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Problems of Boolean Reasoning Based Biclustering
Parallelization
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Abstract—Biclustering is the way of two-dimensional data
analysis. For several years it became possible to express such issue
in terms of Boolean reasoning, for processing continuous, discrete
and binary data. The mathematical backgrounds of such approach —
proved ability of induction of exact and inclusion–maximal biclusters
fulfilling assumed criteria — are strong advantages of the method.
Unfortunately, the core of the method has quite high computational
complexity. In the paper the basics of Boolean reasoning approach
for biclustering are presented. In such context the problems of
computation parallelization are risen.

Keywords—Boolean reasoning, biclustering, parallelization, prime
implicant.

I. INTRODUCTION

B ICLUSTERING is the technique of two–dimensional

homogeneous data analysis. It was started by Hartigan

in 1970’s [1]. The goal of biclustering is to find submatrix

(or submatirices) of a given one, whose elements fulfill a sure

defined criterion: equality, similarity or even dissimilarity.

The bicluster will be defined as an ordered pair of the

subset of rows and the subset of columns. The intersection

of mentioned columns and sets points cells that are elements

of the bicluster.

One of the novel approaches to biclustering is the Boolean

based biclustering. It was originally proposed in [2] for

finding exact biclusters in the binary and discrete data and

it is successively developed for continuous data [3], [4]. The

mentioned approach requires to code the data to be biclustered

in the form of Boolean formula, which is in CNF (Conjunction

Normal Form), and the formula is later transformed to DNF

(Disjuntion Normal Form). Prime implicants of DNF are

finally interpreted as inclusion–maximal biclusters fulfilling

the assumed criterion of (dis)similarity.

What is important to be mentioned, in general the issue of

transforming the CNF to DNF has quite high computational

complexity. It is comparable to 3–SAT problem (for finding

inclusion–maximal exact biclusters in discrete data) or 2–SAT

problem (for finding icnlusion–maximal exact biclusters in

binary data).

In this paper the most basic issues that deal with the Boolean

transforming are presented. It occurs that simple propositions

of calculations parallelization do not bring satisfactory results

in such an area.

The paper is organized as follows: it starts with short

description biclustering problem, afterwards the Boolean

reasoning based approach for biclustering id presented;
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finally the problems of Boolean reasoning based biclustering

parallelization are risen; the paper ends with conclusions and

perspectives of further works.

II. RELATED WORKS

It is very common to mistake the biclustering and clustering

of two–dimensional data. The most important difference

between such two approaches is the nature of the data:

biclustering requires homogeneous data in the whole input

data while clustering requires just the homogeneity of rows (or

columns). The another difference is the nature of the method

results: clustering result is the input set partition in terms of

its mathematical definition:

• different elements of partition are disjoint (they have no

common elements),

• there is no empty element of partition,

• sum of all elements of partition gives the initial set;

while biclustering result does not have to fulfill such criterion:

elements may have common intersection and they do not have

to cover all of the input data (it was proved in [2] that an

empty bicluster — containing no rows or no columns — still

fulfills criteria of exactness and inclusion–maximality).

The difference between clustering and biclustering is

explained more precisely in Figs. 1 and 3.

In Fig. 1 we see two possible applications of clustering:

we may be interested in object (a)) or feature (b)) clustering.

These both results fulfill obviously the criteria of division

from the mathematical point of view (presented above).

Nevertheless, we can also see that possible results of

biclustering of the data brings completely different solutions.

Considering the data in of Fig. 2 we may be interested in

finding only the exact biclusters (all elements of bicluster have

the same value – se Fig. 3 a)) but it is possible to require

that the bicluster elements are similar to each other: e.g. their

values can not be different by the value 5 (see Fig. 3 b)).

Since Hartigan paper [1] many approaches of bicluster

induction were successfully developed. In [5] bicluster

induction is performed by minimizing the squares of residuals

between the average value of bicluster cells. Founded bicluster

is then replaced with random values and the procedure is

repeated for the modified data. In [6] such an approach is

modified: biclusters may overlap each other and the found

bicluster is not replaced by random values.

The other approach was proposed for discretized data [7].

Here, the set of genes that is simultaneously conserved across

subset of conditions is the goal of the analysis (that is why the

method works only on discretized data). The algorithm starts

with random initial sets of rows and columns and proceeds



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:14, No:1, 2020

11

a) b)

f1 f2 f3 f4

o1 1 2 30 40

o2 2 3 31 41

o3 10 11 -5 -8

o4 11 12 -4 -7

o5 101 102 103 104

f1 f2 f3 f4

o1 31 32 88 91

o2 1 4 87 95

o3 2 4 90 93

o4 50 52 91 94

o5 50 53 90 94

Fig. 1 Possible results of clustering: (a) object clustering; (b) feature clustering

Fig. 2 A sample continuous matrix

a) b)

Fig. 3 Possible results of discrete data biclustering: (a) results of exact biclustering; (b) results of similarity biclustering, here: the maximal difference
between bicluster elements is not higher than 5; in both cases only non–trivial (not single cell) biclusters are marked

in an iterative way. To assure finding several biclusters, the

method should be invoked several times with different initial

sets of rows and columns.
BiMax [8] is the method of binary data biclustering. In

this approach the separate-and-conquere strategy is applied for

finding inclusion–maximal biclusters.
A more detailed description of mentioned algorithms and

a presentation of many more biclustering algorithms (such as

FABIA [9]) can be found in [10].
It is worth to notice the idea of finding biclusters in

the matrix can be also expressed in different data analysis

paradigms: in terms of the formal concept analysis, extracting

a concept lattice for a given context is equivalent to the

problem of finding all inclusion–maximal exact biclusters in a

binary matrix [11]; in the domain of the basket analysis, the

exact bicluster will correspond to the frequent itemset [12]; if

the binary matrix represents some graph contingency matrix

the inclusion–maximal bicluster may refer to the clique in the

graph or may refer to the two subsets of its vertexes which

are directly accessible: each vertex from the first subset is

directly accessible from each vertex in the second subset and

vice versa.

III. CONTEXT OF BOOLEAN REASONING IN

BICLUSTERING

In this section the short introduction to Boolean reasoning

biclustering methods will be presented for the better

understanding of a problem of its parallelization. This requires

to bring some useful definitions. The set of matrix rows will

be denoted as B while the set of columns of matrix will

be denoted as X . Then the bicluster may be defined as a

such ordered pair ({a1, a2, . . . , am}, {x1, x2, . . . , xm}) such

that {a1, a2, . . . , am} ⊆ B and {x1, x2, . . . , xm} ⊆ X .

The Conjunction Normal Form of the formula is the
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conjunction of alternatives, e.g.:

(a ∨ b ∨ . . . x) ∧ (b ∨ d ∨ . . . y) ∧ . . . ∧ (a ∨ f ∨ . . . y)

while the Disjunction Normal Form of the formula is the

disjunction of conjuntions, e.g:

c ∧ b ∧ . . . x ∨ c ∧ r ∧ . . . ∧ y ∨ . . . ∨ b ∧ c ∧ . . . ∧ z

A. Discrete Data Biclustering

Let us consider a discrete value matrix as presented in Table

I and we are looking for inclusion–maximal exact bicluster.

The exactness means that all cells of bicluster have the same

value. The inclusion–maximality means that no row or no

column can be added to the bicluster without violating the

condition of exactness.

TABLE I
A SAMPLE DISCRETE MATRIX Md

a b c
1 1 0 2
2 1 1 0
3 1 1 1

It is very easy to observe that there is only

one bicluster of 2: ({1}, {c}), two biclusters of

0: ({1}, {b}), ({2}, {c}), and three biclusters of 1:

({1, 2, 3}, {a}), ({2, 3}, {a, b}), ({3}, {a, b, c}).
It was proved in [2] that the Boolean function of the form:

f =
∧

(a ∨ b ∨ x) ∧
∧

(c ∨ y ∨ z)

where

a, b, c ∈ B x, y, z ∈ X

such that1

∀a,b,c,x,y,z (a(x) �= b(x) ∧ a �= b) ∨ (c(y) �= c(z) ∧ y �= z)

has the following property: each prime implicant of the

function codes one inclusion–maximal exact bicluster. Also

the opposite implication is true: each inclusion–maximal exact

bicluster can be coded by a prime implicant of the formula.

The appropriate formula (in CNF form) for the data from

the Table I looks as follows:

f = (1 ∨ a ∨ b) ∧ (1 ∨ a ∨ c) ∧ (1 ∨ b ∨ c)∧
∧(2 ∨ a ∨ c) ∧ (2 ∨ b ∨ c) ∧ (b ∨ 1 ∨ 2)∧
∧(b ∨ 1 ∨ 3) ∧ (c ∨ 1 ∨ 2) ∧ (c ∨ 1 ∨ 3) ∧ (c ∨ 2 ∨ 3)

When converted to DNF it looks as follows:

f = (1 ∧ 2) ∨ (1 ∧ c) ∨ (b ∧ c) ∨ (1 ∧ 3 ∧ a ∧ b)∨
∨(2 ∧ 3 ∧ a ∧ c) ∨ (2 ∧ 3 ∧ a ∧ b)

But how the prime implicants and biclusters correspond to

each other? Bicluster contains these rows and columns, whose

corresponding literals are not present in the prime implicant

(and vice verse). The Table II shows how to decode biclusters

from prime implicants.

As we can see all biclusters from the Table II are the same

as mentioned in the text in the beginning of the subsection.

1a(x) = x(a) = element of ath row and xth column.

TABLE II
DECODING BICLUSTERS FROM THE PRIME IMPLICANTS

prime implicant missing literals bicluster
1 ∧ 2 3, a, b, c ({3}, {a, b, c})
1 ∧ c 2, 3, a, b ({2, 3}, {a, b})
b ∧ c 1, 2, 3, a ({1, 2, 3}, {a})

1 ∧ 3 ∧ a ∧ b 2, c ({2}, {c})
2 ∧ 3 ∧ a ∧ c 1, b ({1}, {b})
2 ∧ 3 ∧ a ∧ b 1, c ({1}, {c})

B. Binary Data Biclustering

Due to the high computational complexity of direct search

of all biclusters in discrete data the binary simplification was

proposed [2]. It is easy to bring the problem of biclustering the

n-value discrete matrix to n tasks of binary data biclustering.

Such simplification of the data — only zeros and ones in

the matrix — changes the goal of biclustering: we can be

interested in finding zeros on the background of ones or ones

on the background of zeros.

Let us consider the following binary matrix Mb as in Table

III and let us be interested in finding biclusters of ones.

TABLE III
A SAMPLE BINARY MATRIX Mb

a b c
1 1 0 1
2 1 0 0
3 1 1 1

It was also proved in [2] that it is possible with the Boolean

formula that codes all cells with value zero. Such a formula

looks as follows:

f = (1 ∨ b) ∧ (2 ∨ b) ∧ (2 ∨ c)

and transformed to DNF:

f = (1 ∧ 2) ∨ (2 ∧ b) ∨ (b ∧ c)

The interpretation of prime implicants as inlusion–maximal

exact biclusters of ones remains the same as it was in case of

discrete biclustering.

In general, let � ∈ {0, 1}, then if we are looking for

biclusters of ¬� ∈ {0, 1} \ {�}, the appropriate Boolean

function is defined as follows:

fMb(�) =
∧

(a ∨ x), a ∈ B, x ∈ X, a(x) = � (1)

C. Continuous Data Biclustering

Success of applying Boolean reasoning for biclustering

discrete and binary data mobilized to extend such an approach

for continuous data. In paper [3] an analogous attempt was

defined.

Let us define the σ−bicluster as the inclusion–maximal

submatrix whose elements has the maximal absolute different

not higher than σ:

max
i,j ∈ X
m,n ∈ B

|i(m)− j(n)| ≤ σ

The Boolean formula in this case is defined as follows:

f =
∨

(a ∨ b ∨ x ∨ y)
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where:

a, b ∈ B;x, y ∈ X; (a �= b) ∨ (x �= y)

such that:

|a(x)− b(y)| > σ

Let us consider the following matrix of continuous data as

presented in Table IV.

TABLE IV
A SAMPLE CONTINUOUS MATRIX Md

a b c
1 1 2 3
2 2 3 5

The highest difference between cells in the given matrix

is 4 and the data have only integer numbers. So the highest

sensible range of a bicluster that could be interested is σ = 3.

Only one pair of cells fulfills the above condition: the first

pair is in the row 1 and column a while the second one is in

the row 2 and column c.. That leads to the boolean formula

of the following form:

f3 = (1 ∨ a ∨ 2 ∨ c)

That means that we have four biclusters with the maximal

difference not exceeding 3: ({2}, {a, b, c}), ({1, 2}, {b, c}),
({1}, {a, b, c}) and ({1, 2}, {a, b}).

IV. PARALLELIZATION ISSUES

The naive algorithm of transforming CNF to DNF may be

described with the Algorithm 1.

Such simple strategy provides that in following iterations it

is possible to multiply two shortest clauses as multiplication

results are stored in the end of the clause.

The multiplication of two clauses is performed in two steps:

a proper multplication (line 3) and application of absorption

laws (line 4) to simplify the new clause (to remove all clause

implicants that are not prime ones). As the number of clauses

in CNF decreases the number of conjunctions in clauses

increases.

Let us consider the binary matrix presented in Fig. 4.

Fig. 4 A sample binary matrix

It contains only 900 elements (biomedical data dimensions

are up to thousands rows and columns), where 592 of them

are ones.
The total number of inclusion–maximal exact biclusters of

ones is 1618. But it is not the merit of the problem. Let us

take a closer look for the Boolean formula and how does it

change during converting from CNF to DNF. The original CNF

consists of 223 two-literal clauses.
In Fig. 5 the number of implicants in newly created clause

is presented as the function of the total number of clauses in

the formula.
As we may observe as long as the number of clauses is

higher than 112 the newly created clause contains only four

implicants and is easy to be simplified. As the number of

clauses decreases the number of implicants varies from 4 up

to 8 (exceeding 10 several times). When the length of the

clause decreases below 30 the rapid grow of the implicants

number. Finally, the last clause to be simplified consists of 35

000 of implicants.
When the size of the input data increases the scale of the

problem becomes more visible. For the input matrix of 40

rows and four columns a similar chart may be generated. It is

presented in Fig. 6.
As previously, most of newly created clauses are rather short

and easy to be reduced. But the size of the last one clause to

proceed reaches almost 2 000 000.

A. CNF Parallelization
Let us assume that we have n computing threads. One of the

possible ways of CNF to DNF transformation parallelization

may relay on sending pairs of clauses to threads. This

intuitive approach will surely accelerate calculation in the

initial part of computation. As long as the number of clauses

in formula will be higher than 2n all threads will be load

with computation. Situation will change when the number of

clauses will decrease and will be smaller than 2n. Gradually,

more and more threads will be inactive, because there will be

no pair of clauses to be multiplied. Moreover, the remaining

threads will be loaded with more and more complex task (as it

was presented in Figs. 5 and 6). Finally, in the last two clauses

multiplication only the one thread will be loaded while the

remaining n− 1 threads will be inactive.

B. Multiplication Parallelization
The clause shortening procedure has the square

computational complexity (from the number of implicants

point of view) as each implicant must be compared with

other ones to check, whether first or second of them may

be exclude form the clause. This observation brings the

suggestion, that it may be helpful to parallel the shortening

phase with separate–and–conquare stategy: clause is divided

into more or less
√
n parts and each thread performs one of

n multiplications and shortenings and their results merged

and shortened again.
Such approach is inappropriate in the initial phase of

calculations: as it was defined the original formula consists

of two–literal clauses and there is no need of multiplication

partitioning.
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Algorithm 1 Simple algorithm of CNF to DNF transformation.

1: RemoveCoveredClauses(formula) {formula in CNF}
2: while formula.NumberOfClauses > 1 do
3: newClause = RemoveCoveredClauses(formula.Clauses[0], formula.Clauses[1]); {multiply first two clauses}
4: newClause = ClauseSimplify(newClause); {absorption laws application}
5: formula.RemoveClauseAt(0);

6: formula.RemoveClauseAt(0); {removing first two clauses}
7: formula.AtClauseAtEnd(newClause); {adding new clause to the end of formula}
8: end while
9: return formula.Clauses[0]; {returning the first clause that is in DNF}

Fig. 5 Number of implicants in newly created clause as the function of total number of clauses for the 900 element matrix

Fig. 6 Number of implicants in newly created clause as the function of total number of clauses for the 1 600 element matrix

C. Perspectives of Data–driven Approaches

The presented two approaches (CNF parallelization anhd

multiplication parallelization) solve only one (but different)

aspect of CNF to DNF transformation. Te first approach

accelerates the initial part of calculation while the second one

accelerates the multiplication of long clauses, which appears

at the end of calculation.

The intelligent parallelization algorithm should take into

consideration the both of mentioned approaches. Moreover, it

should also decide whether the frst approach should be stopped

and replaced by the second approach, to avoid the situation,

where some threads become inactive.
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V. CONCLUSIONS AND FURTHER WORKS

The promising results of application of Boolean reasoning

in the area of biclustering [2], [3] with their theoretical

backgrounds and consequences should be considered as

the interesting mathematical approach to process the

two-dimensional data. From the calculation point of view the

problem of bicluster induction is brought to the transforming

the formula from its CNF to DNF. Of course it may be

also simplified to the problem of finding prime implicants

approximations of the original formula. Such works were also

performed [13].

However, it still very important to provide the concurrent

version of CNF to DNF transformation. As it was explained

in the previous section, naive approach of calculation

parallelization do not assure the whole computational power

usage. The future CNF to DNF transformation algorithms

should switch between two mentioned approach intuitively

and data and threads dependently. The important element of

smart task scheduling should take into consideration the real

measures time of computations performed by all threads.

Future works will focus on developing such methods.

Moreover, new tasks of biclustering induction in terms of

Boolean reasoning will also become the goal of the analysis.
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