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The Non-Stationary BINARMA(1,1) Process with
Poisson Innovations: An Application on Accident

Data

Y. Sunecher, N. Mamode Khan, V. Jowaheer

Abstract—This paper considers the modelling of a non-stationary
bivariate integer-valued autoregressive moving average of order
one (BINARMAC(1,1)) with correlated Poisson innovations. The
BINARMAC(1,1) model is specified using the binomial thinning
operator and by assuming that the cross-correlation between the
two series is induced by the innovation terms only. Based on
these assumptions, the non-stationary marginal and joint moments
of the BINARMA(L,1) are derived iteratively by using some initial
stationary moments. As regards to the estimation of parameters of
the proposed model, the conditional maximum likelihood (CML)
estimation method is derived based on thinning and convolution
properties. The forecasting equations of the BINARMA(1,1) model
are also derived. A simulation study is also proposed where
BINARMAC(1,1) count data are generated using a multivariate
Poisson R code for the innovation terms. The performance of
the BINARMAC(1,1) model is then assessed through a simulation
experiment and the mean estimates of the model parameters obtained
are all efficient, based on their standard errors. The proposed model
is then used to analyse a real-life accident data on the motorway in
Mauritius, based on some covariates: policemen, daily patrol, speed
cameras, traffic lights and roundabouts. The BINARMA(1,1) model
is applied on the accident data and the CML estimates clearly indicate
a significant impact of the covariates on the number of accidents on
the motorway in Mauritius. The forecasting equations also provide
reliable one-step ahead forecasts.

Keywords—Non-stationary, BINARMA(1,1) model, Poisson
Innovations, CML.

I. INTRODUCTION

Time series of counts have commonly been modelled
using integer-valued autoregressive (INAR) and integer-valued
moving average (INMA) models, compared to its INARMA
counterpart. The simplest family of stationary first order INAR
(INAR(1)) models were initially developed by McKenzie [1]
and Al-Osh and Alzaid [2] and thereon, several INAR(1)
models under different distributional assumptions have been
developed in literature ([3], [4], [5]). While INAR(1) models
have gained lots of attention in literature, some researchers
have also concentrated on the development of INMA(1)
models ([1], [4], [6], [7]). However, these models were
limited to analysing univariate time series only. Hence,
many researchers considered the extension of these univariate
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models to a bivariate set-up in order to analyse bivariate count
observation.

Bivariate INAR(1) (BINAR(1)) ([8], [9], [10], [11], [12],
[13]) and bivariate INMA(1) (BINMA(1)) ([14], [15], [16])
have been considered and applied extensively in literature
under different distributional assumptions of the innovation
terms and thinning operations. However, count models that
include both AR and MA components have received less
attention in literature and have rarely been applied in practice.
The first INARMA was developed by McKenzie [1] under
stationarity condition, but the construction of such models
is not appealing to researchers due to the complication of
including both the AR and MA component. Recently, Weib
et al. [17] considered INARMA modelling of count time
series under stationarity assumption. However, the INARMA
models developed so far are not appropriate to analyse
real-life data which exhibit non-stationarity moments. Hence,
this paper proposes a BINARMA(1,1) model with correlated
Poisson innovations which can analyse non-stationary real-life
bivariate counts. As regards to the estimation of the model
parameters, the conditional maximum likelihood (CML)
method will be used due to the complicated nature of the
BINARMAC(1,1) model.

The organisation of the paper is as follows: In Section II, the
BINARMA(1,1) model with correlated Poisson innovations
is developed by deriving the moments. Section III presents
the CML method for estimating the unknown parameters.
The forecasting equations for the BINARMAC(1,1) model are
developed in Section IV. In Section V, a simulation study
is conducted in order to assess the BINARMA(1,1) model.
A real-life application on accident data in Mauritius is also
considered in Section VI. The conclusion is presented in
Section VII.

II. BINARMAC(1,1) MODEL
The BINARMAC(1,1) model is specified as

Y = pr o« v 4 po xR, 4+ R, (1)

V2 = ps« V2 + ps« R, + R )
where }Q[k] is the counting random observation for the k"
series at the t'" time point with corresponding innovation
terms R,[fk"], for k¥ = 1,2 and ¢t = 1,2,...,7T. The other
assumptions of the BINARMA(1,1) model are:
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(a) The pair of innovations {[REI]7 R?]]} follows the bivariate
Poisson distribution [18], where

1] pl2] ) P12 h =0,
Corr(R; 7RHh) = {0 h£0. 3)

(b) ng] is an independent and identically

distributed  sequence of Poisson counts, i.e,
R{Y ~ Poisson(\[") where A = exp(;8)
with Lt == [-Tt17wt2a---7xtj7"‘7‘rﬁjn] and
M = [k gl ,ﬁj[.k], ... BM for p covariates.

(c) x* is the binomial thinning operator [19], i.e.,
1%
p * V= {OZl:1 bl(p)7

where the counting series {b;(p)} is a sequence of

independent and identically distributed Bernoulli random

variables with p * V|V ~ Binomial(V, p). Thus, E(p *

V) = pE(V) and Var(p* V)=p(1 — p)E(V) 4 p*Var(V).
(d)

V>0,
V=0,

Cov(v¥, Rz[tlﬂh) = {(‘)/m‘(RLk]) Z i 8’ “4)
and
COV(}/t[k]v Rz[t{ﬁ]-h) = {30U(R£k]? R][fj]) Z i 87 (@)
Using the above assumptions, we obtain
w'! = BO) =y o AT ©)
m = B = papy + 00 407 @)

As for the marginal variances,
Var(th) = Var(p; * Yt[i]l) + Var(ps * REI) + Var(R,[fl])
+2Cov(p1 = Y2y, po % RY))

= E[Var(py * Y™, [Y)] + Var[E(p1 = Y Y1)
+ E[Var(po Ry R )] + Var[E(po + R [RY )]

+ Var(RE]) + 2Cov(py * Yt[i]l, P2 * R,[gl_]l)

= p1(L— p)ut)y + p2Var(VM) + pa(1 — p2)A

+ Pg/\gl—]l + 2p1/02C0V(Yt[i]1a R£1—11) + )‘7[51]

The lag-covariances for the same series for h > 1 are

Cov(v Y1) = phvar(V) + o1 puN,
Cov(V2L v 2) = plhvar(V®) + Lol (12)

while the cross-covariances are

Cov(Yt[l] , Y;[z] ) = PlPSCOV(Y;[ill , Yﬂ)

+ (p1pa + paps + paps + 1)p12/ A \/@,

(13)

Cov(", ¥, ) = phcov(vi™, v + ph =t paproy/ A AP

(14)
Remark 1. The moments in (6)-(10) are obtained iteratively
for t = 2,...,T using the following initial means, variances
and cross-covariances:
w_ (1 “’2) Al (15)
. <1 —pP1 v
2 _ (1P 2 16
My <1 — p3> 15 (16)
1= p)ud + (14 20100 + p2) MY
Var(Y,™) = 5 , (A7)
(1—p1)
2h 31— p3)ut? + (1+ 2p3p4 + pa) A
Var(Y,) = L L 18

(1-p3)

(1+ p1pa + p2ps + papa)przy/ A \/E

1 2
Cov(1, 1) = (1—p1ps)

19)

III. ESTIMATION OF PARAMETERS

This section describes the CML estimation method for
estimating the regression and correlation parameters based

;1 on thinning and convolution properties following Pedeli

_ (1] 2 (1] (1]
= p1(1 = p1)py + pYVar(Y,2)) + (p2 + 2p102) A " 1and - Karlis [10]. Thus, the conditional density of the

+alM (8)

Similarly,

Var(Y") = p3(1 — pa)uly + p2Var(V2) + (pa + 2p3p0) 27,

+AP, ©)
The cross-covariances between the two series is given by

Cov(Y™, ¥ = prpsCov(v, V)

+ (p1pa + paps + p2ps + 1)/’12@\/ A

(10

BINARMAC(1,1) model is given by

k 1] -1 _ [
fl(k)=z<yt.l—l><T§ lﬁt;—ll"“)

Jj1=0 J1

PR(L = pr) a9 ph I (1= o)W =20 (20)

> (e P22
- (8 (#2)

: 5—j
Jj2=0 J2

P (L= pa) a0 (1= pa) 2D
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and a bivariate distribution of the innovation terms fg(ry] =

uty — kP =y —s) = Plpin_,m g2y,
1 2 2
fa(rg = y£]1 kﬂi] 91[11* 5)

— e O RA —pia/ATTY/A)
mm(k s) [ ]
2] U
— p12\/ A \/ APpiza—hom

where

[2]
X [/\:[52} - Pu\/@\/ A==
% (oA Ay /0, —

(22)

The conditional densit is written as
f((yt[l] yt[2])|(y£1]17y1[5 ]1>7'1£1]177°£2 1), 6)

=T 80 itk () fa(ry =y ko = g — ),

where 0 = [pl,pg,p5p4,p127ﬁ[k]} is the vector of unknown

parameters, g1 = min(y; -, v;_,) and g2 = min(y?],ygl).

The conditional likelihood function is given by

L(6ly) = Hf [1]7% 167 ]17U£2]17T£1]177’£2]1) 6) (23)

and the maximum likelihood estimators of @ is obtained by
maximizing

log[L(6]y)]

(24)
for some initial value of yq

IV. FORECASTING EQUATIONS

The conditional expectation and variance of the one-step
ahead forecast Y;[f]l given Yt[k]7 R,[tk] are expressed as follows:

B R =3 4 v 4 Rl )
E(Y, 1‘Y[2] R = [+]1 + o5V 4 pa R (26)
and

Var(YE Y R = 1 (1-p0)Y 4 o (1 o) R+ AVY,

(27
ps(1—ps) VP 4 pa(1—pa) R+ A2
28)

Var(Y, 7, [V R =

where R[ Vs approximated by /\[k]

V. SIMULATION STUDY

In this section, we generate BINARMA(1,1) count data
using (1)-(2) and present a simulation study to assess the
performance of the proposed model. Hence, the first step is to
generate the bivariate innovation terms using the multivariate
Poisson R code developed by Yahav and Shmueli [20].
Thereon, by assuming v = R[lk], we generate Yt[l] and th

for t =2,...,T with )\tk] = exp(ﬁgk]a?ﬂ + ,Bék]l’tg), where
1 (t=1,...,7T/4),
2 =4 2 (t = (T/4) +1,...,3T/4),
cos(3L) (t=(3T/4)+1,...,T),

—m)(y?, — s —m)im).

T
=1log | > 1",y u e ), 6)

w

sm(li;) (t=1,...,7/4),
Lo = cos(%) t=(T/4)+1,...,3T/4),
sin(33L) (t=(3T/4)+1,...,T).
Assuming 7" = 60, 300, 600, we conduct 5000 Monte Carlo
re hcatlons using p1, p2, p3, p4 are combinations of [0.3,0.4],
2k] 1 and p12 = [0.1,0.5] and the results are shown
below

TABLE I
ESTIMATES OF THE REGRESSION PARAMETERS AND STANDARD ERRORS
UNDER NON-STATIONARY BINARMA(1,1) PROCESS

piz T BP] =1 BE] =1 B?] =1 Bg] =1
0.1 60 0.9825 0.9802 0.9842 0.9879
0.1807)  (0.1814)  (0.1790)  (0.1703)

300 0.9921 0.9938 0.9904 0.9910
(0.1394)  (0.1415)  (0.1302)  (0.1354)

600 0.9953 1.0025 0.9995 0.9976
(0.0514) (0.0444) (0.0302) (0.0418)

0.5 60 0.9830 0.9831 0.9818 0.9835
(0.1718)  (0.1891)  (0.1878)  (0.1767)

300 0.9925 0.9912 0.9940 0.9926
(0.1477)  (0.1480)  (0.1488)  (0.1381)

600 0.9964 0.9954 0.9966 1.0022
(0.0462)  (0.0413)  (0.0492)  (0.0320)

TABLE II

ESTIMATES OF THE CORRELATION PARAMETERS AND STANDARD
ERRORS UNDER NON-STATIONARY BINARMA(1,1) PROCESS

T p1 =03 p2=04 p3=03 ps=04 p12=0.1
60 0.2823 0.3801 0.2850 0.3851 0.0888
(0.1752) (0.1857) (0.1710) (0.1888) (0.1947)
300 0.2902 0.3947 0.2911 0.3917 0.0945
(0.1370) (0.1330) (0.1320) (0.1338) (0.1459)
600 0.3011 0.3950 0.2971 0.3993 0.0986
(0.0426) (0.0521) (0.0417) (0.0440) (0.0522)
T p1 =03 p2=04 p3=03 ps=04 p12=05
60 0.2844 0.3839 0.2818 0.3828 0.5826
(0.1733) (0.18) (0.1861) (0.1874) (0.2061)
300 0.2927 0.3932 0.2926 0.3910 0.5920
(0.1394) (0.1321) (0.1361) (0.1270) (0.1418)
600 0.2980 0.4019 0.2983 0.3979 0.5965
(0.0459) (0.0440) (0.0548) (0.0410) (0.0511)

From Tables I, II, it can be concluded that the mean
estimates of the model parameters are efficient for the different
combinations. As the time points increase, we observe a
decrease in the standard errors throughout.

VI. APPLICATION

The BINARMA(I 1) model is applied on daytime (Yz )
and nighttime (Y[ ) accidents that occurred on the motorway
from International Airport of Mauritius to Reduit from 1%
January 2017 to 31t May 2017, comprising of 151 paired
observations. The following explanatory variables were also
collected: number of policemen (NP) deployed along the
motorway daily for patrol, number of speed cameras (NSC),
number of traffic lights (NTL) and number of roundabouts
(NRA). Table III presents the summary statistics of the
accident data:

205



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:13, No:11, 2019

TABLE III
SUMMARY STATISTICS FOR THE NUMBER OF DAYTIME AND NIGHTTIME
ACCIDENTS WITH THE EMPIRICAL SERIAL- AND CROSS-CORRELATION

COEFFICIENTS
Series Mean | Variance Lag-1 Cross
Day Accident  1.1394 1.5489  0.1716  0.1076
Night Accident  1.2841 1.6122  0.2524

The BINARMA(1,1) model is used to analyse the in-sample
accident data from 1% January 2017 to 15" May 2017 by
assuming )\Ek] = exp(BgC] —I-BER NTL—I—BAQC]NSC—FBAQC]NP-F
3 A[f] NRA). The CML estimates are presented in Tables IV, V.

TABLE IV
DAYTIME AND NIGHTTIME ACCIDENTS: ESTIMATES OF THE REGRESSION
PARAMETERS

Series Bo B1 B2 B3 Ba
v 01743 00497  -00981  -0.1033  0.0428
se  (02089) (0.0108) (0.0403) (0.0451) (0.0141)
v 01614 00344  -00716 00926  0.1060
se  (02113) (0.0129) (0.0344) (0.0408) (0.0393)
TABLE V

DAYTIME AND NIGHTTIME ACCIDENTS: ESTIMATES OF THE
DEPENDENCE PARAMETERS

Series p1 P2 p3 pa P12
v 01267 00938 0.1788
se (0.0468)  (0.0647) {0.0696)
v 01647 0.1052
s.e (0.0540)  (0.0538)

From Tables III, IV, it is observed that all the covariates are
significant and there is the existence of dependence between
daytime and nighttime accidents. Using the forecasting
equations (25)-(26), we compute the one-step ahead forecast
for the out-sample observations 16t* May 2017 to 31%
May 2017. Hence, the root mean square errors (RMSEs) for
daytime and nighttime accidents are 0.1855 and 0.2117.

VII. CONCLUSION

This paper introduces a non-stationary BINARMA(1,1)
model with correlated Poisson innovations. The mean,
variance and covariance expressions are derived under the
assumption of non-stationarity. The model parameters are
estimated using the CML method through a simulation study.
These estimates prove to be efficient and reliable. The
BINARMA(1,1) model is applied on a bivariate accident data.
The estimates and the RMSEs are both reliable.
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