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 
Abstract—The present study deals with the finite element (FE) 

analysis of thermally-induced bistable plate using various plate 
elements. The quadrilateral plate elements include the 4-node 
conforming plate element based on the classical laminate plate theory 
(CLPT), the 4-node and 9-node Mindlin plate element based on the 
first-order shear deformation laminated plate theory (FSDT), and a 
displacement-based 4-node quadrilateral element (RDKQ-NL20). 
Using the von-Karman’s large deflection theory and the total 
Lagrangian (TL) approach, the nonlinear FE governing equations for 
plate under thermal load are derived. Convergence analysis for four 
elements is first conducted. These elements are then used to predict the 
stable shapes of thermally-induced bistable plate. Numerical test 
shows that the plate element based on FSDT, namely the 4-node and 
9-node Mindlin, and the RDKQ-NL20 plate element can predict two 
stable cylindrical shapes while the 4-node conforming plate predicts a 
saddles shape. Comparing the simulation results with ABAQUS, the 
RDKQ-NL20 element shows the best accuracy among all the 
elements. 
 

Keywords—Finite element method, geometrical nonlinearity, 
bistable, quadrilateral plate elements.  

I. INTRODUCTION 

ISTABLE or multi-stable plates and shells have many 
potential applications in morphing structures and 

broadband energy harvesting, and have attracted much research 
attention over the last few decades. Commonly, bistable plates 
have two stable configurations and can transform from one 
equilibrium position to another in response to a small energy 
input. Because no external forces are needed to sustain the 
equilibrium configuration, they are good candidates for 
morphing skins in aerospace applications [1], wind-harvesting 
technology [2], and automobile construction [3]. In addition, 
bistable plates can be bonded with piezoelectric layers to create 
an energy harvester that can realize broadband energy 
harvesting [4], [5]. Internal structural bistability will make it 
possible to design small and portable piezoelectric energy 
harvesters in the future.  

Thermally-induced bistability is generally achieved by 
curing flat asymmetric laminates from high temperatures to 
room temperature. During the cooling process, thermal residual 
stresses accumulate due to the mismatch of thermal expansion 
coefficients among cross-ply layers, which eventually lead to 
two stable shapes. Hyer [6] first explored these bistable 
behaviors in the early 1980s. At that time, laminates with an 
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unsymmetric stacking sequence were avoided in 
manufacturing, due to the bending-stretching coupling effect. 
To qualify this effect, Hyer et al. [7] developed an analytical 
model based on Kirchoff hypothesis with von Kármán 
geometric nonlinear strain in the CLPT. Two stable shapes 
were predicted using Rayleigh-Ritz minimization of the total 
potential energy in conjunction with polynomial 
approximations of the mid-plane strains. Since then, increasing 
numbers of researchers have studied bistable structures. The 
literatures in this area now include predicting stable shapes 
[8]-[10], calculating snap-through forces [11]-[13] and 
proposing new types of bistable structures [14]-[17].  

In order to study the bistablility and energy harvesting 
performances of bistable plate, an accurate mathematical model 
is necessary. Previous theoretical studies on bistable plate are 
mainly based on analytical model. In this model, Rayleigh-Ritz 
method is used to approximate displacement filed, and 
Hamilton’s principle is adopted to derive the equation of 
motion [12], [18]. Although the analytical model can achieve 
fast simulation, its’ accuracy in dynamic analysis is still 
questionable. Diaconu et al. [12] used a second-order 
polynomial to approximate the out-of-plane displacement of 
bistable plate and found that it over-predicts the snap-through 
load by 30% compared to FE analysis and experiments. Betts et 
al. [18] used Diaconu’s model to predict the harvested energy 
of bistable plate and found that it consistently over-predicts the 
power output by ~15%. In order to settle the limitations 
mentioned above, an accurate nonlinear FE model that can 
achieve fast simulation is necessary.  

II. CLASSICAL AND FIRST-ORDER THEORIES OF LAMINATED 

COMPOSITE PLATES 

A. CLPT 

In the CLPT, Kirchhoff hypothesis is assumed that the 
transverse displacement is independent of the thickness 
coordinate, the transverse normal strain and the transverse 
shear stains are zero. The nonlinear strain-displacement 
relations are given by 
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where 0u , 0v  and 0w  are the corresponding mid-plane 

displacement components.  
Consider a composite laminate of total thickness h composed 

of N orthotropic layers with the principal material coordinates 

 1 2 3, ,k k kx x x of the kth lamina oriented at an angle   to the 

laminate coordinate,  , ,x y z , as shown in Fig. 1. When 

thermal effect is included, the linear constitutive relations for 
the kth orthotropic lamina in the laminate coordinates are 
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where ( )k
ijQ  are the reduced transformed stiffness terms of the 

kth layer that can be expressed as 
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and xx , yy , and xy  are the transformed thermal coefficients 

of expansion 
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Combining (1) and (2), and integrating over the laminate 

thickness, it is possible to obtain the equations of force and 
moment resultants as 
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where = 0 0 0
m bε ε ε ; A , B  and D  are laminate extensional, 

coupling and bending stiffness matrices, which are obtained by 
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and TN , TM  are the thermal force resultants 
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Fig. 1 Coordinate system and layer numbering used for a laminated 
plate 

B. FSDT 

In the FSDT, the strains have the form  
 

2

0
0

2

0 0

0 0 0 0

1

2

1

2

y

xx

x
yy

xy
y x

w
u

x
x x
v w

z z
y y y

u v w w
y x x y y x









 

                                                        
                

            

0 0
m bε ε k (9) 

 

0

0

xz x

yz y

w

y

w

x

 
 

 
                
       

  

γ                                             (10) 

 

where x  and y  are the rotations of a transverse normal about 

the y- and x-axes, respectively. 
The stress resultants are related to the generalized 

displacements by the relations 
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The matrices A , B , D , TN  and TM  are the same as (7),  

sA  is the shear stiffness matrix 
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The transverse shear forces are  
 

  sk sT A γ                                                                                (14) 
 
where sk  is the shear correction factor. 
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III. FE METHOD  

A.  Interpolation Functions for Quadrilateral Elements  

Four quadrilateral elements are introduced in this section. 
They are the 4-node conforming plate element for the CLPT, 
the 4-node and 9-node Mindlin plate element for the FSDT, and 
the displacement-based laminate element RDKQ-NL20 
developed by Zhang el al. [19]. All the 4-node quadrilateral 
elements use linear Lagrange interpolation functions for the 
in-plane displacements but different interpolation functions for 
the bending deflections.   

As shown in Fig. 2, the conforming rectangular element has 
six degrees of freedom per node. The linear Lagrange 
interpolation functions for the in-plane displacements are  
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where  ,   are the element coordinates, or called natural 

coordinates.  
The Hermite cubic interpolations for the bending deflections 

are 
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Here a and b are the sides of the rectangular element and 

 ,i i   are the coordinates of the nodes in the  ,   

coordinate system. Thus, the displacements 0 0 0, ,u v w  in the 

element can be approximated by nodal displacement as 
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Fig. 2 A conforming rectangular element with six degrees of freedom

 , , , , ,i i i xi yi xyiu v w     per node 

 

The 4-node and the 9-node Mindlin plate elements have 5 
degrees of freedom per node, as shown in Figs. 3 and 4, 
respectively. Therefore, the total degrees of freedom for 4-ndoe 
and 9-node FSDT element are 20 and 45, respectively. Because 
the weak forms of the first-order theory contain, at the most, 
only the first derivatives of the in-plane displacement and 
bending deflections; therefore, 0u , 0v , 0w , x  and y  can be 

approximated using the same Lagrange interpolation functions 
as 
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For the 4-node linear element, n equals 4 and iN  can be 

obtained from (15). For the 9-node quadratic element, n is 9 and 

iN  are expressed as 
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Fig. 3 A 4-node linear Lagrange rectangular elements with 5 degrees 

of freedom  0 0 0, , , ,x yu v w   per node 

 

1 1 1 1 1, , , ,x yu v w    

Fig. 4 A 9-node quadratic Lagrange rectangular elements with 5 

degrees of freedom  0 0 0, , , ,x yu v w   per node 
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It should be mentioned here that the conforming CLPT 
element does not consider the shear strain, which is not suitable 
for analysis of thick plate. The FSDT element assumes constant 
transverse shear strain/stress through the plate thickness, and 
requires shear correction factors to approximate actual stress 
states. As the thickness-span ratio of a laminate becomes small, 
shear locking may occur for 4-node Mindlin plate element. 
Although reduced integration and selectively reduced 
integration methods are proposed to eliminate this, it is found 
that the element often cannot pass the patch test for thin plates. 
To solve this, Zhang et al. [19] used the Timoshenko’s beam 
function method to develop a 4-node 20 degrees of freedom 
quadrilateral laminated plate element without shear-locking, 
which is named as RDKQ-NL20. 

The linear interpolation function (15) is adopted to describe 
the in-plane and out-of-plane displacements 0u , 0v , 0w  for the 

element RDKQ-NL20. The rotational displacements x  and 

y  are first carried as the nodal variables xi  and yi  by shape 

functions of the 8-node quadratic serendipity element. By using 
the Timoshenko’s laminated composite beam functions, the 
rotational displacement parameters at mid-nodes are expressed 
by those of corner nodes. Thus, x  and y  are eventually 

written as  
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The transverse shear strains can be expressed in terms of 

natural co-ordinates as 
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where  sB  is the shear strain matrix. 

Detailed derivation of iP , xiP , yiP , iQ , xiQ , yiQ and  sB can 

be found in [19].  

B. FE Formulation for Geometrically Nonlinear Analysis of 
Bistable Plates 

The nonlinear FE equations for element RDKQ-NL20 are 
derived in this section and the FE model for other elements can 
be developed following the same way. For a plate subjected to 
thermal load, the total potential work based on the FSDT is 
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where  , h ,  and A  are the mass density, thickness and area 
of the plate element. 

Using the interpolation functions (15), the membrane strain 
of the element is  
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and 
 

   1 2 3 4

0

, 0

i

i
m m m m m mi

i i

N

x
N

B B B B B B
y

N N

y x

 
 
 

 
    

  
 
  

                    (27) 

 
The nonlinear strain can be expressed as 
 

      

0

1 1 1
0

2 2 2 b

w
wx

w x
G B w

wy
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y x

 

 
    

            
     

 
  

0
bε                  (28) 

 
where 
 

   1 2 3 4

0 0

,
0 0

i

i
i

N

x
B B B B B B

N

y

     

 
   
 
  

            (29) 

 
Using the interpolation functions (20), the bending strain can 

be rewritten as  
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  

x

y
b b

yx

x
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





 
 

 
     
 
 
   

κ                                                  (30) 

 

where    1 2 3 4b b b b bB B B B B  and 

 

yii xi

yii xi
bi

yi yii i xi xi

PP P

x x x
QQ Q

B
y y y

P QP Q P Q

y x y x y x

  
 

   
  

  
   

        
       

                       (31) 

 
Combining the strain matrices (23), (27), (29) and (31) into 

one, the strain matrix of the element RDKQ-NL20 
corresponding to the nodal displacement vector 

 1 2 3 4w w w wu ,  i mi biw w w  is obtained as 

 

0 / 2e
lB B B                                                                                 (32) 

 

where 0B  is the linear strain matrix  
 

 0 01 02 03 04B B B B B , 0

0

0

0

mi

i bi

si

B

B B

B

 
   
  

                              (33) 

 

The nonlinear strain matrix lB  is expressed as 
 

0

0

0 0

0 0

b
li

i

B

B

 
   
  

,   b
li iB B                                                        (34) 

 
The first variation of the strains in (24) is  

 

 0

T

e
lB B B  

 
     
 
 

0ε

k u u

γ

                                                        (35) 

 
Substituting (32) and (35) into (24), and based on the TL 

approach, the nonlinear FE equations can be obtained as 
 

     t
σK K u R                                                                 (36) 

 
where  
 

e

e

K K , 
e

 e
σ σK K , 

e

t t eR R                                      (37) 

 
e
K  is the geometric stiffness matrix due to the geometric 

nonlinear deformation which can be calculated as 
 

0 0

0 b
ijK

 
  
 

e
σK                                                                              (38) 

 

 b T
ij i l jA

K B B dA                                                                      (39) 

 

  x xy

l
xy y

N N

N N


 
  
 

                                                                         (40) 

 

where 0T

x y xyN N N     
TN Aε Bκ N  is the in-plane 

forces.  
The element internal force vector is calculated as 
 

 Te
eA

B dA    t eR                                                                   (41) 

 

in which  *
e  is the stress resultant after the ith iteration and is 

calculated as 
 

 * e t
e B

  
         
     

T

T

s

A B 0 N

B D 0 u M

0 0 A 0

                                           (42) 

IV. RESULTS AND DISCUSSION 

Case I: The first case considers nonlinear bending of 
orthotropic plate subjected to uniformly load of intensity 0q . 

The geometric and material parameters used are listed in Table 
I. Two types of simply supported boundary conditions SS-1 and 
SS-3 are considered, which is illustrated in Fig. 5. For the 
4-node Mindlin plate element, to eliminate shear-locking, 
reduced integration is used to evaluate the transverse shear 
stiffnesses. For the RDKQ-NL20 element, full integration is 
used for all stiffness matrices due to it is free of shear-locking. 
The shear correction coefficient for the RDKQ-NL20 and the 
4-node Mindlin plate element is taken to be 5 6sk  . 50 load 

steps are used with the load incremental of 0.05, and a tolerance 

of -610  is used for convergence. 
Convergence analysis is first carried out for four plate 

elements using different mesh sizes. The deflection at the 
center of the plate with 0 2.5q   is calculated and plotted in 

Fig. 6. It can be observed that the center deflection gradually 
convergence to a constant value with the increment of mesh 
size, and the 4-node and 9-node FSDT and RDKQ-NL20 
element needs fewer elements to obtain a converge value than 
the CLPT element. Comparison of the load-displacement curve 
using a 10×10 mesh size for four elements is displayed in Fig. 
7. It is obviously seen that four elements predict nearly the 
same results. Thus, the convergence and the accuracy of present 
FE model are checked.  
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TABLE I 
GEOMETRIC AND MATERIAL PROPERTIES OF ORTHOTROPIC PANEL FOR CASE I. 

Geometric properties Material properties 

Dimensions: 
12in., 0.138in.a b h    

Boundary conditions: SS-1 or SS-3 

6
1

6
2

6
12 23 13

12

=3 10 psi

=1.26 10 psi

= 0.37 10 psi

Poisson's ratio 0.32

E

E

G G G







  


 

 

0 0 0 0u v w  

0 0 0 0u v w  

0 0 0 0u v w  0 0 0 0u v w  

0 0 0xu w   

0 0 0yv w   

0 0 0xu w   

0 0 0yv w   

 

Fig. 5 Geometric boundary conditions used for (a) SS-1 type and (b) 
SS-3 type simply supported rectangular plates 

 
Case II: The second case predicts cured shape of 

unsymmetric laminates subjected to thermal load. The 
composite laminates are made of T300/5208 graphite-epoxy 
with a stacking sequence of  T90 / 0 , as shown in Fig. 8. The 

material properties for T300/5208 graphite-epoxy are listed in 

Table II [20]. The laminate is cooled from a curing temperature 
of 180 C  to the room temperature of 25 C . Cured shape of a 
square laminate with length of 150mm  is predicted by using 
the developed FE method and the commercial software 
package ABAQUS. The plate is modelled using 400 4-node 
quadrilateral shell element (S4R) with a total of 441 nodes. 
Boundary condition in the FE model is fixing the center node of 
the plate. It should be mentioned here that, in the FE model, the 
initial cured shape of the cross-ply laminates is always a saddle 
shape due to their symmetrical geometry. In order to make the 
square plate convergence to one of the stable shapes, some 
tricks should be taken [20], [21]. For examples, one can carry 
out buckling analysis and use the buckling mode as the initial 
nodal displacement, or apply small forces at the corner of the 
plate and then remove them after convergence results are 
obtained, or apply thermal load to the layer of the laminate one 
by one.  

 

 

Fig. 6 Convergence analysis of deflection at the center of the plate with 
load of 2.5 for different mesh sizes

 

 

(a)                                                                                   (b) 

Fig. 7 Center deflection as functions of the load for simply supported, orthotropic, square plates under uniformly distributed load (10×10 mesh): 
(a) SS-3, (b) SS-1 
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The simulated stable shapes by four plate elements in our FE 
model (20×20 mesh) and the commercial software ABAQUS 

are listed in Table III. The curvatures can be approximated as 
 

2 2

8

4

w

l w
 


                                                                               (43) 

 
where w is the out-of-plane deflection and l is the laminate 
chord length as shown in Fig. 9. 

 

 

Fig. 8 Composite laminates with cross-ply stacking sequence. 
 

It can be found from Table III that the 4-node CLPT plate 
element predicts a saddle shape while other plate elements 
based on FSDT predict two stable cylindrical shapes. The 4- 
node and 9-node Mindlin plate element and the RDKQ-NL20 
plate element predict close curvatures compared to the results 
of ABAQUS. However, it should be mentioned here that, 
numerical experiments show that the convergence of the 4- 
node and 9-node Mindlin element is sensitive to the 

incremental steps and initial load. Among all the elements, the 
RDKQ-NL20 element shows the best accuracy and 
convergence in predicting stable shapes of bistable plate. 

 
TABLE II 

MATERIAL PROPERTIES OF T300/5208 GRAPHITE-EPOXY [20] 
Material Graphite-epoxy 

11(GPa)E  181 

22 (GPa)E  10.3 

12 (GP a)G  7.2 

12  0.28 
6

1 (10 / C)    -0.106 

6
1 (10 / C)    25.6 

 mmh  0.2 

 

 

Fig. 9 Measurement of curvature in the FE model 

 
TABLE III 

SIMULATED STABLE SHAPES AND CURVATURES OF THE CROSS-PLY COMPOSITE LAMINATES 

 Stable shapes Curvature 

Element types 

4-node CLPT 0.5944x y     

4-node FSDT 7.279x y      

9-node FSDT 6.917x y      

RDKQ-NL20 7.30x y     

ABAQUS-S4R 7.309x y     

 

V. CONCLUSION 

Four quadrilateral plate elements based on the CLPT and the 
FSDT are used to formulate the nonlinear FE equations in order 
to predict the stable shapes of thermally-induced bistable plate. 
The convergence and accuracy of the developed FE model 

based on four plate elements are checked through calculating 
the nonlinear bending of orthotropic plate subjected to uniform 
load. Stable shapes of a square composite laminate with cross- 
ply stacking sequence under thermal load are simulated. All 
plate elements predict two cylindrical shapes except the 4-node 
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conforming plate element. The RDKQ-NL20 plate element 
shows the best accuracy and convergence compared to 
ABAQUS when equal mesh size is used. Therefore, the 
RDKQ-NL20 element shows great advantages in static analysis 
of thermally-induced bistable plate. The developed FE model 
using RDKQ-NL20 element can also be used to simulate static 
behaviors of other prestress-induced bistable plate, such as the 
voltage-induced piezoelectric bistable plate. 
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