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 
Abstract—The problem of nonlinear oscillations of a two-layer 

liquid completely filling a limited volume is considered. Using two 
basic asymmetric harmonics excited in two mutually perpendicular 
planes, ordinary differential equations of nonlinear oscillations of the 
interface of a two-layer liquid are investigated. In this paper, 
hydrodynamic coefficients of linear and nonlinear problems in 
integral relations were determined. As a result, the instability regions 
of forced oscillations of a two-layered liquid in a cylindrical tank 
occurring in the plane of action of the disturbing force are 
constructed, as well as the dynamic instability regions of the 
parametric resonance for different ratios of densities of the upper and 
lower liquids depending on the amplitudes of liquids from the 
excitations frequencies. Steady-state regimes of fluid motion were 
found in the regions of dynamic instability of the initial oscillation 
form. The Bubnov-Galerkin method is used to construct instability 
regions for approximate solution of nonlinear differential equations. 
 

Keywords—Hydrodynamic coefficients, instability region, 
nonlinear oscillations, resonance frequency, two-layered liquid.  

I. INTRODUCTION 

HE nonlinear theory of motion of a limited volume of 
liquid with a free surface, as well as with the interface of 

two liquids, which is a special branch of mechanics, is used in 
solving a number of practical problems. Ensuring the stable 
flight of modern and advanced aircraft of rocket and space 
technology and achieving precision control is impossible 
without a thorough description of the dynamic processes 
occurring in a complex mechanical system. A large number of 
papers are devoted to the study of layered liquids [4], [5], [7], 
[12], [13], to the theory of wave motions [3], [8], [9], [16], 
[17] and to the nonlinear problems, for example [1], [2], [6], 
[14], [15]. 

The purpose of this article is to study the stability of 
nonlinear oscillations of the interface of a two-layer liquid in a 
movable cylindrical tank. 

II. PROBLEM STATEMENT 

We present a coordinate system Oxyz  starting at a point O  

on the undisturbed interface (Fig. 1). Liquids of density 1ρ  
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and 2ρ  are assumed to be ideal and incompressible. 1h  and 2h

denote the depth of each layer of the liquid in undisturbed 
state. The coordinate system Oxyz  is arranged so that in the 

undisturbed position of the mechanical body-liquid system, 
the axis Ox  is perpendicular to the undisturbed liquid interface 

0Γ . 

The moistened surfaces of the cavity are denoted by 
( ) ( 1, 2)iS i  , and the perturbed interface of liquids is denoted 

by   (see Fig. 1). The equation of the perturbed interface can 
be represented as resolved with respect to the coordinate x  

 

( , , ) 0x f y z t    .                        (1) 
 
Assuming the absence of vortex motion in each fluid, we 

formulate a problem of considerable oscillations of the fluid 
interface, consisting of the Laplace equation, non-flow 
conditions on wetted surfaces, as well as kinematic and 
dynamic conditions on the perturbed interface 

 

 

Fig. 1 Coordinate system and basic designations for a body with a 
two-layer liquid 
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, ν -external normal to the corresponding 

boundary of the area occupied by the liquid. 
Imagine the velocity potentials of each fluid as the 

following sum: 
 

( ) ( )
i

1

( , , , ) α ( ) ( , , )k k
i

i

x y z t t B x y z




 


, ( 1, 2)k      (5) 

 
( )k - velocity potentials of upper and lower liquids, ( )k

iB - 

function of the coordinates of the upper and lower fluids, iα - 

generalized coordinates of wave motions of liquids on the 
surfaces of the i-th harmonic section. Here, i-th is made on a 
natural series of numbers from one to infinity. The upper 
indices of the parameters (1) and (2) refer to the upper and 
lower liquids, respectively. 

Let us further assume that we know a system of functions 
( , )if y z  orthogonal to the domain 0 , which together with 

the constant constitute a complete system of functions. The 
deviation of the interface of liquids is decomposed by the 
system of functions if : 

 

1

( ) ( , )i i
i

f t f y z




  ,      (6) 

 

Let's represent functions ( )k
iB  as expansion on parameters 

iα  up to the second order inclusive 
 

( ) ( ) ( ) ( )
0 ...;k k k k

i i j ij j k ijk
j j k

B B B B          (7) 

 

where the functions ( )
0
k

iB , ( )k
ijB , ( )k

ijkB  depend only on spatial 

coordinates and do not depend on time. 
Expressing all the functions included in the kinematic and 

dynamic conditions using Taylor's formula through their 
values on the undisturbed interface, and multiplying (4) by if

, integrate 0 , finally we obtained infinite system of ordinary 

differential equations for generalized coordinates iα  at index 

i: 
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 (8) 

where 

0

( ) ( ) ( )
0

k k k
i k i iB f d 



  , 
0

( )2 ( ) 2
0( )k k

i k iN f d


  , (9) 
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III. DETERMINATION OF HYDRODYNAMIC COEFFICIENTS OF 

THE EQUATIONS OF MOTION FOR THE CASE OF A CYLINDRICAL 

CAVITY 

Let us consider a solid body with a cylindrical cavity 
completely filled with liquids. We introduce the coordinate 
system Oxyz, associated with the center of mass point O the 
body-liquid system in the undisturbed state. The axis of the 
cylinder coincides with the longitudinal axis Ox. The flat 
bottom of the tank 2S  is determined by the coordinate at the 

interface 0  is 2( )x h   at a distance ( 0)x   of the radius 

of the cylindrical side surface is equal to (see Fig. 2). 
 

 

Fig. 2 Designations and coordinate systems for the case of a straight 
circular fixed cylinder with a two-layer liquid 
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We introduce a cylindrical coordinate system , ,ηx r  

associated with Cartesian , ,x y z  by the following formulas: 

x x , cosηy r , sin ηz r . 
 

 

Fig. 3 The shapes of surfaces of section in the excitation of the main 

and auxiliary harmonics α, β.  

 
We distinguish only two basic asymmetric harmonics 

excited in two mutually perpendicular planes and defined by 
generalized coordinates and forms ( 1,2)i i i   : 1  , 

2  , 1 αf f , 
2 βf f . 

In the cylindrical coordinate system, the shape of the 
ground tone of the vibrations of the liquid interface is 
represented in the form similar to the representation of the free 
surface of the liquid at nonlinear oscillations [15] (see Fig. 3). 

 
( ) ( )

α ( , ) φ( ) sin ηk kf y z r , ( ) ( )
β ( , ) φ( ) cos ηk kf y z r .  (14) 

 
Let's present the required functions in the form 
 

( ) ( )
α0 ψ ( , )sin η;k kB x r  ( ) ( )

β0 ψ ( , )cos η;k kB x r    (15) 

 
( ) ( ) ( )

0 2 cos 2 ;k k kB     ( ) ( ) ( )
2 sin 2 ;k k kB B        

  ( ) ( ) ( )
0 2 cos 2 .k k kB          (16) 

 

The functions ( )ψ ( , )k x r  are solutions of boundary value 

linear problems and are given in [10], [11]. 
Having solutions of boundary value problems, it is not 

difficult to calculate the hydrodynamic coefficients of linear 
equations of motion of a body with liquids (9) corresponding 
to the case of small displacements of particles of liquids: 

 

(1)2
11 1 11N   , (2)2

11 2 11N   , ( ) 11
0 ( )

11

k
k k


 


,   (17) 

 
2 2

0 11
11 2

11

(ξ 1)
δ

2ξ

r



 , ( )

11 11 11( )k
kk th k h  .    (18) 

 
Solutions of boundary value nonlinear problems (16) will 

be sought in the form of corresponding Fourier series 
expansions on Bessel functions of zero and second orders, so 

 

( ) ( ) ( )( , ) ( ) ( )k k k
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n

x r c X x Y r  ; ( 0,2)m  .   (19) 

 
The coefficients of these expansions are determined by the 

following integrals: 
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Collecting values of (19)-(21), we calculate values of 

parameters ( )
1μ k  and ( )

2μ k , determining the nonlinearity of 

wave motions of the liquid, accounting for which allows us to 
describe the phenomenon of rotation of the liquid interface 
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We rewrite the equations of motion of liquids on the 

interface in the form 
 

2 2 2 2
1
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
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 
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IV. INVESTIGATION OF STABILITY OF FORCED AND 

PARAMETRIC OSCILLATIONS OF LIQUIDS IN THE SIMPLEST 

CASE 

Let the cavity make the given movements in the direction of 
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the axis Oz according to the law: ( ) cosωU t S t , here ( )U t - 

the displacement of a given movement of the vessel, see Fig. 
4. S  and ω - amplitude and frequency of perturbation. The 
corresponding system of nonlinear equations takes the form 

 

2 2 2 2
1 1

2 2 2
2

( , ) ( )

( 2 2 ) cos 0;

L d

d P t

            

         

      

    

   

   
  (26) 

 

2 2 2 2
2 1

2 2
2

( , ) ( )

( 2 2 ) 0;

L d

d

            

      

      

    

   

   
  (27) 

 

Here 
*
0

S
P




 , (2) (1)    , 
0 3

( ) 2 0
11 2

110

r
k k

k

r
r Y dr

 
  


  ,

( 1, 2)k   [15]. 
 

 

Fig. 4 Cylindrical vessel performing translational motion 
 

This system roughly describes the forced and parametric 
excited oscillations of the liquid interface. In the case where 
parametric oscillations do not occur in the system (β 0) , the 

forced oscillations are described by a nonlinear differential 
equation 

 

2 2 2 2
1 1( ) ( ) cos ;L d P t             

 
   (28) 

 
The approximate solution of this equation is found by the 

Bubnov-Galerkin method, presenting the solutions as (29) 
 

0
1

( ) ( cos sin )
n

k k
k

t k t k t     


   ,     (29) 

 

here α k  и k - the unknown constants. When the main 

harmonics only keep in (29) 
 

( ) cos sint A t A t    ,       (30) 
 
We get the following equation 
 

2 3
1( 1) , 0,A m A P A           (31) 

 

here 1 1 / 2m d , 2 2 2/   . Equation (31) is used to 

determine the amplitudes of forced oscillations of a two-layer 
liquid depending on the parameter P  and ω . Putting in (31) 

0P  , to determine the dependence of the amplitudes of free 
oscillations of liquids on the frequency, (32): 
 

2 2
1( 1) 0.m A            (32) 

 
In the future, when determining the steady-state modes of 

motion of liquids and the boundaries of the regions of their 
stability, the main terms in the expansions of the type (29) are 
used. 

Let us consider the question of the stability of the periodic 
solution (30). The answer to it is to find those values of the 
parameters S  and ω  at which the steady state 

 
( ) cost A t  , 0  ,       (33) 

 
described by a system of nonlinear equations (26)-(27), 
physically realizable. To this end, along with the movement 
(33), which was taken for undisturbed, we consider also the 
movements close to it 
 

( ) ( ) ( )t t t    , ( ) ( ) ( )t t t    .    (34) 
 

The initial conditions for ( )t  and ( )t  differ little from 

the initial conditions for α(t)  and β( )t  (33).  

In accordance with the general theory of stability, we make 
equations in variations corresponding to a given system of 
nonlinear equations (26), (27). Substituting (33) into the 
system of equations (26), (27) and taking that α( )t  it is a 

particular solution (28), we obtain the equations of perturbed 
motion in the form 

 

2
1 1

2 2
1 1 1

( 1) 2

( 2 ) ( , , , , , ) 0;

d d

d d F

    

          

  

    

  

    
 (35) 

 

2 2

2 2
3 2

(1 ) 2

( ) ( , , , , , ) 0;

d d

c k F

  

          

  

    

  

    
  (36) 

 

here 1F  and 2F - functions containing perturbations and their 

derivatives in degrees above the first. Leaving in (35) and (36) 
only linear terms, taking into account (33) we come to 
equations in variations 
 

3 1( ) ( cos ) sin ( cos ) 0L p q t t t              
 

  (37) 
 

4 ( ) ( cos ) sin ( cos ) 0L p q t t t             
 

 (38) 
 
called equations of the first approximation. The following 
designations are accepted here: 
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2
1( ) / 2q d A , 1p q  , 2

1 1d A  , 2 2 2
1( ( ) / 2)d A    ,

2 2
1(3 ) / 2d A  , 1p q  , 2

2( ) / 2q d A , 
2 2 2

2( ( ) / 2)d A    , 2 2
1 2(2 3 )A d d   , 2

2d A  , 

 2  .           (39) 
 

Let us proceed to the construction of instability regions of 
solutions of (37) and (38). Let us first consider (37) with 
respect to the functions ξ( )t , characterizing the perturbation of 

the periodic solution ( ) cost A t  . 

The amplitude A of this solution is determined by (31). It is 
necessary to determine which pair of values A and   
satisfying (31) leads to stable solutions and which pair to 
unstable ones. Bearing in mind the construction of the main 
instability domain of the solution of (37), we present it as 
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2 2

t t
t a b
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From the Bubnov-Galerkin equation 
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to determine the boundaries of the instability region we obtain: 
 

2 2
1( 1) 3 0;m A            (42) 

 
2 2

1( 1) 0.m A            (43) 
 
Equation (43) coincides with the skeletal line equation (32). 

For Fig. 5, this line corresponds to the ABC curve. Equation 
(42) corresponds to the curve of the AMO. Comparing (42) 
with the equation of amplitude-frequency characteristics (31), 
it is easy to notice that the stable branch of the resonance 
curve RNM is separated from the unstable point M. in which 
the amplitude curves have a vertical tangent. On the stable part 
of the branch of the amplitude-frequency response, located to 
the left of the glass line, the derivative must be necessarily 
positive. At M it tends to infinity, and on the unstable left 
branch it is negative. In the region I bounded by the AMO and 
ABC curves, the solution α( ) cosωt A t  unstably. From the 

physical point of view, the stability condition of a periodic 
solution with a period of disturbing force means that the 
amplitude of the forced oscillations increases with the increase 
of the external force P. 

Consider next (38) in variations with respect to the 
perturbation η( )t  of the trivial solution β( ) 0t  . The study of 

the solutions of (38) should answer the question of the 
stability of this trivial solution. In accordance with the above, 
the instability region of (38) corresponds to the regions of 
parametrically excited oscillations (β 0) , so the regions of 

dynamic instability of the motion mode (33). To construct the 
main domain of instability we assume 

 

0 0( ) cos sin
2 2

t t
t a b

    .       (44) 

 
Putting (44) into the equations of the Bubnov-Galerkin 
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to determine the boundaries of the dynamic stability domains 
we obtain: 
 

2 2
2 1;m A            (46) 

 
2 2

1 1,m A             (47) 
 
here 2 2 1(4 ).m d d   On Fig. 5, (47) is the ADE curve and (47) 

is the ABC curve. Consequently, the instability regions of the 
solutions of (37) and (38) continuously move into one another. 

In region II bounded by ABC and ADE curves, the solution 
β( ) 0t   is unstable. The second stable branch of the 

amplitude-frequency characteristic KLD adjoins the region II 
on the right and is separated from it by point D. in the region 
of dynamic unstable II, the steady-state mode, if it exists, is 
described by a nonlinear system of equations (26)-(27). 

Let us now consider the construction of steady-state 
regimes of fluid motion occurring in the main region of 
dynamic instability II. It was mentioned above that on the 
boundaries of odd instability regions the solutions of linear 
equations (37) and (38) have the form. It is in this form that 
steady-state movements in areas of dynamic instability are 
usually sought. 

Suppose that in the region of the main resonance the 
approximate solution of the system of nonlinear equations 
(26)-(27) can be represented as 

 

α( ) cos ω sin ωt A t A t  , β( ) cos ω sin ωt B t B t  .  (48) 
 
Taking to the solution of this system the Bubnov-Galerkin 

method, for constant , ,A A B  and B  we obtain the following 

algebraic relations: 
 

2 3 2
1 2(σ 1) A ;m A m AB P          (49) 

 
2 2 2

1 2(σ 1) 0;m B m A     ( 0, 0).A B     (50) 
 
Excluding B from (50) and substituting the result in (49), 

we find an equation for determining the amplitude-frequency 
characteristics in region II 

 
2 3

4 5(σ 1) A ;m A m P    where 4 22m d , 5 1 1 2/ ( )m m m m  (51) 
 
Solution (51) corresponds to the regime of rotation of the 

liquid interface observed in the experiment. The 
corresponding resonance curves are shown in Figs. 5 and 6 
(a), (b), line FGQ. 
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In Fig. 5, the amplitude-frequency characteristics (AFC) 
and instability regions of forced oscillations of liquids are 
constructed from the obtained all relations at the value of the 
upper liquid density (air) 1ρ =0.0012 , which completely 

coincided with the result of the problem for one liquid [14]. 
In Figs. 6 (a), (b) are presented the AFC and instability 

regions of forced oscillations of two liquids at different 
density ratios for the pair of petrol fuel 1ρ =0.75  and water 

1ρ =1 (a) and for the pair of sunflower oil 1ρ =0.93  and water 

1ρ =1 (b). 
 

 

Fig. 5 AFC and instability regions of forced oscillations of liquids in 
a cylindrical tank under excitation of basic harmonics α  for the case 

1 0.0012  with 1 20.005, 2S h h    

 

(a) 
 

 

(b) 

Fig. 6 AFC and instability regions of forced oscillations of liquids in 
a cylindrical tank under excitation of basic harmonics α  for the case 

1 0.75  (a), for the case 1 0.93  (b) with 1 20.005, 2S h h    

 
Regions I and II are regions of instability of forced 

oscillations of liquids occurring in the plane of action of the 
disturbing force. In region II, this instability is due to the 
instability of the trivial solution β( ) 0t  , so the parametric 

excitation of the generalized coordinate β  is possible. The 

FGQ line corresponds to the rotational motion of the liquid 
interface observed in the experiment. 

V. CONCLUSION 

In this paper, the nonlinear effects resulting from the 
interaction of liquids with a rigid vessel that performs 
harmonic oscillations are theoretically investigated. The most 
interesting from the practical side is the case of vibrations of 
liquids in the vicinity of the lowest frequency of natural 
oscillations of the interface. Here, a number of characteristics 
essentially nonlinear features of fluid motion are observed, 
among which can indicate the dependence of the oscillation 
frequency on the amplitude, the limited oscillation amplitudes 
in the resonance mode, the mobility of the nodal lines of the 
interface, the appearance of a peculiar rotation of the interface 
in a certain frequency range of the disturbing force. 
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