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 
Abstract—The present investigation has been undertaken to 

assess the effect of viscous dissipation and axial conduction on forced 
convection heat transfer in the entrance region of a parallel plate 
channel with the porous insert attached to both walls of the channel. 
The flow field is unidirectional. Flow in the porous region 
corresponds to Darcy-Brinkman model and the clear fluid region to 
that of plane Poiseuille flow. The effects of the parameters Darcy 
number, Da, Peclet number, Pe, Brinkman number, Br and a porous 
fraction γp on the local heat transfer coefficient are analyzed 
graphically. Effects of viscous dissipation employing the Darcy 
model and the clear fluid compatible model have been studied.  

 
Keywords—Porous material, channel partially filled with a 

porous material, axial conduction, viscous dissipation. 

I. INTRODUCTION 

TUDIES involving the flow of fluid and heat transfer 
through porous media find applications in diverse 

situations like electronic components cooling and assessment 
of risk factors in nuclear waste disposal. 

A system that consists of both a fluid saturated porous 
material and fluid is called composite system. The problems of 
fluid and heat flow in these systems constitute a significant 
type of problem which is related to porous matrix convection. 
The interaction of the flow and temperature fields in the open 
and porous phases affects the phenomena of convection in the 
composite systems. Since completely filling the system with 
the porous medium is not desirable in problems of convective 
heat transfer in the porous medium, systems that are partially 
filled are the better alternatives to get enhanced heat transfer. 
This class of problems finds applications in situations of 
thermal engineering such as geothermal systems with fault 
zones, the stored grains cooling and removal of heat in nuclear 
debris beds. 

Several studies [1]-[4] have shown that axial conduction 
term becomes significant in the equation of energy at low 
Peclet number in the case of forced convection in the ducts. 
Further, the thermal field significantly gets altered because of 
axial conduction. Several researchers [5]-[9] studied the 
problem of forced convection considering axial conduction 
effect, under different conditions. In particular, [10] studied 
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the problem of heat transfer in the entrance region for a 
viscous incompressible fluid in both two dimensional channel 
and a circular cylindrical tube taking into consideration axial 
conduction term. Nguyen [11] studied the same problem with 
boundary conditions of uniform temperature and uniform heat 
flux at the walls. Ramjee and Satyamurty [3] studied local and 
average heat transfer in the thermally developing region of an 
asymmetrically heated channel.  

Hooman et al. [12] studied thermally developing Brinkman-
Brinkman forced convection in rectangular ducts with 
isothermal walls. Kuznetsov et al. [13] studied thermally 
developing forced convection in a circular duct filled with 
porous material with axial conduction and viscous dissipation 
effects. They [13] used constant wall temperature boundary 
conditions at the walls. Nield et al. [14] investigated the 
effects of viscous dissipation, axial conduction with uniform 
temperature at the walls, on thermally developing forced 
convection heat transfer in a parallel plate channel fully filled 
with a porous medium. 

In view of the above, this paper studied forced convection 
in a channel partially filled with a porous medium with the 
effect of axial conduction and viscous dissipation subjected to 
constant wall heat flux. Flow field is assumed to be fully 
developed and the entrance effects are considered in the 
thermal field. Numerical solutions for the two dimensional 
energy equations in both the fluid and porous regions have 
been obtained using the successive accelerated replacement 
(SAR) numerical scheme [3], [15], [16]. The effects of 
important parameters on temperature and local Nusselt 
number have been studied. 

II. MATHEMATICAL FORMULATION  

Governing equations and the boundary conditions are non-
dimensionalized by introducing the following non-
dimensional variables. 

 

/X x H , /Y y H , 
/f f refU u u

, 
/i i refU u u

, 
/p p refU u u

, 
2/  
ref

P p u
,   (1) 

( ) /( / )f f e fT T qH k  
, 

( ) /( / )p p e fT T qH k  
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In (1), X and Y are the non-dimensional coordinates. U and 
P are the non-dimensional velocity and pressure. The 
subscripts f and p refer to fluid and porous regions. θ { f in 

the fluid region and p  in the porous region} is the non-

dimensional temperature. uref is the average velocity through 

the channel. uref is related to pu and fu by,  

 

02 2

/2

2 2

2
p

p

lH

p f ref
lH H

u dy u dy u
H

 


 

 
 

  
  

        (2) 

 

 

(a) Dimensional 
 

 

(b) Non Dimensional 

Fig. 1 Physical Model and Coordinate System 
 

On introducing the non-dimensional variables given in (1), 
the governing equations for conservation of momentum and 
energy applicable in the fluid and porous regions in non-
dimensional form become: 

A. Fluid Region 
2

2
 fd U dP

Re
dY dX

          (3) 

 

2

22 2

* 2 2*

1f f f f
f c

dU
U A Br

X Pe Y dYX

      
       

          (4) 

 
In (3), Re, the Reynolds number is defined by 
 

ref fRe u H / 
            (5) 

 
In (4), Pe, Peclet number and Br, Brinkman number are 

defined by,  
 

2/ , /ref f f refPe u H  Br u qH               (6) 
 
when Br > 0 represents, the fluid is getting cooled and Br < 0 
represents the fluid is getting heated. 

B. Porous Region 
2

2
 p

p

d U dP
U Re

dY Da dX

          (7) 

 

2

2 2

* 2 2*

1 1p p p
p c iU A

X Pe YX

  



   

      
     (8) 

 

In (8), i  is non-dimensional dissipation model is given by,  

Darcy Model: 
 

2
1 p

Br
U

Da
            (9) 

 
Clear fluid compatible model: 
 

22

2
p pU dU

Br
Da dY


  

   
   

       (10) 

 
In (7) Da, the Darcy number is defined by, 
 

2/Da K H          (11) 

 
In (7) and (8), ε and η are defined by,  
 

/  , /f eff f effk k           (12) 

C. Non-Dimensional Boundary Conditions 

The boundary and interfacial conditions take the following 
non-dimensional form 

 

0,fdU

dY
 0f

Y





at 0Y         (13) 
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f p iU U U  , 1f pdU dU

dY dY
  at the interface 1

2 2
pY


   (14)  
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Inlet conditions 

(0, ) 0p Y  for 1 1
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

 

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 at X* ≥ X*

f d for -1/2 ≤ Y ≤ 1/2 

{downstream condition}                 (19) 
 

In (19), θb is the non-dimensional temperature based on the 
bulk mean temperature defined by  

 

*
e

b
b e

T T

T T





 


         (20) 

III. NUMERICAL SCHEME: SAR 

Numerical solutions to (4) and (8) along with the boundary 
conditions on θ given in (13)-(20) have been obtained 
employing the SAR scheme as described in [3], [15] and [16]. 

The fully developed velocity profiles in the fluid region, fU  

and porous region, pU  have been taken from [16]. The 

application of numerical scheme, uniform, and non-uniform 
grid generation and numerical trials has been given in [16].  

IV. RESULT AND DISCUSSION 

It is assumed that ε = μf/μeff = 1 and η = kf /keff = 1. The 
numerical solutions have been obtained for, 0.005 ≤ Da ≤ 
0.01, γp = 0, 0.2, 0.4, 0.6, 0.8 and 1.0, − 1.0 ≤ Br ≤ 1.0 and Pe 
= 5, 25 and 100 and neglecting axial conduction (designated 
by Ac = 0) by the SAR scheme which has been extensively 
used for this class of problems [3], [15], [16]. The number of 
combinations of the parameters is very high; detailed 
computations have been performed and the results are 
available with the author. However, selected results needed to 
bring out the features arising out of including viscous 
dissipation have been presented here. 

A. Channel Fully Filled with a Porous Medium 

Thermal Field 

Non-dimensional temperature in excess of wall 
temperature, 

w p   profiles for Da = 0.005 and 1.0p  at 

different axial locations, X* for (a) 0.5Br    and (b) 0.5Br   
for the Darcy model are shown in Fig. 2 for Pe = 5 and Fig. 3 
for Pe = 100 respectively. Similarly, non-dimensional 
temperature in excess of wall temperature, 

w p   profiles for 

Da = 0.005 and 1.0p  at different X* for (a) 0.5Br    and 

(b) 0.5Br  for the clear fluid compatible model are shown in 
Fig. 4 for Pe = 5 and Fig. 5 for Pe = 100 respectively.  

 

 

(a)                   (b) 

Fig. 2 Variation of non-dimensional temperature excess of wall temperature w p   profiles for Da = 0.005 and 1.0p   for Pe = 5 at 

different X* for (a) 0.5Br    and (b) 0.5Br  for Darcy model 
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(a)                     (b) 

Fig. 3 Variation of non-dimensional temperature excess of wall temperature w p   profiles for Da = 0.005 and 1.0p   for Pe = 100 at 

different X* for (a) 0.5Br    and (b) 0.5Br  for Darcy model 
 

 

(a)                    (b) 

Fig. 4 Variation of non-dimensional temperature excess of wall temperature 
w p   profiles for Da = 0.005 and 1.0p   for Pe = 5 at 

different X* for (a) 0.5Br    and (b) 0.5Br   for the clear fluid compatible model 
 

The non-dimensional temperature in excess of wall 
temperature, 

w p   profiles for γp = 1.0 obtained using 

Darcy model [17] given in Figs. 2 and 3 {(9) applied for − 0.5 
≤ Y ≤ 0 because of symmetry of the channel} are not similar to 
those shown in Figs. 4 and 5 for a clear fluid compatible 
model [18] (10).  

The difference in the w p   profiles for the two dissipation 

models can be found even when Da is high. The difference in 
the profiles shown in Figs. 2, 3 and Figs. 4, 5 emerge from the 
dissipation function employed, for the Darcy model and the 
clear fluid compatible model. It is clear that Pe = 5 (lowest of 
the values computed) represents the strongest axial conduction 
effect while Pe = 100 shows an almost negligible axial 
conduction effect.  

On examining Figs. 2 and 3 for the Darcy model and Figs. 4 
and 5 for clear fluid compatible model, the following 
conclusions emerge by comparing  

0w p Br
 


  with  
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0w p Br

 

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0 0w p w pBr Br
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The relation given in (21) is satisfied for Darcy model. 
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The relation given in (22) is satisfied for the clear fluid 
compatible model. 

In the thermally developing region, the values of the 
temperature difference,  

0w p Br
 




 
and the limiting values

 
of 

 , 0w p CL Br
 




 
given in [19], depend on the Brinkman number 

for both dissipation models. As per our definition, Br > 0 
represents fluid getting cooled and dissipation prevents the 

fluid from cooling down to wall temperature, leaving 

 
0

0w p Br
 


  . Similarly when Br < 0, the fluid is getting 

heated and the fluid exceeds the wall temperature making 

 
0

0w p Br
 


   for the Darcy model whereas, in the case of 

the clear fluid compatible dissipation model, 

 
0

0w p Br
 


   for Br >0 and  

0
0w p Br

 


   for Br < 0. 

 

 

(a)                    (b) 

Fig. 5 Variation of non-dimensional temperature excess of wall temperature 
w p   profiles for Da = 0.005 and 1.0p   for Pe = 100 at 

different X* for (a) 0.5Br    and (b) 0.5Br   for the clear fluid compatible model 
 

 

(a) Darcy model          (b) Clear fluid compatible model 

Fig. 6 Variation of non-dimensional temperature excess of wall temperature w p   profiles vs. Br for Da = 0.005 and 1.0p   for Pe = 5 at 

X* = 0.0005 for (a) the Darcy model and (b) the clear fluid compatible model 
 

Plots of 
w p   vs. Br are shown in Fig. 6 for (a) Darcy 

model (b) clear fluid compatible model for Pe = 5, when axial 
conduction has been included at X* = 0.0005 for different Y = -
0.4, -0.3, -0.2, -0.1 and 0.0 for Da = 0.005 for γp =1.0. From 
Fig. 6, w p   does vary linearly with Br for both models. 

This fact is also true when axial conduction is neglected.  

Local Nusselt Number 

Variation of local Nusselt number with X* for (a) 0Br   
and (b) 0Br   for the Darcy model and the clear fluid 
compatible model are shown in Figs. 7 and 8 respectively for 
Da = 0.005 when the axial conduction is neglected (Ac = 0).  
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unbounded swing for Br > 0 at, say, *
swX  for the Darcy model. 

On the other hand for the clear fluid compatible model, Nupx 

displays an unbounded swing for Br < 0 at *
swX . Nupx, 

displays an unbounded swing since the bulk mean temperature 
reaches the wall temperature and exceeds it because of viscous 
dissipation. This fact is the same in the case of the clear fluid 

channels ( 0p  ). This fact is reported for 0p   when 

channel walls are subjected to constant temperature [4], [20]. 
Also, Nupx, increases as Br increases for the Darcy model 
when 0Br   whereas, Nupx, decreases as Br increases for the 
clear fluid compatible model when 0Br  .   

 

 

(a)                  (b) 

Fig. 7 Variation of local Nusselt number with X* for 1.0p   and Da = 0.005 for (a) 0Br   (b) 0Br   for Darcy model when axial 

conduction neglected (Ac = 0) 
 

  

(a)                   (b) 

Fig. 8 Variation of local Nusselt number with X* for 1.0p   and Da = 0.005 for (a) 0Br   (b) 0Br   for clear fluid compatible model 

when axial conduction neglected (Ac = 0) 
 

Variation of local Nusselt number with X* for Da = 0.005 
and 1.0p   for different Peclet numbers, Pe = 5, 25 and 100 

for (a) 0.5Br    and (b) 0.5Br  ,are shown in Figs. 9 and 

10 for the Darcy model and the clear fluid compatible model 
respectively.  

From Figs. 9 and 10, Nupx displays an unbounded swing, 
*
swX  for Br > 0 for Darcy model whereas, for the clear fluid 

compatible model, Nupx displays an unbounded swing, *
swX  

for Br < 0. For both models, at low Peclet number, the value 

of the *
swX is high. Also Nupx, decreases as Pe increases for 

Darcy model when Br < 0. But for the clear fluid compatible 
model, Nupx, decreases as Pe increases when Br > 0. This 
model is consistent with the clear fluid channel in the behavior 
of Nusselt number with X* for all Da and Pe. 

0.000 0.001 0.010 0.100
0

50

100

150

200

X*

N
u px 

p
 = 1.0

 Br = -1.0
 Br = -0.5
 Br =  0.0

0.000 0.001 0.010 0.100-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

N
u px


p
 = 1.0

 Br = 0.0
 Br = 0.5
 Br = 1.0

0.000 0.001 0.010 0.100
-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

N
u px


p
 = 1.0

 Br = -1.0
 Br = -0.5
 Br =  0.0

0.000 0.001 0.010 0.1000

25

50

75

100

125

150

175

X*

N
u px


p
 = 1.0

 Br = 0.0
 Br = 0.5
 Br = 1.0



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:12, 2019

768

 

 

(a)                 (b) 

Fig. 9 Variation of local Nusselt number with X* for Da = 0.005 for different Peclet numbers, Pe at (a) 0.5Br   (b) 0.5Br   for Darcy 
model 

 

 

(a)                 (b) 

Fig. 10 Variation of local Nusselt number with X* for Da = 0.005 for different Peclet numbers, Pe at (a) 0.5Br   (b) 0.5Br   for the clear 
fluid compatible model 
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0.5,  0, 0.5Br    at X* = 0.005 for (a) 0.2p   and (b) 

0.8p   are shown in Figs. 11 and 12 for the Darcy and the 

clear fluid compatible model respectively. 
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even when axial conduction is neglected.  
 

 

(a)                     (b) 

Fig. 11 Variation of non-dimensional temperature excess of wall temperature ,w p w f      profiles for Da = 0.005, Pe = 5 and 

0.5,  0, 0.5Br    at X* = 0.005 for (a) 0.2p   and (b) 0.8p   for Darcy model 

 

  

(a)                  (b) 

Fig. 12 Variation of non-dimensional temperature excess of wall temperature ,w p w f      profiles for Da = 0.005, Pe = 5 and 

0.5,  0, 0.5Br    at X* = 0.005 for (a) 0.2p  and (b) 0.8p   for the clear fluid compatible model 

 
Local Nusselt Numbers 

Variation of local Nusselt number with X* for Da = 0.005, 
0.2p   and Pe = 5 for (a) 0Br   and (b) 0Br   is shown in 

Figs. 15 and 16 for Darcy and clear fluid compatible models 
respectively. Similarly, variation of local Nusselt number with 
X* for Da = 0.005, 0.8p   and Pe = 5 for (a) 0Br   and (b) 

0Br   is shown in Figs. 17 and 18 for Darcy and clear fluid 
compatible models respectively.  
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swX  happens for the porous fraction, 

0.8.p   Also, for both models, Nupx decreases as Br 

increases when Br > 0 for the porous fractions with 0.8.p   

As porous fraction increases, *
swX  increases for the Darcy 

model whereas *
swX  decreases as porous fraction increases in 

the clear fluid compatible dissipation model. 
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(a)                   (b) 

Fig. 13 Variation of non-dimensional temperature excess of wall temperature ,w p w f      profiles vs. Br for Da = 0.005 for Pe = 5 at X* 

= 0.0005 for (a) 0.2p   and (b) 0.8p   for the Darcy model 

 

 

(a)                    (b) 

Fig. 14 Variation of non-dimensional temperature excess of wall temperature ,w p w f      profiles vs. Br for Da = 0.005 for Pe = 5 at X* 

= 0.0005 for (a) 0.2p   and (b) 0.8p   for the clear fluid compatible model 

 

 

(a)                  (b) 

Fig. 15 Variation of the local Nusselt number with X* for Da = 0.005, 0.2p   and Pe = 5 for (a) 0Br   and (b) 0Br   for Darcy model 
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(a)                  (b) 

Fig. 16 Variation of the local Nusselt number with X* for Da = 0.005, 0.2p   and Pe = 5 for (a) 0Br   and (b) 0Br   for clear fluid 

compatible model 
 

 

(a)                   (b) 

Fig. 17 Variation of local Nusselt number with X* for Da = 0.005, 0.8p   and Pe = 5 for (a) 0Br   and (b) 0Br   for Darcy model 

 

 

(a)                       (b) 

Fig. 18 Variation of local Nusselt number with X* for Da = 0.005, 0.8p   and Pe = 5 for (a) 0Br   and (b) 0Br   for Clear fluid 

compatible model 
 

0.000 0.001 0.010 0.100
-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

N
u px


p
 = 0.2

 Br = -1.0
 Br = -0.5
 Br =  0.0

0.000 0.001 0.010 0.1000

50

100

150

200

250

300

X*

N
u px


p
 = 0.2

 Br = 0.0
 Br = 0.5
 Br = 1.0

0.000 0.001 0.010 0.100
-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

N
u px


p
 = 0.8

 Br = -1.0
 Br = -0.5
 Br =  0.0

0.000 0.001 0.010 0.1000

50

100

150

200

250

300

X*

N
u px


p
 = 0.8

 Br = 0.0
 Br = 0.5
 Br = 1.0

0.000 0.001 0.010 0.100
-150
-125
-100
-75
-50
-25

0
25
50
75

100
125
150

X*

N
u px


p
 = 0.8

 Br = -1.0
 Br = -0.5
 Br =  0.0

0.000 0.001 0.010 0.1000

50

100

150

200

250

300

X*

N
u px


p
 = 0.8

 Br = 0.0
 Br = 0.5
 Br = 1.0



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:12, 2019

772

 

Nusselt Number Changes with a Porous Fraction 

To examine the changes of the local Nusselt number with a 
porous fraction, plots are given at the entry locations of the 
channel. Variation of the local Nusselt number, Nupx with 

,p for different Darcy numbers, Da = 0.005, 0.01 for Pe = 5 

for 0.5Br   at (a) X*= 0.0005 and at (b) X*= 0.005 is shown 
in Fig. 19 for Darcy model. From Fig. 19, it is clear that there 
is no maximum or minimum in local Nusselt number at a 
given porous fraction other than p  = 0 and 1.0. Hence we 

cannot have enhancement or reduction in the local Nusselt 

number at a given porous fraction in the case of Darcy model. 
Variation of the local Nusselt number, Nupx with ,p for 

different Darcy numbers, Da = 0.005, 0.01 for Pe = 5 for 
0.5Br   at (a) X*= 0.0005 and at (b) X*= 0.005 is shown in 

Fig. 20 for the clear fluid compatible model. It can be seen 
from Figs. 20 (a) and (b) that the maximum value in local 
Nusselt number occurs at 0.2p   while the minimum occurs 

in Nupx for 0.6p  . The minimum and maximum values do 

not depend on the axial location of X*. 

 

 

(a) X*= 0.0005             (b) X*= 0.005 

Fig. 19 Variation of local Nusselt number with ,p  for different Darcy numbers, Da = 0.005, 0.01 and Pe = 5 at (a) X*= 0.0005 and (b) X*= 

0.005 for 0.5Br   for the Darcy model 
 

 

(a) X*= 0.0005                  (b) X*= 0.005 

Fig. 20 Variation of local Nusselt number with ,p for different Darcy numbers, Da = 0.005, 0.01 and Pe = 5 at (a) X*= 0.0005 and (b) X*= 

0.005 for 0.5Br   for the clear fluid compatible model 
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V. CONCLUSIONS 

Two dissipation models, namely, a) Darcy model due to 
[17] and b) the clear fluid compatible model due to [18] have 
been employed in the porous region. The conventional 
dissipation function {see [21]} has been employed in the fluid 
region. Brinkman number, Br, characterizes the viscous 
dissipation. As defined in the present paper, Br > 0 represents 
fluid getting cooled while Br < 0 indicates the fluid getting 
heated.  

Nusselt number displays an unbounded swing at some X* = 
*
swX  when Br < 0. *

swX  decreases as Br decreases, i.e., for 

larger negative values of Br. The limiting values of the Nusselt 
numbers (for large X*) on the fluid and porous sides, Nupx are 
dependent on Br for all Br ≠ 0 in the developing region also. 
These limiting values depend on the porous fraction too. Nupx, 
decreases as X* increases for all porous fractions when Br > 0. 
Nupx, decreases as Br increases for all porous fractions when 
Br > 0. These results are true for both models when the 
channel is partially filled with porous material. When fully 
filled with porous material channels, Nupx increases as Br 
increases for Br < 0 in Darcy model. On the contrary, in the 
case of the clear fluid compatible model, Nupx, decreases as Br 
increases for Br > 0. The qualitative behavior of Nupx, in the 
channels partially filled with porous material (0 < γp < 1.0) and 
the channel fully filled with porous material (γp = 1.0) for the 
clear fluid compatible model given in (10) is the same as that 
of clear fluid channel ( 0p  ). This fact is reported in [4] and 

[20] for ducts subjected to the constant wall temperature. 
However, this qualitative behavior of Nupx is not the same in 
the Darcy model when compared with clear fluid channel. 
Hence clear fluid compatible dissipation model is more 
suitable for porous region than Darcy model 
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