

2 in [11], Section 2 and Section 3 in [12], and Section

2 in [13]). However, there is one recent work without

the equally-wide-hidden-layer assumption. Instead of proving

specifically for deep neural networks, [27] showed that for

a general class of over-parameterized nonlinear learning

problems, (stochastic) gradient descent takes a surprisingly

short path i.e. the parameters follow an almost straight route

towards optima. As a cost to its generality, a few strong

assumptions (Jacobian is Lipschitz with bounded least singular

value and spectrum norm) are made, which rules out the

popular deep ReLU networks. In addition, the bounds in the

assumptions could be extreme for deep neural networks, so

their conclusions may be weakened.

In this paper, we follow the idea from [6] and generalized

the minimum-eigenvalue framework to the two-hidden-layer

architecture. By applying a more fine grained analysis,

we do not need the equally-wide-hidden-layer assumption

any more: we proved that if the second hidden layer is

over-parameterized and the much wider than the first hidden

layer (which could be either over-parameterized or Θ(1)),
gradient descent with infinitely small step size converges to

zero training loss with high probability. To our knowledge,

this is the first work that proves the convergence of gradient

descent on a kind of deep ReLU network without the

equally-wide-hidden-layer assumption and other unrealistic

assumptions.

III. PRELIMINARIES

In this paper, we consider the class of over-parameterized

neural networks with two hidden layers and ReLU activation.

The network is fully connected, taking inputs in R
d and

outputs in R. Particularly, we consider the case when the

network is partially over-parameterized: the second hidden

layer has a large amount of neurons and is much wider than

the first hidden layer. We do not constrain the width of the first

hidden layer; it could be either over-parameterized or Θ(1).

A. Notations

First, we formally define our network structure. The widths

of the input layer, first hidden layer, and the second hidden

layer are d, h1, and h2, respectively. The output is a real

value. The weight matrix connecting the input layer and

the first hidden layer is A =
(
A�

1 , · · · , A�
h1

)� ∈ R
h1×d,

and the weight matrix connecting the hidden layers is B =(
B�

1 , · · · , B�
h2

)� ∈ R
h2×h1 . Each hidden layer has activation

function σ(x) = ReLU(x) = max(x, 0). The output is

computed by the dot product of weight vector w ∈ {−1, 1}h2

and the output of the second hidden layer with a normalizing

factor 1/
√
h1h2. Therefore, given an input x ∈ R

d, the output

is

f(x;A,B,w) =
1√
h1h2

w�σ(Bσ(Ax)) (1)
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Suppose we have n different training samples {(xi, yi)}ni=1.

Then, the prediction of each sample xi is

ui = f(xi;A,B,w), 1 ≤ i ≤ n (2)

We initialize the parameters in the following way: each

element in w is drawn i.i.d. from the uniform distribution over

{−1,+1}, and each element in A and B is drawn i.i.d. from

the standard normal distribution N (0, 1). Then, each row of

A and B are normalized to have �2 norm ≤ 1. For the training

data, we assume that each sample is normalized and its label is

bounded by some constant C: for any 1 ≤ i ≤ n, ‖xi‖2 = 1,

|yi| ≤ C. We use the �2 norm as our loss function, defined by

L =
1

2

n∑
i=1

(ui − yi)
2 =

1

2
‖u− y‖22 (3)

To minimize this loss, we apply gradient descent over A
and B and constantly update these two weight matrices. In

order to make rigorous theoretical analysis, we assume that

the learning rate is infinitely small so that we can formulate

the update rule in a differential form:

dAr

dt
= − ∂L

∂Ar
, 1 ≤ r ≤ h1 (4)

dBp

dt
= − ∂L

∂Bp
, 1 ≤ p ≤ h2 (5)

We define 1{statement} to be 1 if the statement is true and

0 if it is not true. Finally, the following variables take time t
as the parameter since they update with t:

A = A(t), B = B(t), u = u(t), L = L(t) (6)

In the rest of the paper, we omit the time parameter t for

conciseness when there is no ambiguity.

B. Problem Definition
The dynamics of the output vector u(t) at time t can be

calculated through the chain rule in the multivariable case:

d

dt
ui(t) =

h2∑
p=1

〈
∂ui

∂Bp
,
dBp

dt

〉
+

h1∑
r=1

〈
∂ui

∂Ar
,
dAr

dt

〉

=

h2∑
p=1

〈
∂ui

∂Bp
,− ∂L

∂Bp

〉
+

h1∑
r=1

〈
∂ui

∂Ar
,− ∂L

∂Ar

〉

=

n∑
j=1

(
h2∑
p=1

〈
∂ui

∂Bp
,
∂uj

∂Bp

〉
+

h1∑
r=1

〈
∂ui

∂Ar
,
∂uj

∂Ar

〉)

× (yj − uj)
(7)

Therefore, the dynamics of u(t) can be expressed in the

following closed form:

d

dt
u(t) = H(t)(y − u(t)) (8)

where H is an n× n matrix with the (i, j)-th element

Hij =

h2∑
p=1

〈
∂ui

∂Bp
,
∂uj

∂Bp

〉
+

h1∑
r=1

〈
∂ui

∂Ar
,
∂uj

∂Ar

〉
(9)

In Section IV, we prove convergence of the dynamics (8)

under the following partial over-parameterization assumption

(Assumption 1) and the minimal eigenvalue assumption

(Assumption 2).

C. The Partial Over-Parameterization Assumption

Assumption 1. The network is partially over-parameterized:
h2 � h1.

D. The Minimal Eigenvalue Assumption

In order to design a vital tool to analyze H , we first compute

the explicit expression of H .

Proposition 1. ∀i, j ∈ {1, · · · , n}, h1h2Hij is equal to

h2∑
p=1

h1∑
r=1

(
x�
i ArA

�
r xj + x�

i xjB
2
pr

)
× 1

{
B�

p yi > 0, B�
p yj > 0, A�

r xi > 0, A�
r xj > 0

}
+x�

i xj ·
h1∑
r=1

h2∑
p=1

h2∑
q=1
q �=p

wpwqBprBqr

× 1
{
B�

p yi > 0, B�
q yj > 0, A�

r xi > 0, A�
r xj > 0

}
(10)

where yi = σ(Axi).

Then, we define H∞ = EA(0)EB(0)EwH(0), a fatal bridge

to analyze H . This is because the
∑

r

∑
p �=q term in Hij is

intractable but will vanish as we take the expectation over w,

and terms are easily bounded as we take the expectation over

A(0) and B(0). Given the concise and symmetric expression

of H∞, it is not hard to prove that H∞ is positive semi-definite

(PSD) in Proposition 2.

Proposition 2. H∞ is PSD.

Therefore, it is reasonable for us to make the following

assumption in this paper:

Assumption 2. λ0 = λmin(H
∞) > 0.

In the main result (Theorem 3), λ0 appears to be a key factor

in the convergence rate, and λ0/2 is used to lower bound the

smallest eigenvalue of H(t) throughout the proof in Section

IV-B.

IV. MAIN RESULT

In this section, we prove convergence of the dynamics

(8). In detail, we prove that if we use gradient descent to

train a two-hidden-layer ReLU network with an infinitely

small learning rate, and if the second hidden layer is

over-parameterized and much wider than the first one, then

we can expect the training loss converges to zero exponentially

with high probability. This result is a theoretical extension to

the convergence analysis in [6], where the one-hidden-layer

setting was proved. In addition, our result does not overlap

with analysis for the multiple-layer setting in [10]–[13]

because they require each hidden layer should be equally

wide (or lower bounded), which does not include situations

where one hidden layer might be not wide enough. Our result

does provide a positive answer to such situations. Therefore,

our result is a complimentary work of their results on the

convergence properties of training general two-hidden-layer

over-parameterized ReLU networks with gradient descent.
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A. Theorem of Convergence

Our formal result is shown in the following theorem.

Theorem 3. Under Assumption 1 and Assumption 2, if
the number of nodes of the second hidden layer satisfies

h2 = Ω

(
n9/2L(0)3/2h

3/2
1

λ6
0δ

3

)
, then with probability ≥ 1 − δ

over random initialization, the training error is bounded by
L(t) ≤ exp(−λ0t)L(0).

In short, a lower bounded convergence rate is provided in

Theorem 3 given the partially over-parameterized architecture.

To keep our conclusion concise, we use the smallest eigenvalue

to bound the convergence rate. Intuitively, a tighter bound

induced by the mean of eigenvalues of H∞ is likely to exist,

at a cost of having a much more complicated probabilistic

analysis.

B. Steps of Proof

In this section, we present four steps to prove Theorem 3. In

detail, we use the minimum-eigenvalue framework, which was

initially introduced in [6]. In Lemma 4, we show that H(0) is

closed to H∞ and the least eigenvalue of H(0) is bounded. In

Lemma 5, we prove that the minimum eigenvalue of H at time

t is also lower bounded. In Lemma 6, we first demonstrate

that the minimum eigenvalue of H provides a convergence

guarantee to the gradient descent algorithm, and then show

that the change of parameters A and B is bounded. Finally,

Lemma 7 ties the previous lemmas into a cycle, showing that

the conditions always hold and the probability that the cycle

breaks is tiny, thus finalizing the proof. The proofs of these

lemmas are given in Appendix A. Compared to the analysis in

[6], their bounds (especially R and R′ in their paper) cannot

be naturally extended to the problem in this work, we use

various mathematical tools to provide applicable probabilistic

bounds in the analysis.

Lemma 4. If h2 = Ω
(

n2

λ2
0
log 2n2

δ

)
, then we have

λmin(H) ≥ 3

4
λ0 (11)

with probability at least 1− δ at time t = 0.

In the Lemma 4, we show that with high probability, the

minimum eigenvalue of H = H(0) at time 0 is bounded

by a constant times λ0. In the proof, we first bound |Hij −
H∞

ij | using the Hoeffding’s inequality and the Chebyshev’s

inequality. Then, we are able to bound the Frobenius norm

of H − H∞. Finally, the difference between their least

eigenvalues can be bounded by this amount.

Lemma 5. Suppose at time t, there exists a small constant c >
0 such that ‖Ar(t)−Ar(0)‖2 ≤ RA ∀r, ‖Bp(t)−Bp(0)‖2 ≤
RB ∀p, where RA = O

(
cδλ0

nh1

)
, RB = O (

cδλ0

n

)
. Then with

probability at least 1 − δ over initialization, λmin(H(t)) ≥
λ0/2.

In Lemma 5, we show that if at time t, the weight matrices A
and B are close to initialization, then the minimum eigenvalue

of H = H(t) is also bounded by a constant times λ0. The core

idea in the proof is that when we calculate the expectation

of |Hij(0) − Hij(t)|, we divide it into two cases: one with

activation pattern change and the other one with no activation

pattern change. If no activation pattern changes, then slight

modification to A and B must yield slight change of Hij .

On the other side, the probability that some activation pattern

changes can be bounded by a small constant. Therefore, we

obtain our desired result.

Lemma 6. Suppose λmin(H(s)) ≥ λ0/2 ∀s ∈ [0, t]. Then
the training error is bounded as L(t) ≤ exp(−λ0t)L(0). The
modification of A and B from initialization can be bounded
as ‖Ar(t) − Ar(0)‖2 ≤ R′

A ∀1 ≤ r ≤ h1 and ‖Bp(t) −
Bp(0)‖2 ≤ R′

B ∀1 ≤ p ≤ h2, where R′
A = 2

λ0

√
2nL(0)

h1h
2/3
2

and

R′
B = 2

λ0

√
2nL(0)

h2
.

In the Lemma 6, we show that if at time s, the minimum

eigenvalue of H = H(s) is bounded, then the training loss

converges to 0 with an exponential rate, and the weight

matrices are closed to initialization with high probability. In

the proof, we first calculate the derivative of the loss function

w.r.t. time t, and then bound the loss with an exponential rate.

To prove that A and B are closed to initialization, we also

bound their derivatives first, and then do the integration.

Lemma 7. If h2 = Ω

(
n9/2L(0)3/2h

3/2
1

λ6
0δ

3

)
, then with high

probability the following statements hold: for any t > 0,
‖Ar(t)− Ar(0)‖2 ≤ R′

A ∀1 ≤ r ≤ h1, ‖Bp(t)− Bp(0)‖2 ≤
R′

B ∀1 ≤ p ≤ h2, and L(t) ≤ exp(−λ0t)L(0).

In the Lemma 7, we show that if R′
A < RA, R

′
B < RB ,

then Lemma 5 and Lemma 6 are able to form a cycle: the

conditions consistently hold as time t goes to infinity. The

proof is finished by drawing a contradiction.

C. Finalizing the Proof

Proof: According to Lemmas 4-7, the theorem holds if

R′
A ≤ RA and R′

B ≤ RB . This is equivalent to h
2/3
2 =

Ω
(

n3L(0)h1

λ4
0δ

2

)
. Finally, notice that

EL(0) = ‖y‖22 + n = Θ(n) (12)

Thus, by Markov’s inequality, with probability ≥ 1−δ, L(0) =
O(n/δ). Therefore, the conclusion holds with probability at

least 1− 2δ − h
−1/3
2 = 1− 2δ −O(δ). Since there is only a

constant in front of δ, we finish the proof.

V. EXPERIMENTS

In this section, we present experiments to validate our

theory.

A. Settings

We conducted experiments on several datasets including

synthetic datasets, the MNIST dataset [14], and the

Fashion-MNIST dataset [15]. To construct the synthetic

dataset, we randomly select 50/100 points on the unit ball

in R
100 and generate their labels in [0, 1] by random. These
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two datasets are denoted as synthetic-50 and synthetic-100,

respectively. To construct real-world datasets, we randomly

select 50 samples with label c1 and 50 samples with label

c2 from the MNIST dataset or the Fashion-MNIST dataset,

denoted as MNIST/Fashion-c1c2. In this paper, we select

(c1, c2) = (0, 1), (1, 7) for MNIST and (c1, c2) = (0, 1), (7, 9)
for Fashion-MNIST. For both MNIST and Fashion-MNIST

datasets, samples with label 0 and label 1 are visually

quite distinct, so we also look at other cases where training

samples with different labels also share some similarities. This

encourages us to conduct experiments on MNIST-17 (where

both 1 and 7 have a long straight line in the main body) and

Fashion-MNIST-79 (where both sneakers and ankle boots are

in the shoe-shape). Some samples are shown in Fig. 1.

Fig. 1 Samples of training data. Each column shows three samples from the
selected training datasets. The datasets are (from left to right,) MNIST-0,

MNIST-1, MNIST-7, Fashion-0 (T-shirt/top), Fashion-1 (Trouser), Fashion-7
(Sneaker), Fashion-9 (Ankle boot).

We also surveyed various network structures. The width

of the second hidden layer is selected from W =
{100, 500, 1000, 2000, 4000}, and the first hidden layer is set

to have five neurons. Therefore, for each dataset, we did five

sub-experiments on networks with h1 = 5, h2 ∈ W . We set

the learning rate as small as 0.0002 to simulate the continuous

dynamics. At each iteration t (t ≤ 1000), we recorded the

following values:

• Weight change: the Frobenius norm of the difference

between the weight matrices at time t and the initial

ones, computed as ‖A(t) − A(0)‖F (first hidden layer)

and ‖B(t)−B(0)‖F (second hidden layer);

• Pattern change rate: the average percentage of activation

pattern changes on the whole training set for each hidden

layer. This is calculated by #total activation pattern

changes for i-th hidden layer divided by n×hi, i = 1, 2;

• The minimum eigenvalue λmin(H(t));
• The �2 loss L(t).

B. Results

In Fig. 2, we present the �2 losses on the six datasets. The

full results can be found in Appendix B.

These results are consistent with our theory according to the

following observations. First, the logarithm of loss decreases

at a bounded rate as t increases, showing that the gradient

descent algorithm converges at a bounded rate. This directly

substantiates our main result in Theorem 3. In addition, the

smallest eigenvalue λmin(H(t)) remains stable during the

training process, and a larger λmin(H(t)) typically yields a

faster convergence rate. This is especially shown on real-world

datasets. Finally, both the weight change rate and pattern

(a) Synthetic-50 (b) Synthetic-100

(c) MNIST-01 (d) MNIST-17

(e) Fashion-01 (f) Fashion-79

Fig. 2 The logarithm of loss function logL(t) with 10 network structures
on different training datasets.

change rate increase as t increases, but are still below a

low threshold. As the networks become wider the threshold

generally gets lower. These observations comply with the

minimum-eigenvalue framework in our proof.

VI. CONCLUSION

In this paper, we surveyed the convergence properties of

two-hidden-layer ReLU networks trained by gradient descent

with �2 loss, where the network is partially over-parameterized.

In Section IV, we proved that if the width of the second hidden

layer is large enough, then with high probability the gradient

descent algorithm with infinitely small step size converges to

an optimal solution that achieves zero training loss. The main

part of the proof is divided into 4 lemmas in Section IV-B,

which form a cycle and reveal that the minimum eigenvalue

of H is lower bounded both initially and during the training

process. Since the �2 loss can be written as a quadratic form

in H , this minimum eigenvalue thus provides guarantee of the

convergence rate. We also conducted experiments on synthetic

dataset and real-world datasets in Section V. The experimental

results are consistent with our theory in that convergence of

dynamics, stability of the minimum eigenvalues, small weight

change and small pattern change rates are verified.

Based our theory and experiments, there are several further

directions worth deeper exploitation.

• In this paper we proved convergence for the continuous
dynamics, while it is widely acknowledged in the area

of dynamical systems [28] that discrete dynamics are

generally more complicated and thus harder to analyze.

Therefore, it is significant to prove the convergence

theory with a constant step size.
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• Unlike the one-hidden-layer over-parameterized ReLU

network in [6], in which λ0 can be easily calculated

since it has an explicit form, λ0 for the two-hidden-layer

network remains mysterious. Since λ0 is a vital term

in the convergence rate, its strict positiveness and

relationship to data as well as network structure are

crucial in understanding the convergence properties. To

achieve this, a method that either provides an analytic

form or an approximation algorithm of λ0 is needed.

• It is observed that the logarithm of loss does not

decrease at a constant rate in experiments. Instead, it

decreases much faster during the initial training status,

and achieves a stable rate after many iterations. However,

the minimum eigenvalue λmin(H(t)) appears to be stable

during the whole training process. Therefore, it is likely

that the dynamics are controlled by some other indicators

that dominate the training procedure at the very first

beginning.

• Finally, we believe that using more advanced inequalities

in our proof will help decrease the bound of the width in

our main theorem. We used classical bounds in most of

our proof, where it is possible to introduce more refined

concentration and tail inequalities, especially when the

dimension of data is high.

APPENDIX A. OMITTED PROOFS

Since we have many sums in this paper, we make some
shorthand here:

∑
r

=

h1∑
r=1

;
∑

p(q)=1

=

h2∑
p(q)=1

;
∑

q:q �=p

=

h2∑
q=1
q �=p

;
∑
p �=q

=

h2∑
p=1

∑
q:q �=p

;
∑
i(j)

=

n∑
i(j)=1

(13)

Also, the activation patterns of each neuron have to be decided,

so we make the following shorthand:

1i{r} = 1{A�
r xi > 0} ; 1i{p(q)} = 1{B�

p(q)σ(Axi) > 0}
(14)

Proof of Proposition 1

Proof: First, we specify the calculations of
∂f(x)
∂Bp

, ∂f(x)
∂Ar

:

∂f(x)

∂Bp
=

1√
h1h2

·
∂

∂Bp
(wpσ(B

�
p σ(Ax)))

=
1√

h1h2

· wpσ(Ax) · 1{B�
p σ(Ax) > 0}

∂f(x)

∂Ar
=

1√
h1h2

·
∂

∂Ar

∑
p

wpσ

(∑
r

Bprσ(A
�
r x)

)

=
1√

h1h2

·
∑
p

wp · 1{B�
p σ(Ax) > 0} ·

∂

∂Ar
(Bprσ(A

�
r x))

=
1√

h1h2

·
∑
p

wpBprx · 1{B�
p σ(Ax) > 0, A

�
r x > 0}

(15)

Therefore, we obtain

h1h2 · Hij = y
�
i yj ·

∑
p

1
{
B

�
p yi > 0, B

�
p yj > 0

}

+x
�
i xj ·

∑
r

⎛
⎝∑

p
wpBpr · 1{B�

p yi > 0, A
�
r xi > 0}

⎞
⎠

·
⎛
⎝∑

p
wpBpr · 1{B�

p yj > 0, A
�
r xj > 0}

⎞
⎠

= y
�
i yj ·

∑
p

1
{
B

�
p yi > 0, B

�
p yj > 0

}

+x
�
i xj ·∑

p,r
B

2
pr · 1

{
B

�
p yi > 0, B

�
p yj > 0, A

�
r xi > 0, A

�
r xj > 0

}

+x
�
i xj ·∑

r

∑
p �=q

wpwqBprBqr · 1
{
B

�
p yi > 0, B

�
q yj > 0, A

�
r xi > 0, A

�
r xj > 0

}
∑
p,r

(
x
�
i ArA

�
r xj + x

�
i xjB

2
pr

)
·

1
{
B

�
p yi > 0, B

�
p yj > 0, A

�
r xi > 0, A

�
r xj > 0

}
+x

�
i xj ·

∑
r

∑
p �=q

wpwqBprBqr·

1
{
B

�
p yi > 0, B

�
q yj > 0, A

�
r xi > 0, A

�
r xj > 0

}
(16)

where yi = σ(Axi).

Proof of Proposition 2

Proof: Since Ewwpwq = 0, we have

h1h2 ·H∞
ij = E

∑
p,r

(
x�
i ArA

�
r xj + x�

i xjB
2
pr

) · 1i,j{p, r}
(17)

Therefore, we only need to prove that for any non-zero vector

v ∈ R
n,

n∑
i=1

n∑
j=1

∑
p,r

vivj
(
x�
i ArA

�
r xj + x�

i xjB
2
pr

) · 1i,j{p, r} ≥ 0

(18)

We change the summing order into
∑

p,r

∑
i,j and for each

pair (p, r), we show the sums of two parts (the x�
i ArA

�
r xj

term and the x�
i xjB

2
pr term) over i, j are non-negative. For

the first part,

∑
i,j

vivjx
�
i ArA

�
r xj · 1i,j{p, r} =

(∑
i

viA
�
r xi · 1i{p, r}

)2

(19)

For the second part,

∑
i,j

vivjx
�
i xjB

2
pr · 1i,j{p, r} = B2

pr

∥∥∥∥∥
∑
i

vixi · 1i{p, r}
∥∥∥∥∥
2

2
(20)

As a result, H∞ is PSD.

Proof of Lemma 4

Proof: We rewrite Hij in the following way:

Hij =
1

h1h2

∑
p,r

Xpr (21)

where

Xpr =
(
x
�
i ArA

�
r xj + x

�
i xjB

2
pr

)
·1i,j{p, r}+

∑
q:q �=p

x
�
i xjwpwqBprBqr·1i{p, r}1j{q, r}

(22)

Let B̄:,r =
∑

q wqBqr. By the Chebyshev’s inequality, for any

τ > 0,

P (|B̄:,r| ≥ τ) ≤
∑

q B
2
qr

τ2
≤ 1

τ2
(23)
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Thus, with probability at least 1− h1

τ2 , we have |Xpr| ≤ τ +2
for any p, r and τ > 0. Applying this bound to Hoeffding’s

inequality, we have

P
(∣∣Hij −H∞

ij

∣∣ ≥ δ
) ≤ 2

(
1− h1

τ2

)
exp

(
− h1h2δ

2

(t+ 2)2

)
(24)

If we let τ + 2 = h
1/2
1 h

k/2
2 with k ∈ (0, 1), we can simplify

the inequality as

P
(∣∣Hij −H∞

ij

∣∣ ≥ δ
) ≤ 2

(
1− 1

hk
2

)
exp

(
−h1−k

2 δ2

2

)
(25)

This is equivalent to: with probability ≥ 1 − δ, for any 0 <
k < 1, ∣∣Hij −H∞

ij

∣∣ ≤
√

2

h1−k
2

log
2(hk

2 − 1)

δhk
2

(26)

Now, we set k =
(
log

√
2√

2−√
δ

)
/ log h2 and δ ≤ 1/2. The

above inequality can be simplified as

∣∣Hij −H∞
ij

∣∣ ≤
√

2

h2

√
2√

2−√
δ
log

√
2/δ ≤

√
2

h2
log

2

δ
(27)

Then, we apply this bound for all (i, j) pairs, and obtain that

with probability at least 1− δ

∣∣Hij −H∞
ij

∣∣ ≤
√

2

h2
log

2n2

δ
(28)

which gives that

‖H −H∞‖22 ≤ 2n2

h2
log

2n2

δ
(29)

Similar to the previous analysis, if h2 ≥ 32n2

λ2
0

log 2n2

δ , we

have the desired result.

Proof of Lemma 5
Proof: By the definition of H , we have

|Hij(t) − Hij(0)| ≤
1

h1h2

{
∑
p,r

∣∣∣∣x�
i Ar(t)Ar(t)

�
xj · 1

(t)
ij

{p, r} − x
�
i Ar(0)Ar(0)

�
xj · 1

(0)
ij

{p, r}
∣∣∣∣ .

+|x�
i xj |

∑
p,r

|Bpr(t)
2 · 1

(t)
ij

{p, r} − Bpr(0)
2 · 1

(0)
ij

{p, r}|

+|x�
i xj |

∑
p,r

|wp|
∣∣∣∣∣∣

∑
q:q �=p

wqBpr(t)Bqr(t) · 1
(t)
i

{p, r}1(t)
j

{q, r}

−
∑

q:q �=p

wqBpr(0)Bqr(0) · 1
(0)
i

{p, r}1(0)
j

{q, r}
∣∣∣∣∣∣
⎫⎬
⎭

(30)

According to Lemma 3.2 in [6], we have

P
(
1
(t)
i {r} 	= 1

(0)
i {r}

)
≤ 2RA√

2π
(31)

and

P

(
1
(t)
j

{p} = 1
(0)
j

{p}
)

≥

P

(
1
(t)
j

{p} = 1
(0)
j

{p}
∣∣∣∣ 1

(t)
i

{r} = 1
(0)
i

{r} ∀i

)

P

(
1
(t)
i

{r} = 1
(0)
i

{r}
)h1

≥
(
1 −

2RA√
2π

)h1
(
1 −

2RB√
2π

)
(32)

which indicates that

P
(
1
(t)
j {p} 	= 1

(0)
j {p}

)
≤ 2(h1RA +RB)√

2π
(33)

Thus, we have

P
(
1
(t)
i {p, r} 	= 1

(0)
i {p, r}

)
≤ 2(h1RA +RA +RB)√

2π
(34)

and as a result,

P
(
1
(t)
ij {p, r} 	= 1

(0)
ij {p, r}

)
≤ 4(h1RA +RA +RB)√

2π
(35)

Therefore,

E|Hij(t) − Hij(0)| = P (activation does not change) · E

(
|Hij(t) − Hij(0)|

∣∣∣ activation does not change
)

+P (activation changes) · E

(
|Hij(t) − Hij(0)|

∣∣∣ activation changes
)

≤ E

(
|Hij(t) − Hij(0)|

∣∣∣ activation does not change
)

+
4(h1RA + RA + RB)

√
2π

· E

(
|Hij(t) − Hij(0)|

∣∣∣ activation changes
)

(36)

When there some activation pattern changes, we apply the
simple bound

E ( |Hij(t)−Hij(0)| | activation changes) ≤ E|Hij(t)|+E|Hij(0)|
(37)

where

E|Hij(t)| ≤
1

h1h2

∑
p,r

E

(
|x�

i Ar(t)A
�
r (t)xj | + |x�

i xjBpr(t)
2|

)

≤
1

h1h2

∑
p,r

E

(
‖Ar(t)‖22 + B

2
pr(t)

)

≤
2

h1h2

∑
p,r

E

(
R

2
A + ‖Ar(0)‖22 + B

2
pr(0) + (Bpr(t) − Bpr(0))

2
)

≤ 2

(
1 + R

2
A +

1

h1h2

∑
r

(
‖Bp(0)‖22 + R

2
B

))

≤ 2

⎛
⎝1 + R

2
A +

1 + R2
B

h2

⎞
⎠

(38)

and similarly,

E|Hij(0)| ≤ 2

(
1 +

1

h2

)
(39)

Since δ can be arbitrarily small, both RA and RB can be O(1).
Therefore,

E|Hij(t)−Hij(0)| = O
(
max

(
E

(
|Hij(t) − Hij(0)|

∣∣∣ activation does not change
)
, h1RA,RB

))
(40)

Now, we bound E ( |Hij(t)−Hij(0)| | activation does not change),
the expected difference between Hij(t) and Hij(0) when no
activation pattern changes. This expected difference is upper
bounded by the sum of three terms:

E

(
|Hij(t) − Hij(0)|

∣∣∣ activation does not change
)

≤
1

h1h2

∑
p,r

E

∣∣∣x�
i (Ar(t)A

�
r (t) − Ar(0)A

�
r (0))xj

∣∣∣
+

1

h1h2

∑
p,r

E|x�
i xj(B

2
pr(t) − B

2
pr(0))|

+
1

h1h2

∑
r

∑
p �=q

E
∣∣Bpr(t)Bqr(t) − Bpr(0)Bqr(0)

∣∣
≤

1

h1h2

∑
p,r

E

(
|x�

i (Ar(t) − Ar(0))|
)

+
(
|x�

j (Ar(t) − Ar(0))| + |x�
i (Ar(t) − Ar(0))x

�
j (Ar(t) − Ar(0))|

)
+

1

h1h2

∑
p

E

∑
r

(
2|Bpr(0)(Bpr(t) − Bpr(0))| + (Bpr(t) − Bpr(0))

2
)

+
1

h1h2

∑
p,q

E

∑
r

(∣∣Bpr(t)(Bqr(t) − Bqr(0))| + |Bqr(0)(Bpr(t) − Bpr(0))
∣∣)

≤
1

h1h2

∑
p,r

‖Ar(t) − Ar(0)‖2 + ‖Ar(t) − Ar(0)‖2 + ‖Ar(t) − Ar(0)‖22

+
1

h1h2

∑
p

2‖Bp(0)‖2‖Bp(t) − Bp(0)‖2 + ‖Bp(t) − Bp(0)‖22

+
1

h1h2

∑
p,q

(‖Bp(0)‖2 + ‖Bq(0)‖2 + ‖Bq(t) − Bq(0)‖2)‖Bp(t) − Bp(0)‖2

≤
1

h1h2

⎛
⎝∑

p,r
(2RA + R

2
A) +

∑
p

(2RB + R
2
B) +

∑
p,q

(2RB + R
2
B)

⎞
⎠

= O (
max

(
RA,RB

))
(41)

Therefore,

E|Hij(t)−Hij(0)| = O (max (h1RA, RB)) (42)
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In order to bound ‖H(t)−H(0)‖2 ≤ λ0

4 , we only need to set

‖H(t)−H(0)‖F ≤ λ0

4 . By Markov inequality, this is satisfied

with probability ≥ 1− δ when

max (h1RA, RB) = O
(
cδλ0

n

)
(43)

where c is a small positive number. Finally, we obtain that

when

RA = O
(
cδλ0

nh1

)
, RB = O

(
cδλ0

n

)
(44)

we have with high probability over initialization,

λmin(H(t)) ≥ λ0/2.

Proof of Lemma 6
Proof: The derivative of loss is bounded by

L
′
(t) = −(y − u(t))

� du(t)

dt
= −(y − u(t))

�
H(t)(y − u(t)) ≤ −λ0L(t)

(45)

Therefore, we know d
dt (exp(λ0t)L(t)) ≤ 0, indicating that

L(t) ≤ exp(−λ0t)L(0).
Next, we bound the difference between A,B and their

initialization. This is achieved by integrating the gradient of

A and B. Therefore, we bound their gradient first.

We set τ = h
1/6
2 in the proof of Lemma 4. Then, we obtain

with probability at least 1−1/h
1/3
2 , the sum |∑q wqBqr| can

be up bounded by h
1/6
2 . Then, for s ∈ [0, t] and ∀1 ≤ r ≤ h1,

∥∥∥∥ d

ds
Ar(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − ui(s))
∂f(xi)

∂Ar(s)

∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

i=1

(yi − ui(s))
∑
p

wpBpr(s)xi · 1(s)i {p, r}
∥∥∥∥∥∥
2

/
√

h1h2

≤ ‖y − u(s)‖1h
1/6
2√

h1h2

≤ ‖y − u(s)‖2

√
n

h1h
2/3
2

≤
√

2n exp(−λ0s)L(0)

h1h
2/3
2

(46)
Similarly, ∀1 ≤ p ≤ h2,

∥∥∥∥ d

ds
Bp(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − ui(s))
∂f(xi)

∂Bp(s)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − ui(s))wpσ(A(s)xi) · 1(s)i {p}
∥∥∥∥∥
2

/
√

h1h2

=

∥∥∥∥∥
n∑

i=1

(yi − ui(s))wpA(s)xi · 1(s)i {p, r}
∥∥∥∥∥
2

/
√

h1h2

≤ ‖y − u(s)‖1‖A(s)‖2/
√

h1h2

≤ ‖y − u(s)‖1‖A(s)‖F /
√

h1h2

≤
√

n/h2‖y − u(s)‖2

≤
√

2n exp(−λ0s)L(0)/h2

(47)

Then, we are able to bound the modification through

integration

‖Ar(t)−Ar(0)‖2 ≤
∫ t

0

∥∥∥∥ d

ds
Ar(s)

∥∥∥∥
2

ds ≤ 2

λ0

√
2nL(0)

h1h
2/3
2

(48)

‖Bp(t)−Bp(0)‖2 ≤
∫ t

0

∥∥∥∥ d

ds
Bp(s)

∥∥∥∥
2

ds ≤ 2

λ0

√
2nL(0)

h2

(49)

Proof of Lemma 7
Proof: Given the bounds of h1 or h2 above, we are able

to show that R′
A < RA and R′

B < RB using basic arithmetic.
Suppose the conclusion does not hold at time t. According to
Lemma 6, with high probability there exists s ≤ t such that
λmin(H(s)) < λ0/2. Then, according to Lemma 5, with high
probability there exists r such that ‖Ar(t) − Ar(0)‖2 > RA,
or there exists p such that ‖Bp(t) − Bp(0)‖2 > RB . This
indicates that the following infimum exists:

t0 = inf
t>0

{∃r : ‖Ar(t) − Ar(0)‖2 ≥ RA or ∃p : ‖Bp(t) − Bp(0)‖2 ≥ RB}
(50)

Since Ar(t) and Bp(t) change continuously, we have that

‖Ar(t0) − Ar(0)‖2 ≤ RA, ‖Bp(t0) − Bp(0)‖2 ≤ RB , and

equality holds for at least one of them. Then by Lemma 5,

with high probability λmin(H(t′)) ≥ λ0/2 ∀t′ ≤ t0, and thus

‖Ar(t0)−Ar(0)‖2 ≤ R′
A ∀r and ‖Bp(t0)−Bp(0)‖2 ≤ R′

B ∀p
by Lemma 6. Recall that R′

A < RA and R′
B < RB , we draw

a contradiction here.

APPENDIX B. OMITTED EXPERIMENTS

Fig. 3 Results on synthetic-50 data
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Fig. 4 Results on synthetic-100 data Fig. 5 Results on MNIST-01
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Fig. 6 Results on MNIST-17 Fig. 7 Results on Fashion-01
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Fig. 8 Results on Fashion-79
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