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 
Abstract—In modern financial mathematics, valuing derivatives 

such as options is often a tedious task. This is simply because their 
fair and correct prices in the future are often probabilistic. This paper 
examines three different Stochastic Differential Equation (SDE) 
models in finance; the Constant Elasticity of Variance (CEV) model, 
the Balck-Karasinski model, and the Heston model. The various 
Martingales option price valuation formulas for these three models 
were obtained using the replicating portfolio method. Also, the 
numerical solution of the derived Martingales options price valuation 
equations for the SDEs models was carried out using the Monte Carlo 
method which was implemented using MATLAB. Furthermore, 
results from the numerical examples using published data from the 
Nigeria Stock Exchange (NSE), all share index data show the effect 
of increase in the underlying asset value (stock price) on the value of 
the European Put Option for these models. From the results obtained, 
we see that an increase in the stock price yields a decrease in the 
value of the European put option price. Hence, this guides the option 
holder in making a quality decision by not exercising his right on the 
option. 

 
Keywords—Equivalent Martingale Measure, European Put 

Option, Girsanov Theorem, Martingales, Monte Carlo method, option 
price valuation, option price valuation formula. 

I. INTRODUCTION 

INANCIAL derivatives are financial contracts that are 
linked to an underlying asset and through which specific 

financial risks can be traded in a typical financial market. The 
value of a financial derivative is a function of the underlying 
asset and time from whence its price is derived. Since the 
future reference price of the derivative is not known with 
certainty, its value at maturity can only be anticipated or 
estimated. Options which are a type of financial derivative are 
used for several purposes which include risk management, 
hedging, etc. [1]. 

Options allow parties to trade peculiar financial risks to 
other investors that are more willing and ready to 
accommodate such risk. The risk involved in option pricing 
contract can either be traded as itself or by initiating a new 
contract that bears the burden of risks involved in the contract 
[1]. There are basically four types of financial derivatives 
which are swaps, forwards, futures, and options. 

There are many justifications why investors opt for trading 
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in options instead of trading in stocks. One major reason to 
this decision is that it aids mitigation of risks and saves 
transaction costs.  

To value or price financial derivative products such as 
options is one of the most common problems in mathematical 
finance. In order to value an option using the Martingales 
approach, a replicating portfolio is constructed from trade-able 
assets, and the replicating portfolio is assumed to be driven by 
a financing strategy that is self-financing. The portfolio 
replicates the payoff of the financial derivative at expiry, and 
because of no arbitrage, it also replicates the value of the 
financial derivative at every instant before expiry. We then use 
the fact that the numeraire that turns the trade-able assets into 
martingales also turns the replicating portfolio into a 
martingale. The value of the financial derivative is the 
expected value of the payoff at expiry, discounted by the 
numeraire [2]. However, this paper will focus on the use of 
Martingale approach in the valuation of options price which is 
a type of financial derivatives.  

II. THEORETICAL BACKGROUND  

Definition 1 (Risk-neutral measure). A probability measure 
ℙ∗ on Ω is called a risk-neu.tral measure if it satisfies 
 

𝔼∗ሾ𝑆௧|ℱ௨ሿ ൌ 𝑒௥ሺ௧ି௨ሻ𝑆௨,      0 ൑ 𝑢 ൑ 𝑡 
 

where 𝔼∗ denotes the expectation under ℙ∗. 
Definition 2 (Self-financing portfolio). A portfolio allocation 
ሺ𝜉௧, 𝜂௧ሻ௧ఢℝశ

 with price (value) 𝑉௧ given by 𝑉௧ ൌ 𝜉௧𝑆௧ ൅
𝜂௧𝐴௧, 𝑡 𝜖 ℝାI s self-financing if and only if the relation 
𝑑𝑉௧ ൌ 𝜂௧𝑑𝐴௧ ൅ 𝜉௧𝑑𝑆௧ holds, where 𝜉௧ is the number of shares in 
𝑆௧ (could be any real number) and 𝜂௧ is the amount in the 
bank.  
Definition 3 (Numeraires). A numeraire is an asset with 
positive price, namely 𝑁௧ ൐ 0 for all 𝑡. Any asset with this 
property can serve as a numeraire. The relative price 𝑆௧෩  of an 
asset is its price 𝑆௧ divided by the numeraire price, so that 

𝑆ሚ௧ ൌ ௌ೟

ே೟
 and 𝑆 is measured in units of 𝑁. 

Definition 4 (Martingales). An integrable process ሺ𝑋௧ሻ௧ఢோశ is 
said to be a martingale with respect to the filtration ሺℱ௧ሻ௧ఢோశ

if  
 

𝐸ሾ𝑋௧|ℱ௦ሿ ൌ 𝑋௦,       0 ൑ 𝑠 ൑ 𝑡. 
 
Theorem 1 (Fundamental theorem of arbitrage). The 
Fundamental Theorem of Arbitrage asserts that if the market is 
complete, then for each numeraire 𝑁௧, there exists a unique 
Equivalent Martingale Measure ℕ such that the relative price 
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of the assets (and consequently, of the replicating portfolio) 

using that numeraire is a martingale. In the other words, 
ௌ೟

ே೟
 is a 

martingale under ℕ. Hence, 
 

     𝐸ℕ ቂௌ೅

ே೅
|ℱ௧ቃ ൌ ௌ೟

ே೟
    (1) 

III. METHODS 

A. Preliminaries for the Model Formulation  

Proposition 1 [3]. The measure ℙ∗ is risk-neutral if and only 
if the discounted price process ሺ𝑋௧ሻ௧ ఢ ℝశ is a martingale under 
ℙ∗. 
Proof. If ℙ∗ is a risk-neutral measure, we have 
 
𝔼∗ሾ𝑋௧|ℱ௨ሿ ൌ 𝔼∗ሾ𝑒ି௥௧𝑆௧|ℱ௨ሿ ൌ 𝑒ି௥௧𝔼∗ሾ𝑆௧|ℱ௨ሿ ൌ 𝑒ି௥௨𝑆௨ ൌ 𝑋௨, 0 ൑ 𝑢

൑ 𝑡 
 
hence ሺ𝑋௧ሻ௧ ఢ ℝశ

 is a martingale. Conversely, if ሺ𝑋௧ሻ௧ ఢ ℝశ
 is a 

martingale, then 
 

𝔼∗ሾ𝑆௧|ℱ௨ሿ ൌ 𝑒௥௧𝔼∗ሾ𝑋௧|ℱ௨ሿ ൌ 𝑒௥௧𝑋௨ ൌ 𝑒௥ሺ௧ି௨ሻ𝑆௨      0 ൑ 𝑢 ൑ 𝑡 
 
hence the measure ℙ∗ is risk-neutral according to Definition 
1.6. 
Theorem 2. (Girsanov Theorem; [4]). The process 𝑊௧෪ ൌ 𝑊௧ െ

׬ 𝜃௦
௧

଴ 𝑑𝑠 is Brownian motion under the measure ℚ. 
Theorem 3. Let ሺϕ௧ሻ௧ఢሾ଴,்ሿ be an adapted process satisfying 
the Novikov integrability condition 
 

𝐸 ቂ𝑒𝑥𝑝 ቀଵ

ଶ
׬ |𝜙|ଶ𝑑𝑡

்
଴ ቁቃ ൏ ∞  

 
and let ℚ denote the probability measure defined by 
 

ௗℚ

ௗℙ
ൌ 𝑒𝑥𝑝 ቀെ ׬ 𝜙௦

்
଴ 𝑑𝑊௦ െ ଵ

ଶ
׬ 𝜙௦

ଶ்
଴ 𝑑𝑠ቁ  

 
then 

𝑊෩௧ ൌ 𝑊௧ ൅ ׬ 𝜙௦
௧

଴ 𝑑𝑠,      𝑡 𝜖 ሾ0, 𝑇ሿ,  
 
is a standard Brownian motion under ℚ. 
Theorem 4. (Martingale Representation Theorem; [4]). 
Suppose that 𝑀௧ is an ℱ௧ െmartingale where ሼℱ௧ሽ௧ஹ଴ is the 
filteration generated by the 𝑛 െdimensional standard 

Brownian motion, 𝑊௧ ൌ ቀ𝑊௧
ሺଵሻ, … , 𝑊௧

ሺ௡ሻቁ. If 𝐸ሾ𝑀௧
ଶሿ ൏ ∞ for all 𝑡 

then there exists a unique 𝑛 െdimensional adapted stochastic 
process, 𝜙௧ such that 
 

𝑀௧ ൌ 𝑀଴ ൅ ׬ 𝜙௦
்𝑑𝑊௧

௧
଴     for all 𝑡 ൒ 0  

 
where 𝜙௦

்denotes the transpose of the vector, 𝜙௦. 

B. The Martingale Approach 

In this approach, options are not part of the traded assets 
𝑆௧ሺ𝑡ሻ, … , 𝑆ேሺ𝑡ሻ, so cannot be priced directly. However, we can 
form a replicating portfolio ∏ሺ𝑡ሻ ൌ ∑ 𝑎௜ሺ𝑡ሻ𝑆௜

ே
௜ୀଵ ሺ𝑡ሻ that 

replicates the price of the option at every time, so that 𝑉௧ ൌ Π௧ 

for every 𝑡 ൐ 0 and 𝑉 ൌ Π். Moreover, the portfolio is 
traded since each asset is traded. The Fundamental Theorem 
of Arbitrage (Theorem 1) guarantees that given a numeraire 
𝑁௧, each relative asset will be a martingale under the 
corresponding measure ℕ, and consequently, so will 𝑉௧ 𝑁௧⁄  
since it is a linear combination of martingales. The martingale 
property of 𝑉௧ 𝑁௧⁄  implies that 

 

                        𝐸ℕ ቂ௏೅

ே೅
ቚ ℱ௧ቃ ൌ ௏೟

ே೟
   (2) 

 

from which the time – 𝑡 price of the derivative, 𝑉௧, is 
 

           𝑉௧ ൌ 𝑁௧𝐸ℕ ቂ
௏೅

ே೅
ቚ ℱ௧ቃ      (3) 

 
In the Black-Scholes economy, we have two assets, a stock 

𝑆௧ that follows the SDE 
 

                 𝑑𝑆 ൌ 𝑟𝑆𝑑𝑡 ൅ 𝜎𝑆𝑑𝑊                          (4) 
 
and a fixed bond 𝐵 
 

               𝑑𝑆௧ ൌ 𝜇𝑆௧𝑑𝑡 ൅ 𝜎𝑆௧𝑑𝑊௧        (5) 
 

 𝑑𝐵௧ ൌ 𝑟𝐵௧𝑑𝑡    
 

We apply Girsanov’s theorem so that the process for 𝑑𝑆௧ 
becomes 

 
               𝑑𝑆௧ ൌ 𝑟𝑆௧𝑑𝑡 ൅ 𝜎𝑆௧𝑑𝑊௧

𝔹       (6) 
 

where 𝑑𝑊௧
𝔹 ൌ 𝑑𝑊௧ ൅

ఓି௥

ఙ
𝑑𝑡 and 𝐵௧ ൌ exp ቀ׬ 𝑟𝑑𝑢

௧
଴ ቁ ൌ 𝑒௥௧.  

We use 𝐵௧ as the numeraire so that 𝑆ሚ௧ ൌ ௌ೟

஻೟
 is a martingale 

under 𝔹. The European Put option has payoff 𝑉 ൌ ሺ𝐾 െ 𝑆்ሻା, 
so in accordance with ሺ3ሻ, the time-𝑡 price of the Put is 

 

𝑉௧ ൌ 𝐵௧𝐸𝔹 ቂ
ሺ௄ିௌ೅ሻశ

஻೅
ቚ ℱ௧ቃ  ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ𝐾 െ 𝑆்ሻା|ℱ௧ሿ (7) 

 
We can use the choice of another numeraire. The choice of 

the numeraire, 𝐵௧, is arbitrary, and 𝑆௧ can be used instead. In 

the previous section, we saw that 
ௌ೟

஻೟
 is a martingale under an 

EMM 𝔹. Now, we have that 
஻೟

ௌ೟
 is a martingale, but under a 

different measure 𝕊. In ሺ7ሻ, the value 𝑉௧ of the Put is derived 
from 

 
௏೟

஻೟
ൌ 𝐸𝔹 ቂ௏೅

஻೅
ቚ ℱ௧ቃ.  

 
Equivalently, using 𝑆௧ as the numeraire, the same value 𝑉௧ 

can be derived from 
 

௏೟

ௌ೟
ൌ 𝐸𝕊 ቂ

௏೅

ௌ೅
ቚ ℱ௧ቃ  

 
The European Put has payoff,  𝑉 ൌ ሺ𝐾 െ 𝑆்ሻା, so the time-𝑡 

price of the Put is  
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  𝑉௧ ൌ 𝑆௧𝐸𝕊 ൤ቀ ௄

ௌ೅
െ 1ቁ

ା
ฬ ℱ௧൨ ൌ 𝑆௧𝐸𝕊 ቂ

ሺ௄ିௌ೅ሻశ

ௌ೅
ቚ ℱ௧ቃ             (8) 

 
Even though the expression in (7) and (8) are different, they 

both produce the same solution [5]. 

C. Derivation of the Model Equations 

1. The CEV Model  

We consider the pricing of European put option in the CEV 
model introduced by [6]. There are two assets; the bank 
account 𝐵 is given by 𝐵௧ ൌ 𝑒௥௧ and the stock 𝑋 follow the SDE 

 
      𝑑𝑋௨ ൌ 𝑟𝑋௨𝑑𝑢 ൅ 𝜎𝑋௨

ఈ𝑑𝑊௨,         𝑋଴ ൐ 0    (9) 
 
with constants 𝜎 ൐ 0 and 𝛼 ൐ 0. We want to obtain the 
Martingale and PDE formula for the function u. 

To derive the Martingale option price valuation formula for 
the above SDE, we let 𝜙 ൌ ሺ𝜂௧, 𝜉௧ሻ௧ ఢሾ଴,்ሿ be portfolio strategy 
with price  

 
𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝐵௧ ൅ 𝜉௧𝑋௧ 

 
and that it satisfies the self-financing condition 

 
𝑑𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝑑𝐵௧ ൅ 𝜉௧𝑑𝑋௧ ൌ 𝑟𝑒௥௧𝜂௧𝑑𝑡 ൅ 𝜉௧𝑑𝑋௧ 

 
or equivalently  
 

𝑉௧ሺ𝜙ሻ ൌ 𝑉଴ሺ𝜙ሻ ൅ ׬ 𝜂௧𝑑𝐵௦
௧

଴ ൅ ׬ 𝜉௧𝑑𝑋௦
௧

଴   
 

The next is to apply the change in Numeraire. Since the 
price processes are strictly positive, in particular 𝐵௧ ൐ 0, one 
can always normalize the market by considering 

 
𝐵෨௧ ൌ 𝐵௧

ିଵ𝐵௧ ൌ 1 
 
and 

𝑋෨௧ ൌ 𝐵௧
ିଵ𝑋௧ ൌ 𝑒ି௥௧𝑋௧ 

 
Hence, we consider the discounted portfolio 
 

𝑉෨௧ሺ∅ሻ ൌ 𝐵௧
ିଵ𝑉௧ሺ𝜙ሻ ൌ 𝑒ି௥௧ሺ𝜂௧𝐵௧ ൅ 𝜉௧𝑋௧ሻ ൌ 𝜂௧ ൅ 𝜉௧𝑋෨௧ 

 
and applying integration by parts, we have 
 

𝑑𝑉෨௧ሺ𝜙ሻ ൌ 𝐵௧
ିଵ𝑑𝑉௧ሺ𝜙ሻ െ 𝑟𝑒ି௥௧𝑉௧ሺ𝜙ሻ𝑑𝑡 ൅ ሺ𝑑𝐵௧

ିଵሻ൫𝑑𝑉௧ሺ𝜙ሻ൯ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
଴

 ൌ

𝐵𝑡
െ1𝑑𝑉𝑡ሺ𝜙ሻ െ 𝑟𝑒െ𝑟𝑡𝑉𝑡ሺ𝜙ሻ𝑑𝑡    (10) 

 
If we assume that  
 

𝑑𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝑑𝐵௧ ൅ 𝜉௧𝑑𝑋௧, 
 
i.e., 𝜙 is self –financing, then 
 

𝑑𝑉෨௧ሺ𝜙ሻ ൌ 𝑒ି௥௧ሼ𝑟𝜂௧𝑒𝑟𝑡𝑑𝑡 ൅ 𝜉௧𝑑𝑋௧ሽ െ 𝑟൫𝜂௧ ൅ 𝜉௧𝑋෨௧൯𝑑𝑡 
ൌ 𝑟𝑒ି௥௧𝑒௥௧𝜂௧𝑑𝑡 ൅ 𝑒ି௥௧𝜉௧𝑑𝑋௧ െ 𝑟𝜂௧𝑑𝑡 െ 𝑟𝜉௧𝑒ି௥௧𝑋௧𝑑𝑡 

ൌ 𝑟𝜂௧𝑑𝑡 ൅ 𝑒ି௥௧𝜉௧𝑑𝑋௧ െ 𝑟𝜂௧𝑑𝑡 െ 𝑟𝜉௧𝑒ି௥௧𝑋௧𝑑𝑡 
 

𝑑𝑉෨௧ሺ𝜙ሻ ൌ 𝜉௧𝑒ି௥௧𝑑𝑋௧ െ 𝑟𝜉௧𝑒ି௥௧𝑋௧𝑑𝑡 ൌ 𝜉௧ሼ𝑒ି௥௧𝑑𝑋௧ ൅ 𝑑ሺ𝑒ି௥௧ሻ𝑋௧ሽ
ൌ 𝜉௧𝑑𝑋෨௧ 

 

which yields that 𝑉෨௧ሺ𝜙ሻ is self-financing. Note that, in the 
discounted market, a self-financing portfolio is written in 
integral form as 
 

     𝑉෩௧ሺ𝜙ሻ ൌ 𝑉෨଴ሺ𝜙ሻ ൅ ׬ 𝜉௦
௧

଴ 𝑑𝑋෨௦,       𝑡 𝜖 ℝା  (11) 
 
Then, we need to show that (11) is a martingale under 𝔹. So, 
by Girsanov’s Theorem, we can define a probability measure 
𝔹 and the process 

 

𝑊෩௧ ൌ ఓି௥

ఙ
𝑡 ൅ 𝑊௧,  

 
is a Brownian motion under 𝔹. Now given 

 
𝑑𝑋௧ ൌ 𝑟𝑋௧𝑑𝑡 ൅ 𝜎𝑋௧

ఈ𝑑𝑊෩௧ 
 

if we now compute 𝑑𝑋෨௧, we get  
 

𝑑𝑋෨௧ ൌ 𝑑ሺ𝑒ି௥௧𝑋௧ሻ ൌ െ𝑟𝑒ି௥௧𝑋௧𝑑𝑡 ൅ 𝑒ି௥௧𝑑𝑋௧ ൌ െ𝑟𝑋෨௧𝑑𝑡 ൅
𝑒ି௥௧ൣ𝑟𝑋௧𝑑𝑡 ൅ 𝜎𝑋௧

ఈ𝑑𝑊෩௧൧ ൌ െ𝑟𝑋෨௧𝑑𝑡 ൅ 𝑟𝑒ି௥௧𝑋௧𝑑𝑡 ൅ 𝜎𝑋௧
ఈ𝑒ି௥௧𝑑𝑊෩௧ ൌ

െ𝑟𝑋෨௧𝑑𝑡 ൅ 𝑟𝑋෨௧𝑑𝑡ᇣᇧᇧᇧᇧᇤᇧᇧᇧᇧᇥ
ୀ଴

൅ 𝜎𝑋෨௧
ఈ𝑒ି௥௧𝑑𝑊෩௧  

 
𝑑𝑋෨௧ ൌ 𝜎𝑋෨௧

ఈ𝑑𝑊෩௧ 
 

or in explicit form, let 
 

ln ቀ
௑෨೟

௑෨బ
ቁ 𝜎𝑋෨௧

ఈ𝑑𝑊෩௧  

 
Next, we now seek the solution of the above by applying 

the Ito’s formula. Setting, 
 

𝑌ሺ𝑡ሻ ൌ ln 𝑋෨௧
ఈ ,   𝑓௧ ൌ

డሺ୪୬ ௑෨೟
ഀሻ

డ௧
ൌ 0 , 𝑓௫ ൌ

డሺ୪୬ ௑෨೟
ഀሻ

డ௑෨೟
ഀ ൌ

ଵ

௑෨೟
ഀ , 𝑓௫௫ ൌ െ

ଵ

௑෨೟
మഀ  

 

Noting that, 𝑢ሺ𝑡ሻ ൌ 𝜇𝑋௧,   𝑣ሺ𝑡ሻ ൌ 𝜎𝑋෨௧ and so we have 
 

𝑑൫ln 𝑋෨௧
ఈ൯ ൌ ቂ0 ൅ 0 ൈ

ଵ

௑෨೟
ഀ ൅

ଵ

ଶ
ሺ𝜎𝑋෨௧

ఈሻଶ ቀെ
ଵ

௑෨೟
మഀቁቃ 𝑑𝑡 ൅

ଵ

௑෨೟
ഀ 𝜎𝑋෨௧

ఈ𝑑𝑊෩௧ ⇒

  𝑑൫ln 𝑋෨௧
ఈ൯ ൌ

ଵ

ଶ
ቀ

ିఙమ௑෨೟
మഀ

௑෨೟
మഀ ቁ 𝑑𝑡 ൅

ఙ௑෨೟
ഀௗௐ෩೟

௑෨೟
ഀ   

 

𝑑൫ln 𝑋෨௧
ఈ൯ ൌ െ ଵ

ଶ
𝜎ଶ𝑑𝑡 ൅ 𝜎𝑑𝑊෩௧.  
 

Integrating both side of the above equation, we have 
 

ln 𝑋෨௧
ఈ െ ln 𝑋෨଴

ఈ ൌ ׬ െ ଵ

ଶ
𝜎ଶ𝑑𝑡

௧
଴ ൅ ׬ 𝜎𝑑𝑊෩௧

௧
଴   

ln 𝑋෨௧
ఈ ൌ ln 𝑋෨଴

ఈ െ ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊෩௧  

 
since 𝑊଴ ൌ 0. Taking exponential of both sides, we have 

 

𝑒୪୬ ௑෨೟
ഀ

ൌ 𝑒
൤୪୬ ௑෨బ

ഀି
഑మ

೟
௧ାఙௐ෩೟൨

  
 

𝑋෨௧
ఈ ൌ 𝑒୪୬ ௑෨బ

ഀ
. 𝑒

൤ି
഑మ

೟
௧ାఙௐ෩೟൨
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∴   𝑋෨௧
ఈ ൌ 𝑋෨଴

ఈ𝑒𝑥𝑝 ቂ𝜎𝑊෩௧ െ
ఙమ

ଶ
𝑡ቃ                 (12) 

 
We now go ahead to show that the above solution in ሺ12ሻ is 

a Martingale under 𝔹. We want to find a measure 𝔹 such that 
under 𝔹, the discounted stock price that uses 𝐵௧ as the 
numeraire is a martingale. 

We write 
 

𝑑𝑋௧ ൌ 𝑟௧𝑋௧𝑑𝑡 ൅ 𝜎𝑋௧
ఈ𝑑𝑊௧

𝔹 
 

where,𝑊௧
𝔹 ൌ 𝑊௧ ൅ ఓି௥೟

ఙ
𝑡 ሺapplying Girsanov Theoremሻ 

Using 𝐵௧ as the numeraire, the discounted stock price 

𝑋෨௧ ൌ
௑೟

஻೟
 and 𝑋෨௧ will be a martingale. Applying Ito’s Lemma to 

𝑋෨௧ which follows the SDE, we have  
 

             𝑑𝑋෨௧ ൌ
డ௑෨

డ஻
𝑑𝐵௧ ൅

డ௑෨

డ௑
𝑑𝑋௧                      (13) 

 
All terms involving the second order derivatives are zero. 
Expanding (13), we have 
 

𝑑𝑋෨௧ ൌ െ ௑೟

஻೟
మ 𝑑𝐵௧ ൅ ଵ

஻೟
𝑑𝑋௧ ൌ െ ௑೟

஻೟
మ ሺ𝑟௧𝐵௧𝑑𝑡ሻ ൅ ଵ

஻೟
ሺ𝑟௧𝑋௧𝑑𝑡 ൅

𝜎𝑋௧
ఈ𝑑𝑊௧

𝔹ሻ ൌ െ ௑೟௥೟ௗ௧

஻೟
൅ ଵ

஻೟
𝑟௧𝑋௧𝑑𝑡ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ

ୀ଴

൅ ఙ௑೟
ഀௗௐ೟

𝔹

஻೟
⇒   𝑑𝑋෨௧ ൌ 𝜎𝑋෨௧

ఈ𝑑𝑊௧
𝔹  

 
The solution to the SDE is, 
  

𝑋෨௧
ఈ ൌ 𝑋෨଴

ఈ𝑒𝑥𝑝 ቂെ ఙమ

ଶ
𝑡 ൅ 𝜎𝑊௧

𝔹ቃ.  
 

To show that 𝑋෨௧
ఈ is a martingale under 𝔹, we consider the 

expectation under 𝔹 for 𝑠 ൏ 𝑡, hence we have, 
 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨଴

ఈ exp ቀെ
ଵ

ଶ
𝜎ଶ𝑡ቁ . 𝐸𝔹ൣexp ሺ𝜎𝑊௧

𝔹ሻ|ℱ௦൧ ൌ

𝑋෨଴
ఈ exp ቀെ ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊௦

𝔹ቁ . 𝐸𝔹ൣexp ሺ𝜎൫𝑊௧
𝔹 െ 𝑊௦

𝔹൯ሻ|ℱ௦൧  
 

at time 𝑠 we have that 𝑊௧
𝔹 െ 𝑊௦

𝔹 is distributed as 𝑁ሺ0, 𝑡ሻ 
which is identical in distribution to 𝑊௧ି௦

𝔹  at time zero. Hence, 
we can write 
 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨଴

ఈ exp ቀെ
ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊௦

𝔹ቁ . 𝐸𝔹ൣexp ሺ𝜎൫𝑊௧ି௦
𝔹 ൯|ℱ଴൧  

 
Now, the moment generating function (mgf) of a random 

variable 𝑋 with normal distribution 𝑁ሺ𝜇, 𝜎ଶሻ is given as 
 

𝐸ൣ𝑒థ௫൧ ൌ exp ቀ𝜇𝜙 ൅ ଵ

ଶ
𝜙ଶ𝜎ଶቁ  

 

Under 𝔹, we have that 𝑊௧ି௦
𝔹  is 𝔹- Brownian motion and 

distributed as 𝑁ሺ0, 𝑡 െ 𝑠ሻ. Therefore, the mgf of 𝑊௧ି௦
𝔹  is 

 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨଴

ఈ exp ቀെ ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊௦

𝔹ቁ . exp ൬ଵ

ଶ
𝜎ଶሺ𝑡 െ 𝑠ሻ൰  

 
where 𝜎 ൌ 𝜙 and we can then write 
 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨଴

ఈ exp ቀെ
ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊௦

𝔹ቁ 𝑒𝑥𝑝 ൬
ଵ

ଶ
𝜎ଶሺ𝑡 െ 𝑠ሻ൰  

 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨଴

ఈ exp ቀെ
ଵ

ଶ
𝜎ଶ𝑡 ൅ 𝜎𝑊௦

𝔹ቁ  
 

∴  𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨௦

ఈ 
 

We thus have that  
 

𝐸𝔹ሾ𝑋෨௧
ఈ|ℱ௦ሿ ൌ 𝑋෨௦

ఈ 
 

which shows that 𝑋෨௧
ఈ is a 𝔹 martingale. Hence, we have that 

 

𝑉෨௧ሺ𝜙ሻ ൌ 𝑉෨଴ሺ𝜙ሻ ൅ ׬ 𝜉௦𝑑𝑋෨௦
௧

଴ ൌ 𝑉෨଴ሺ0ሻ ൅ ׬ 𝜉௦
௧

଴ 𝜎𝑋෨௧
ఈ𝑑𝑊෩௧  

 

and 𝑉෨௧ሺ𝜙ሻ is a stochastic integral with respect to a Brownian 
motion under 𝔹. Hence, under the integrability condition as 
stated in Theorem 2, we have 
 

𝐸𝔹 ቂ׬ ቚ𝜉௧𝜎𝑋෨௧
ఈห

ଶ்
଴ 𝑑𝑡ቃ ൏ ∞  

 

Hence, we have shown that 𝑉෨௧ሺ𝜙ሻ is a martingale under 𝔹. 
Now since,  

 

𝑉෨௧ሺ𝜙ሻ ൌ 𝑉෨଴ሺ𝜙ሻ ൅ ׬ 𝜉௦𝑑𝑋෨௦
௧

଴    𝑡 𝜖 ℝା  
 

is a martingale under 𝔹, it follows from the martingale 
properties of 𝑉෨௧ሺ𝜙ሻ under 𝔹 that, 
 

𝑉෨௧ሺ𝜙ሻ ൌ 𝐸𝔹ሾ𝑉෨்|ℱ௧ሿ ൌ 𝑒ି௥்𝐸𝔹ሾ𝑉 |ℱ௧ሿ  ൌ 𝑒ି௥்𝐸𝔹ሾ𝐶|ℱ௧ሿ  (14) 
 
where 𝐶 is a contingent claim, 𝑢ሺ𝑇, 𝑋்ሻ. Note that 𝜙 ൌ
ሺ𝜂௧, 𝜉௧ሻ௧ ఢሾ଴,்ሿ hedges the claim 𝐶, i.e. we have 𝑉 ൌ 𝐶 ⟹  𝑉 ൌ
𝑢ሺ𝑇, 𝑋்ሻ. Hence ሺ14ሻ becomes 
 

                    𝑉௧ ൌ 𝑒ି௥௧𝑉෨௧     ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾ𝑢ሺ𝑇, 𝑋்ሻ|ℱ௧ሿ          
 

Since the process ሺ𝑋௧ሻ௧ ఢ ℝశ
 has the Markov property, the 

value 
 

    𝑉௧ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾ𝜙ሺ𝑋்ሻ|ℱ௧ሿ ൌ 𝑢ሺ𝑡, 𝑋௧ሻ     (15) 
 
here 𝜙ሺ𝑋்ሻ ൌ 𝑢ሺ𝑇, 𝑋்ሻ of the portfolio at 𝑡 𝜖 ሾ0, 𝑇ሿ can be 
written from (15) as a function 𝑢ሺ𝑡, 𝑋௧ሻ of 𝑡 and 𝑋௧. Given the 
payoff function, 
 

𝑢ሺ𝑇, 𝑋்ሻ ൌ ሺ𝐾 െ 𝑋்ሻା 
 
Hence, ሺ15ሻ becomes 
 

𝑢ሺ𝑡, 𝑋௧ሻ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ𝐾 െ 𝑋்ሻା|ℱ௧ሿ 
 

         𝑢ሺ𝑡, 𝑋௧ሻ ൌ 𝐸𝔹ൣ𝑒ି௥ሺ்ି௧ሻሺ𝐾 െ 𝑋்ሻା൧.        (16) 

2. Black-Karasinski Term Structure Model 

Let us consider another example which is the pricing of a 
zero coupon bond in the term structure model of [7]. They 
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describe the short rate 𝑟 by the SDE 
 
𝑑ሺ𝑙𝑜𝑔𝑟௨ሻ ൌ 𝜑ሺ𝑢ሻሺ𝑙𝑜𝑔𝜇ሺ𝑢ሻ െ 𝑙𝑜𝑔𝑟௨ሻ𝑑𝑢 ൅ 𝜎ሺ𝑢ሻ𝑑𝑊௨, 𝑟଴ ൐ 0   (17) 

 
with deterministic functions 𝜑, 𝜇, 𝜎. The price at time t of a 
zero coupon bond with maturity 𝑇 is then 
 

𝐸 ቂ𝑒𝑥𝑝 ቀെ ׬ 𝑟௦
்

௧ 𝑑𝑠ቁ |ℱ௧ቃ ൌ 𝑢ሺ𝑡, 𝑟௧ሻ  
 

by the Markov property of 𝑟 and we want to obtain a 
Martingale and PDE option price valuation formula for the 
function u. 

To derive the Martingale option price valuation formula for 
the above SDE, we let 𝜙 ൌ ሺ𝜂௧, 𝜉௧ሻ௧ ఢሾ଴,்ሿ be portfolio strategy 
with price  

 
𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝐵௧ ൅ 𝜉௧𝑋௧ 

 

and that it satisfies the self-financing condition 
 

𝑑𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝑑𝐵௧ ൅ 𝜉௧𝑑𝑋௧ ൌ 𝑟𝑒௥௧𝜂௧𝑑𝑡 ൅ 𝜉௧𝑑𝑋௧   
 
or equivalently  
 

𝑉௧ሺ𝜙ሻ ൌ 𝑉଴ሺ𝜙ሻ ൅ ׬ 𝜂௧𝑑𝐵௦
௧

଴ ൅ ׬ 𝜉௧𝑑𝑋௦
௧

଴   
 

Now we are given that, 
 

𝑑ሺ𝑙𝑜𝑔𝑟௨ሻ ൌ 𝜑ሺ𝑢ሻሺ𝑙𝑜𝑔𝜇ሺ𝑢ሻ െ 𝑙𝑜𝑔𝑟௨ሻ𝑑𝑢 ൅ 𝜎ሺ𝑢ሻ𝑑𝑊௨ 
 

Let 𝑙𝑜𝑔𝑟௨ ൌ 𝑋௧ and 𝑙𝑜𝑔𝜇ሺ𝑢ሻ െ 𝑙𝑜𝑔𝑟௨ ൌ 𝑀௧ we have 
 

𝑑𝑋௧ ൌ 𝜑ሺ𝑡ሻ𝑀௧𝑑𝑡 ൅ 𝜎ሺ𝑡ሻ𝑑𝑊෩௧ 
 

If we now compute 𝑑𝑋෨௧, we get 
 
𝑑𝑋෨௧ ൌ 𝑑ሺ𝑒ି௥௧𝑋௧ሻ ൌ െ𝑟𝑒ି௥௧𝑋௧𝑑𝑡 ൅ 𝑒ି௥௧𝑑𝑋௧ ൌ െ𝑟𝑒ି௥௧𝑋௧𝑑𝑡 ൅

𝑒ି௥௧ൣ𝜑ሺ𝑡ሻ𝑀௧𝑑𝑡 ൅ 𝜎ሺ𝑡ሻ𝑑𝑊෩௧൧ ൌ െ𝑟𝑋෨௧𝑑𝑡 ൅ 𝑒ି௥௧𝜑ሺ𝑡ሻ𝑀௧𝑑𝑡 ൅
𝑒ି௥௧𝜎ሺ𝑡ሻ𝑑𝑊෩௧ ൌ െ𝑟𝑋෨௧𝑑𝑡 ൅ 𝜑ሺ𝑡ሻ𝑀෩௧𝑑𝑡 ൅ 𝜎෤ሺ𝑡ሻ𝑑𝑊෩௧  

 
𝑑𝑋෨௧ ൌ ൣ𝜑ሺ𝑡ሻሺ𝑀෩௧ െ 𝑟𝑋෨௧ሻ൧𝑑𝑡 ൅ 𝜎෤ሺ𝑡ሻ𝑑𝑊෩௧ 

let 𝜑ሺ𝑡ሻሺ𝑀෩௧ െ 𝑟𝑋෨௧ሻ ൌ 𝑍෨௧ 
 

Hence, we have 
 

𝑑𝑋෨௧ ൌ 𝑍෨௧𝑑𝑡 ൅ 𝜎෤ሺ𝑡ሻ𝑑𝑊෩௧  (18) 
 

or in explicit form, let  
 

ln ቀ௑෨೟

௑෨బ
ቁ 𝑑𝑡 ൅ 𝜎෤𝑑𝑊෩௧  

 
Next, we now seek the solution by applying the Ito’s 

formula. Setting 
 

𝑌ሺ𝑡ሻ ൌ ln𝑋෨௧, 𝑓௧ ൌ
డሺ୪୬௑෨೟ሻ

డ௧
ൌ 0, 𝑓௫ ൌ

డሺ୪୬௑෨೟ሻ

డ௑෨೟
ൌ

ଵ

௑෨೟
,  𝑓௫௫ ൌ െ

ଵ

௑෨೟
మ  

 

Noting that 𝑢ሺ𝑡ሻ ൌ 𝜇𝑋௧ ൌ 𝑍෨௧𝑋෨௧ and 𝑣ሺ𝑡ሻ ൌ 𝜎෤𝑋෨௧. So by the 

Ito’s formula, we have 
 

𝑑ሺln𝑋 ̃_𝑡 ሻ ൌ ቂ0 ൅
௓෨೟௑෨೟

௑෨೟
൅

ଵ

ଶ
𝜎෤ଶ𝑋෨௧

ଶ ቀെ
ଵ

௑෨೟
మቁ 𝑑𝑡ቃ ൅ 𝜎෤𝑑𝑊෩௧ ൌ ቂ𝑍෨௧𝑋෨௧. 𝑋෨௧

ିଵ ൅
ଵ

ଶ
𝜎෤ଶ𝑋෨௧

ଶ. ൫െ𝑋෨௧
ିଶ൯ቃ 𝑑𝑡 ൅ 𝜎෤𝑑𝑊෩௧  

 

𝑑൫ln𝑋෨௧൯ ൌ ቀ𝑍෨௧ െ ఙ෥మ

ଶ
ቁ 𝑑𝑡 ൅ 𝜎෤𝑑𝑊෩௧  

 
integrating both sides from 𝑡𝜀ሾ0, 𝑡ሿ we have 

 

ln𝑋෨௧ െ 𝑙𝑛𝑋෨଴ ൌ ׬ ቀ𝑍෨௧ െ
ఙ෥మ

ଶ
ቁ

௧
଴ 𝑑𝑡 ൅ ׬ 𝜎෤𝑑𝑊෩௧

௧
଴   

 

ln𝑋෨௧ ൌ ln𝑋෨଴ ൅ ቀ𝑍෨௧ െ
ఙ෥మ

ଶ
ቁ 𝑡 ൅ 𝜎෤𝑊෩௧  

 

Since 𝑊଴ ൌ 0, taking exponential of both sides, we have 
that 

 

𝑒୪୬௑෨೟ ൌ 𝑒
൤୪୬௑෨బା൬௓෨೟ି

഑෥మ

మ
൰௧ାఙ෥ௐ෩೟൨

  
 

𝑋෨௧ ൌ 𝑒୪୬௑෨బ. 𝑒
൤൬௓෨೟ି

഑෥మ

మ
൰௧ାఙ෥ௐ෩೟൨

  
 

             ∴ 𝑋෨௧ ൌ 𝑋෨଴𝑒𝑥𝑝 ቀ𝑍෨௧𝑡 ൅ 𝜎෤𝑊෩௧ െ
ఙ෥మ

ଶ
𝑡ቁ  (19) 

 
The next step is to check if the above solution in (19) is a 

martingale. We want to find a measure 𝔹 such that under 𝔹, 
the discounted stock price that uses 𝐵௧ as a numeraire is a 
martingale. We write  

 

𝑑𝑋௧ ൌ 𝜑𝑀௧𝑑𝑡 ൅ 𝜎𝑑𝑊௧
𝔹 

 

where, 𝑊௧
𝔹 ൌ 𝑊௧ ൅

ఓି௥೟

ఙ
𝑡 ሺapplying Girsanov Theoremሻ using 𝐵௧ 

as the numeraire, the discounted stock price 𝑋෨௧ ൌ ௑೟

஻೟
 and 𝑋෨௧ 

will be a martingale. Applying Ito’s Lemma to 𝑋෨௧ which 
follows the SDE, we have  
 

             𝑑𝑋෨௧ ൌ డ௑෨

డ஻
𝑑𝐵௧ ൅ డ௑෨

డ௑
𝑑𝑋௧    (20) 

 
all terms involving the second order derivatives are zero. 
Expanding (20) we have 
 

𝑑𝑋෨௧ ൌ െ
௑೟

஻೟
మ 𝑑𝐵௧ ൅

ଵ

஻೟
𝑑𝑋௧  ൌ െ

௑೟

஻೟
మ ሺ𝑟௧𝐵௧𝑑𝑡ሻ ൅

ଵ

஻೟
ሺ𝜑𝑀௧𝑑𝑡 ൅ 𝜎𝑑𝑊௧

𝔹ሻ ൌ

െ
௑೟௥೟ௗ௧

஻೟
൅

ଵ

஻೟
𝜑𝑀௧𝑑𝑡 ൅

ఙௗௐ೟
𝔹

஻೟
  

 

         𝑑𝑋෨௧ ൌ െ𝑋෨௧𝑟௧𝑑𝑡 ൅ 𝜑𝑀෩௧𝑑𝑡 ൅ 𝜎෤𝑑𝑊௧
𝔹  (21) 

 

𝑑𝑋෨௧ ൌ 𝑍෨௧𝑑𝑡 ൅ 𝜎෤𝑑𝑊௧
𝔹 

 

where 𝑍෨௧ ൌ 𝜑𝑀෩௧ െ 𝑋෨௧𝑟௧. 
The solution to the SDE in (21) is given as 
 

𝑋෨௧ ൌ 𝑋෨଴𝑒𝑥𝑝 ቀ𝑍෨௧𝑡 െ
ఙ෥మ

ଶ
𝑡 ൅ 𝜎෤𝑊෩௧ቁ.  
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To show that 𝑋෨௧ is a martingale under 𝔹, we consider the 
expectation under 𝔹 for 𝑠 ൏ 𝑡, hence we have, 

 

𝐸𝔹ሾ𝑋෨௧|ℱ௦ሿ ൌ 𝑋෨଴ exp ቀ𝑍෨௧𝑡 െ
ఙ෥మ

ଶ
𝑡ቁ . 𝐸𝔹ൣexp ሺ𝜎෤𝑊௧

𝔹ሻ|ℱ௦൧ ൌ

𝑋෨଴ exp ቀ𝑍෨௧𝑡 െ
ఙ෥మ

ଶ
𝑡 ൅ 𝜎෤𝑊௦

𝔹ቁ . 𝐸𝔹ൣexp ሺ𝜎෤൫𝑊௧
𝔹 െ 𝑊௦

𝔹൯ሻ|ℱ௦൧  
 
at time 𝑠 we have that 𝑊௧

𝔹 െ 𝑊௦
𝔹 is distributed as 𝑁ሺ0, 𝑡ሻ 

which is identical in distribution to 𝑊௧ି௦
𝔹  at time zero. Hence, 

we can write 
 

𝐸𝔹ሾ𝑋෨௧|ℱ௦ሿ ൌ 𝑋෨଴ exp ቀ𝑍෨௧𝑡 െ ఙ෥మ

ଶ
𝑡 ൅ 𝜎෤𝑊௦

𝔹ቁ . 𝐸𝔹ൣexp ሺ𝜎෤൫𝑊௧ି௦
𝔹 ൯|ℱ଴൧  

 
Now, the moment generating function (mgf) of a random 

variable 𝑋 with normal distribution 𝑁ሺ𝜇, 𝜎ଶሻ is given as 
 

𝐸ൣ𝑒థ௫൧ ൌ exp ቀ𝜇𝜙 ൅ ଵ

ଶ
𝜙ଶ𝜎ଶቁ.  

 

Under 𝔹, we have that 𝑊௧ି௦
𝔹  is 𝔹- Brownian motion and 

distributed as 𝑁ሺ0, 𝑡 െ 𝑠ሻ. Therefore, the mgf of 𝑊௧ି௦
𝔹  is 

 

𝐸𝔹ሾexp ሺ𝜎෤𝑊௧ି௦
𝔹 ሻሿ ൌ exp ቀଵ

ଶ
𝜎෤ଶሺ𝑡 െ 𝑠ሻቁ  

 
where 𝜎෤ ൌ 𝜙 and we can then write 
 

𝐸𝔹ሾ𝑋෨௧|ℱ௦ሿ ൌ 𝑋෨଴ exp ቀ𝑍෨௧𝑡 െ
ఙ෥మ

ଶ
𝑡 ൅ 𝜎෤𝑊௦

𝔹ቁ . exp ൬
ଵ

ଶ
𝜎෤ଶሺ𝑡 െ 𝑠ሻ൰  

𝐸𝔹ሾ𝑋෨௧|ℱ௦ሿ ൌ 𝑋෨଴ exp ቀ𝑍෨௧𝑡 െ ఙ෥మ

ଶ
𝑡 ൅ 𝜎෤𝑊௦

𝔹ቁ ൌ 𝑋෨௦.  
 

We thus have that  
 

𝐸𝔹ሾ𝑋෨௧|ℱ௦ሿ ൌ 𝑋෨௦ 
 

which shows that 𝑋෨௧ is a 𝔹 martingale. Hence, we have that 
 

𝑉෨௧ሺ𝜙ሻ ൌ 𝑉෨଴ሺ𝜙ሻ ൅ ׬ 𝑍෨௦
௧

଴ 𝑑𝑠 ൅ ׬ 𝜎෤ሺ𝑠ሻ
௧

଴ 𝑑𝑊෩௧  
 

and 𝑉෨௧ሺ𝜙ሻ is a stochastic integral with respect to a Brownian 
motion under 𝔹. Hence, under the integrability condition as 
stated in Theorem 2, we have 
 

𝐸𝔹 ቂ׬ ห𝑍෨௧ ൅ 𝜎෤ሺ𝑡ሻห
ଶ

𝑑𝑡
்

଴ ቃ ൏ ∞  

 

Hence, we have shown that 𝑉෨௧ሺ𝜙ሻ is a Martingale under 𝔹. 
Now since, 

 

𝑉෨௧ሺ𝜙ሻ ൌ 𝑉෨଴ሺ𝜙ሻ ൅ ׬ 𝑍෨௦
௧

଴ 𝑑𝑠 ൅ ׬ 𝜎෤ሺ𝑠ሻ
௧

଴ 𝑑𝑊෩௧,       𝑡𝜀ℝ  
 
is a Martingale under 𝔹 it follows from the Martingale 
properties of 𝑉෨௧ሺ𝜙ሻ under 𝔹 that, 
 

𝑉෨௧ሺ𝜙ሻ ൌ 𝐸𝔹ൣ𝑉෨்หℱ௧൧ ൌ 𝑒ି௥்𝐸𝔹ሾ𝑉 |ℱ௧ሿ  ൌ 𝑒ି௥்𝐸𝔹ሾ𝐶|ℱ௧ሿ(22) 
 

where 𝐶 is a contingent claim, 𝑢ሺ𝑇, 𝑋்ሻ.  
Note that ሺ𝜙ሻ ൌ ሺ𝜂௧, 𝜉௧ሻ௧ఌሾ଴,గሿ hedges the claim 𝐶, i.e. we 

have 
 

𝑉 ൌ 𝐶 ⇒ 𝑉 ൌ 𝑢ሺ𝑇, 𝑋்ሻ 
 
Hence, we have  (22) that  

 
𝑉௧ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾ𝑢ሺ𝑇, 𝑋்ሻ|ℱ௧ሿ 

 
Since the process ሺ𝑋௧ሻ௧ఌℝశ has Markov property, the value 
 

 𝑉௧ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾ𝜙ሺ𝑋்ሻ|ℱ௧ሿ ൌ 𝑢ሺ𝑡, 𝑋௧ሻ   (23) 
 
of the portfolio at 𝑡𝜀ሾ0, 𝑇ሿ can be written from ሺ8ሻ as a 
function 𝑢ሺ𝑡, 𝑋௧ሻ of 𝑡 and 𝑋௧. Given the payoff function 
𝑢ሺ𝑇, 𝑋்ሻ ൌ ሺ𝐾 െ 𝑋்ሻ ൌ 1, for zero coupon bonds. Hence 
(23) becomes 

 
𝑢ሺ𝑡, 𝑋௧ሻ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ𝐾 െ 𝑋்ሻ|ℱ௧ሿ ⇒ 𝑢ሺ𝑡, 𝑋௧ሻ

ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ1ሻ|ℱ௧ሿ 
 

𝑢ሺ𝑡, 𝑋௧ሻ ൌ 𝐸 ቂ𝑒ି ׬ ௑ೞௗ௦
೅

೟ ቃ 
 
But 𝑋௦ ൌ 𝑙𝑜𝑔𝑟௦, hence, 

 

𝑢ሺ𝑡, 𝑋௧ሻ ൌ 𝐸 ቂ𝑒ି ׬ ௥ೞௗ௦
೅

೟ ቚ ℱ௧ቃ.   

3. Heston Stochastic Volatility Model 

We consider the Heston stochastic volatility model with two 
assets 𝐵 and 𝑆. The bank account 𝐵 is given by 𝐵௧ ൌ 𝑒௥௧ where 
r is the instantaneous riskless interest rate. The stock 𝑆 
satisfies the SDE 

 

𝑑𝑆௧ ൌ 𝜇𝑆௧𝑑𝑡 ൅ ඥ𝑣௧𝑆௧𝑑𝑊௧
ሺଵሻ,     𝑆଴ ൐ 0 

     
where the volatility 𝑣 is itself stochastic and given as in [8] by 
 

    𝑑𝑣௧ ൌ 𝜅ሺ𝜃 െ 𝑣௧ሻ𝑑𝑡 ൅ 𝜎ඥ𝑣௧𝑑𝑊௧
ሺଶሻ,       𝑣଴ ൐ 0        

 
for non-negative constants 𝜅, 𝜃, 𝜎. The process 𝑆 and 𝑣 are 
defined on a filtered probability space ሺΩ, ℱ, ሺℱ௧ሻ, 𝔹ሻ and 

𝑊௧
ሺଵሻ 𝑎𝑛𝑑 𝑊௧

ሺଶሻ are 𝐵 െBrownian motions with instantaneous 

correlation 𝑑𝑊௧
ሺଵሻ𝑑𝑊௧

ሺଶሻ ൌ 𝜌𝑑𝑡.  
We want to obtain the Martingale and PDE option price 

valuation formula for the function u. 
To derive the Martingale options price valuation formula 

for the above SDE, we let 𝜙 ൌ ሺ𝜂௧, 𝜉௧ሻ௧ ఢሾ଴,்ሿ be portfolio 
strategy with price  

 
𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝐵௧ ൅ 𝜉௧𝑋௧ 

 
and that it satisfies the self-financing condition 
 

𝑑𝑉௧ሺ𝜙ሻ ൌ 𝜂௧𝑑𝐵௧ ൅ 𝜉௧𝑑𝑋௧ ൌ 𝑟𝑒௥௧𝜂௧𝑑𝑡 ൅ 𝜉௧𝑑𝑋௧  
 
or equivalently, 
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𝑉௧ሺ𝜙ሻ ൌ 𝑉଴ሺ𝜙ሻ ൅ ׬ 𝜂௧𝑑𝐵௦
௧

଴ ൅ ׬ 𝜉௧𝑑𝑋௦
௧

଴   
 

We are also given that the riskless investment (bank 
account) is given by  

 
𝐵௧ ൌ 𝑒௥௧ 

 
Now under the Black-Scholes model, the Martingale 

options price of a financial derivative is given by 
 

𝑉௧ ൌ 𝑁௧𝐸ℕ ቂ௏೅

ே೅
ቚ ℱ௧ቃ                                 (24) 

 
With numeraire 𝑁௧ as the bond with constant interest rates,  
 

𝐵௧ ൌ 𝑒௥௧ 
 

Hence, the above becomes with 𝑁௧ ൌ 𝐵௧ and  
 

 𝑉௧ ൌ 𝑢௧ ൌ 𝑢ሺ𝑆௧, 𝑡ሻ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ൣ𝑢ሺ𝑆்,𝑇ሻหℱ௧൧ (25) 
 

where 𝔹 is the measure under which the discounted stock 
price  
 

ௌ೟

஻೟
ൌ 𝑒ି௥௧𝑆௧ is a Martingale.  

 
But, we know that the value of the option is the expected value 
of the payoff at expiry, discounted by the numeraire. The 
European Put option has payoff, 

 
𝑢் ൌ 𝑢ሺ𝑇, 𝑆்ሻ ൌ ሺ𝐾 െ 𝑆்ሻା, 

 

So, in accordance with (25), the time – 𝑡 price of the Put 
option for the Heston’s model is given as 

 

𝑢௧ ൌ 𝑢ሺ𝑡, 𝑆௧, 𝑣௧ሻ ൌ 𝐵௧𝐸𝔹 ቂሺ௄ିௌ೅ሻశ

஻೅
ቚ ℱ௧ቃ  

 

𝑢௧ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ𝐾 െ 𝑆்ሻା|ℱ௧ሿ  
 
Since the process ሺ𝑋௧ሻ௧ఌℝశ has Markov property, the value 

of the Martingale option price valuation formula is given by 
 

 𝑢௧ ൌ 𝑢ሺ𝑡, 𝑆௧, 𝑣௧ሻ ൌ 𝑒ି௥ሺ்ି௧ሻ𝐸𝔹ሾሺ𝐾 െ 𝑆்ሻା|ℱ௧ሿ (26) 

IV. NUMERICAL SOLUTIONS 

A. Derivation of Monte Carlo Scheme for Martingales 
Option Price Valuation Formulas  

Let us consider the SDE given by the CEV model, 
 

 𝑑𝑋௧ ൌ 𝑟𝑋௧𝑑𝑡 ൅ 𝜎𝑋௧
ఈ𝑑𝑊௧, 𝑥 ൐ 0       (27) 

 
where r is the interest rate which is assumed to be constant, 𝜎 
is the volatility rate, 𝛼 is the elasticity, and 𝑊௧ is the standard 
Brownian motion process. The value parameter of European 
Put option at 𝑡𝜖 ሾ0, 𝑇ሿ is then given by 
 

𝑢௧ ൌ max  𝐸ൣ𝑒ି௥ሺ்ି௧ሻሺ𝐾 െ 𝑋்ሻା൧  (28) 
 

The payoff function of the above equation is given as  
 

𝑃ሺ𝑋், 𝑡ሻ ൌ ሺ𝐾 െ 𝑋்ሻା 
 

We denote 𝑋௜ ൌ 𝑋ሺ𝑡 ൌ 𝑡௜ሻ; 𝑖𝜖ሺ0,1,2, … , 𝑀ሻ as the state of 
asset price process at the 𝑖𝑡ℎ exercise opportunity. The Euler-
Maruyama scheme discussed by Wu, in [8] can be used to 
approximate the asset price process in (27) over the time 
interval ሾ0, 𝑇ሿ given by  

 

   𝑋௡ାଵ
ሺ௞ሻ ൌ 𝑋௡

ሺ௞ሻ ൅ 𝑟𝑋௡
ሺ௞ሻ∆𝑡 ൅ 𝜎𝑋௡

ఈሺ௞ሻ∆𝑊௧  (29) 
 

𝑋଴
ሺ௞ሻ ൌ 𝑥,    𝑛 ൌ 0,1,2, … , 𝑁 െ 1               

 

where ∆𝑡 ൌ ்

ே
 and ∆𝑊௧ ൌ 𝑊௧ െ 𝑊௧ିଵ is the independent 

Brownian increment which follows a normal distribution 
𝑁൫0, √∆𝑡൯. The discretized process 𝑋௡ given in this way is 
essentially a Markov chain. 

We know that for a European Put option, the payoff 
function is given as 

 
            𝑌 ൌ 𝑃ሺ𝑋ሻ ൌ maxሾሺ𝐾 െ 𝑋ሻ, 0ሿ  (30) 

 
where 𝑋 ൌ 𝑋ሺ𝑇ሻ is the price of the underlying stock at the 
time 𝑇 when the option expires and (30) produces one possible 
option value at expiration of the option. The overall aim is to 
determine the correct and fair price of the option at the time 
the holder and the writer enter into the contract [9]. 

To estimate price of the Put option of the CEV model in 
(27) using the Monte Carlo method, we consider a collection 
of 𝑀 stock prices at expiration generated by using (27). That is  

 

൛𝑋ே
ሺ௞ሻ ൌ 𝑋ሺ௞ሻሺ𝑇ሻ,     𝑘 ൌ 1, … , 𝑀ൟ 

 
Option pricing theory requires that the average value of the 

payoffs,   
 

ቄ𝑃 ቀ𝑋௡
ሺ௞ሻቁ , 𝑘 ൌ 1, … , 𝑀ቅ 

 
be equal to the compounded total return obtained by investing 
the option premium 𝑃෠ሺ𝑥ሻ, at rate 𝑟 over the life of the option. 
Hence we have, 
 

𝑃 ቀ𝑥௡
ሺ௞ሻቁ ൌ max ቀ𝐾 െ 𝑥௡

ሺ௞ሻ, 0ቁ , 𝑘 ൌ 1, … , 𝑀 ⇒  
ଵ

ெ
∑ 𝑃 ቀ𝑥௡

ሺ௞ሻቁெ
௞ୀଵ ൌ

ሺ1 ൅ 𝑟∆𝑡ሻே𝑃෠ሺ𝑥ሻ(31) 
 

Solving (31) for 𝑃෠ሺ𝑥ሻ yields the Monte Carlo estimate for 
the option price given as 

 

     ∴ 𝑃෠ሺ𝑥ሻ ൌ ሺ1 ൅ 𝑟∆𝑡ሻିே ቂ
ଵ

ெ
∑ 𝑃൫𝑥௡

ሺ௞ሻ൯ெ
௞ୀଵ ቃ  (32) 

 

So the Monte Carlo estimate 𝑃෠ሺ𝑥ሻ is the present value of 
the average of the payoffs computed using rules of compound 
interest. Equation (32) is the general Monte Carlo estimate 
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formula for computing the estimate 𝑃෠ሺ𝑥ሻ ሾ9ሿ. Similarly, for 
the Black- Karasinski model given below as 

 
 𝑑ሺ𝑙𝑜𝑔𝑟௨ሻ ൌ 𝜑ሺ𝑢ሻሺ𝑙𝑜𝑔𝜇ሺ𝑢ሻ െ 𝑙𝑜𝑔𝑟௨ሻ𝑑𝑢 ൅ 𝜎ሺ𝑢ሻ𝑑𝑊௨(33) 

 
𝑑ሺ𝑙𝑜𝑔𝑟௧ሻ ൌ 𝜑ሺ𝑡ሻ𝑙𝑜𝑔𝜇ሺ𝑡ሻ𝑑𝑡 െ 𝜑ሺ𝑡ሻ𝑙𝑜𝑔𝑟௨𝑑𝑡 ൅ 𝜎ሺ𝑢ሻ𝑑𝑊௧ 

 
Let 𝑙𝑜𝑔𝑟௧ ൌ 𝑋௧ and 𝜑ሺ𝑡ሻ𝑙𝑜𝑔𝜇ሺ𝑡ሻ ൌ 𝑀௧. Therefore, we have 

 
𝑋௧ ൌ 𝑀௧𝑑𝑡 െ 𝜑ሺ𝑡ሻ𝑋௧𝑑𝑡 ൅ 𝜎ሺ𝑡ሻ𝑑𝑊௧  (34) 

 
The discretized form of (34) using the Euler-Maruyama 

scheme over time interval ሾ0, 𝑇ሿis given by 
 

  𝑋௡ାଵ
ሺ௞ሻ ൌ 𝑋௡

ሺ௞ሻ ൅ 𝑀௡
ሺ௞ሻ∆𝑡 െ 𝜑𝑋௡

ሺ௞ሻ∆𝑡 ൅ 𝜎∆𝑊௧   (35) 
 

𝑋଴
ሺ௞ሻ ൌ 𝑥,      𝑛 ൌ 0,1,2, … , 𝑁 െ 1 

 

We can then repeat the steps for the computation of Monte 
Carlo estimator 𝑃෠ሺ𝑥ሻ as enumerated above for that of the CEV 
model. 

Finally, we consider the Heston’s model given as 
 

   𝑑𝑆௧ ൌ 𝑟𝑆௧𝑑𝑡 ൅ ඥ𝑣௧𝑆௧𝑑𝑊௧
௜    (36) 

 

    𝑑𝑣௧ ൌ ሺ𝜅ሺ𝜃 െ 𝑣௧ሻ െ 𝜆𝑣௧ሻ𝑑𝑡 ൅ 𝜎ඥ𝑣௧𝑑𝑊௧
ଶ     (37) 

 
𝑑𝑊௧

ଵ𝑑𝑊௧
ଶ ൌ 𝜌𝑑𝑡              

 
where 𝜃 the long-term running is mean of the variance 
process, 𝜅 is the speed of mean-reversion of the variance 
process and 𝜌 is the instantaneous correlation between the 
state process and the volatility process. 

To perform a standard Monte Carlo simulation in the above 
model, we will split the time to maturity 𝑇 into 𝑁 steps with 
step size 𝛿𝑡 (i.e. 𝑇 ൌ 𝑁𝛿𝑡ሻ. Then, we have a time-stepping 
scheme using the Euler-Maruyama time-stepping with the 
initial value 𝑆଴, 𝑣௢ of 

 

 𝑆௡ାଵ ൌ 𝑆௡ൣ1 ൅ 𝑟𝛿𝑡 ൅ ඥ𝑣௡൫𝜌𝑁଴,ଵ
ଵ ൅ ඥ1 െ 𝜌ଶ𝑁଴,ଵ

ଶ ൯√𝛿𝑡൧     (38) 
 

 𝑣௡ାଵ ൌ 𝑣௡ ൅ ሺ𝜅ሺ𝜃 െ 𝑣௡ሻ െ 𝜆𝑣௡ሻ𝛿𝑡 ൅ ඥ𝑣௡𝜎𝑁଴,ଵ
ଶ √𝛿𝑡    (39) 

 

where 𝑁଴,ଵ
௜ᇱ௦ are realization of two independent 𝑁ሺ0,1ሻ 

variables. Then 𝑀 realizations of the stock priceA paths 
ሼ𝑆௡

௠ሽ௡ୀ଴,௠ୀଵ
ே,ெ  and the variance paths ሼ𝑣௡

௠ሽ௡ୀ଴,௠ୀଵ
ே,ெ  are simulated 

following the necessary steps required for the computation of 
Monte Carlo estimator 𝑃෠ሺ𝑥ሻ as stipulated above. 

B. Numerical Examples 

Empirical data obtained from the NSE will be used to plot 
some graphs to investigate the effect of increase in the 
underlying asset (i.e. positive correlation) on the option value 
(price) for the three financial models examined in this paper. 
The parameter values are shown in Tables I-III Computer 
programs coded in MATLAB were used for solving the 

systems of the derived Monte Carlo scheme in (29), (35) and 
(38) … (39). The graphs for the various parameter values for 
the CEV model in Table I, the Black-Karasinski model in 
Table II, and the Heston model in Table IIII are presented in 
Figs. 1-6, respectively. 

 
TABLE I 

PARAMETER VALUES FOR THE CEV MODEL [10] 
Cases  

Parameters 1 2 3 

𝐾 200 200 200 

𝑑𝑋 1 1 1 

𝑋 20 40 60 

𝑇 1 1 1 

𝛼 0.2 0.2 0.2 

𝑑𝑇 0.1 0.1 0.1 

𝑟 0.1 0.1 0.1 

𝜎 0.5 0.5 0.5 

 
TABLE II 

PARAMETER VALUES FOR THE BLACK-KARASINSKI MODEL [10] 

Cases  
Parameters 1 2 3 

𝐾 200 200 200 

𝑑𝑋 1 1 1 

𝑋 20 40 60 

𝜑 0.2 0.2 0.2 

𝑇 1 1 1 

𝛼 0.2 0.2 0.2 

𝑑𝑇 0.1 0.1 0.1 

𝑟 0.1 0.1 0.1 

𝜎 0.5 0.5 0.5 

 
TABLE III 

PARAMETER VALUES FOR HESTON MODEL [10] 

Cases  
Parameters 1 2 3 

𝑲 200 200 200 

𝑺 20 40 60 

𝑽 1 1 1 

𝝀 1 1 1 

𝜿 2 2 2 

𝑻 1 1 1 

𝜽 0.2 0.2 0.2 

𝜼 0.2 0.2 0.2 

𝒓 0.1 0.1 0.1 

𝝈 0.5 0.5 0.5 

𝝆 0.8 0.8 0.8 

V. RESULTS AND DISCUSSION 

In this section, we will discuss the result of our numerical 
experiments carried out by increasing the value of the 
underlying assets for the CEV, Black-Karasinski, and Heston 
models respectively at various parametric values. The 
parameter values for the experiments are shown in Tables I-
III. The graphs, plotted using these values, are shown in Figs. 
1-6. In the curves, blue represents the value of the Option at 
expiry, green represents half a year before expiration, and red 
represents one year before expiration that is when the contract 
is signed. 
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Fig. 1 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑋 ൌ 20: 100;  𝐾 ൌ 200;  𝑇 ൌ 1;  𝜶 ൌ

0.2;  𝑡 ൌ 0;  𝑟 ൌ 0.1;  and 𝜎 ൌ 0.5 for CEV model 
 

 

Fig. 2 Put Option Price against the Stock Price ሺ𝑋ሻ at the following 
Parameter values ∶ 𝑋 ൌ 20: 100;  𝐾 ൌ 200;  𝑇 ൌ 1;  𝑡 ൌ 0; ; 𝑟 ൌ

0.1;  𝜎 ൌ 0.5 and 𝛼 ൌ 0.2 for the CEV model 
 

 

Fig. 3 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑋 ൌ 20: 100;  𝐾 ൌ 200;  𝑇 ൌ 1;  𝜑 ൌ

0.2;  𝑡 ൌ 0;  𝑟 ൌ 0.1;  and 𝜎 ൌ 0.5 for Black-Karasinski model 
 

 

Fig. 4 Put Option Price against the Stock Price ሺ𝑋ሻ at the following 
Parameter values: 𝑋 ൌ 20: 100;  𝐾 ൌ 200;  𝑇 ൌ 1;  𝜑 ൌ 0.2;  𝑡 ൌ

0;  𝑟 ൌ  0.1;  and 𝜎 ൌ 0.5 for Black-Karasinski model. 
 

 

Fig. 5 Put Option Price, Expiration Time and Stock Price at the 
following Parameter values: 𝑆 ൌ 20: 100;  𝐾 ൌ 200;  𝑉 ൌ 0.2;  𝜆 ൌ

1;  𝜅 ൌ 2;  𝑇 ൌ 1; ;  𝜃 ൌ 0.2;  𝑟 ൌ 0.1;  𝜎 ൌ 0.5 𝑎𝑛𝑑 𝜌 ൌ
0.8 for the Heston model 

 

 

Fig. 6 Put Option Price against the Stock Price ሺ𝑆ሻ at the following 
Parameter values: 𝑆 ൌ 20: 100;  𝐾 ൌ 200;  𝑉 ൌ 0.2;  𝜆 ൌ 1;  𝜅 ൌ
2;  𝑇 ൌ 1;  𝜃 ൌ 0.2;  𝑟 ൌ 0.1;  𝜎 ൌ 0.5 and 𝜌 ൌ 0.8 for the Heston 

model 
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A. Experiment One 

In this case, we looked at the situation where the underlying 
asset (stock price) value,  𝑋 or 𝑆 ൌ 20 for the CEV, Black-
Karasinski, and Heston models, respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
160 for the CEV model, 172 for the Black-Karasinski model 
and 142 for the Heston model respectively.  

B. Experiment Two  

Also, we reviewed the situation where the underlying asset 
(stock price) value,  𝑋 or 𝑆 ൌ 40 for the CEV, Black-
Karasinski, and Heston models, respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
140 for the CEV model, 164 for the Black-Karasinski model 
and 120 for the Heston model respectively.  

C. Experiment Three  

Finally, we investigated the scenario where the underlying 
asset (stock price) value,  𝑋 or 𝑆 ൌ 60 for the CEV, Black-
Karasinski and Heston models respectively. The result 
displayed in Figs. 1-6 showed that the value of the European 
Put option price using the Monte Carlo method has values of 
120 for the CEV model, 150 for the Black-Karasinski model 
and 110 for the Heston model respectively.  

VI. CONCLUSION  

In this paper, we have derived the Martingale European Put 
Options valuation formulas for three SDE models in finance 
which are the CEV model, the Black-Karasinski term structure 
model and the Heston model. The Monte Carlo method of 
numerical solution for the derived Martingales option price 
valuation formulas for the three distinct SDE models was used 
in the implementation of numerical experiments. From this 
study, we observed that the Martingales approach presents 
option price valuation formulas in form of conditional 
expectations of the payoff function discounted by the 
numeraires. Furthermore, numerical experiments, using 
published data from the NSE show that as the price of the 
underlying asset (stock price) increases, the value of the 
European Put option decreases. Hence, the right to sell at a 
fixed price (Puts) will become less valuable and the buyer 
decides not to exercise his right on the options by allowing the 
option to expire.  
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