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Abstract—This paper focuses on a variational formulation of 

large amplitude free vibration behavior of a very sag marine cable. In 
the static equilibrium state, the marine cable has a very large sag 
configuration. In the motion state, the marine cable is assumed to 
vibrate in in-plane motion with large amplitude from the static 
equilibrium position. The total virtual work-energy of the marine 
cable at the dynamic state is formulated which involves the virtual 
strain energy due to axial deformation, the virtual work done by 
effective weight, and the inertia forces. The equations of motion for 
the large amplitude free vibration of marine cable are obtained by 
taking into account the difference between the Euler’s equation in the 
static state and the displaced state. Based on the Galerkin finite 
element procedure, the linear and nonlinear stiffness matrices, and 
mass matrices of the marine cable are obtained and the eigenvalue 
problem is solved. The natural frequency spectrum and the large 
amplitude free vibration behavior of marine cable are presented. 
 
Keywords—Axial deformation, free vibration, Galerkin Finite 

Element Method, large amplitude, variational method. 

I. INTRODUCTION 

ARINE cables refer to the long, slender and flexible 
members used for connecting the anchor point at the sea 

floor and the floating platform at the sea surface. The static 
and dynamic analysis of the marine cable due to its self-
weight and environmental load is an interesting topic in 
engineering in order to understand the behavior such as static 
equilibrium configuration, free and forced vibrations. In 
literature, research works related to the marine cables have 
been done extensively. The linear theory of a free vibration of 
a suspended cable with the support at the same elevation is 
developed by Irvine and Caughey [1]. The asymptotic 
equations for the natural frequencies and mode shapes of the 
inclined cable are derived by Triantafyllou and Grinfogel [2]. 
The effect of axial deformation on the natural frequencies for 
the marine cable was studied by Chucheepsakul and Huang 
[3]. The model formulation is developed base on the virtual 
work-energy functional of marine cables. Chucheepsakul and 
Srinil [4] developed the model formulation to analyses the 
three-dimensional vibration behaviors of an inclined 
extensible marine cable using virtual work-energy functional, 
the coupled equations of motions obtained from the difference 
between Euler’s equation and equilibrium equation. Srinil et 
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al. [5] investigated the nonlinear characteristics of the large 
amplitude-free vibrations of inclined sagged elastic cable, 
based on a three-dimensional model formulation and the axial 
deformation effect is taken into account. Recently, the natural 
frequencies and mode shape of a very large sag cable have 
been proposed by Phanyasahachart et al. [6], [7]. The model 
formulation developed based on the variational formulation 
involves with the axial deformation strain energy, the virtual 
work done due to self-weight and inertia force. The equation 
of motion was addressed; the finite element method was used 
to obtain the numerical solution. The purpose of this study is 
to extend the authors’ research work on large amplitude free 
vibration. The model formulation is firstly developed and 
appeared in literature. The interesting features of nonlinear 
free vibration behaviors of marine cables are presented and 
highlighted. 

 

 

Fig. 1 Configuration of the marine cable in three states 

II. VARIATIONAL MODEL FORMULATION 

The configuration of the very sag marine cable in three 
states is illustrated in Fig. 1, a variational formulation of the 
mechanical behavior of the marine cable is derived based on 
the work-energy principle in two-dimensional the Cartesian 
coordinate system. The marine cable is modeled between the 
hinged support at one end and the free-sliding support at the 
other end. In static analysis, the external virtual work done 
composed of the top horizontal tension force, effective weight, 
and the current drag force. For dynamic analysis, the axial 
deformations are taken into account for internal strain energy 
while the external virtual work done composed of the effective 
weight, and inertia force. The arc-length coordinate is used as 
an independent variable. 

From the geometrical configuration of the marine cable 
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illustrated in Fig. 1, the following relations can be obtained. 
 

𝑠𝑖𝑛𝜃   (1a) 

 

𝑐𝑜𝑠𝜃   (1b) 

   

𝑠 𝑥 𝑦   (1c) 
 

where the prime symbol ′  is used to represent the derivative 
with respect to the unstrained marine cable arc-length �̅�, 
subscript 𝑠  defined the condition in equilibrium state, the 
angle 𝜃  is measured between the horizontal and the marine 
cable arc length. Differentiating (1a) with respect to the arc-
length parameter, 𝑠  gives the curvature 𝜅  of the marine 
cable element, one obtains 
 

𝜅   (2) 

 
For the extensible marine cable, the total axial strain 𝜀  at 

the equilibrium state can be expressed by 

 

𝜀
̅

̅
  (3) 

 
The arc length of the marine cable at static equilibrium 

state, 𝑑𝑠  can be defined in terms of the Cartesian coordinate 
components 𝑥 , 𝑦  by 
 

𝑑𝑠 1 𝜀 𝑑�̅� 𝑥 𝑦 𝑑�̅�  (4) 

 
where 𝑑�̅� is the arc length at undeformed state, with (1c) and 
(4), one obtains:  
 

𝑥 1 𝜀 𝑦   (5) 

 
The infinitesimal arc-length 𝑑𝑠  can be determined using 

the geometric relation of the marine cable in equilibrium state 
as shown in Fig 1. Thus, it is given as 
 

𝑑𝑠 𝑑𝑥 𝑑𝜆 𝑑𝑦  (6) 
 
With (4) and (5), one can obtain: 
 

𝑑𝜆 1 𝜀 1 𝜀 𝑦 𝑑�̅�   (7) 

A. Virtual Work Due to Top Horizontal Tension 

The total displacement defined in (7) is used to formulate 
the virtual work done due to top horizontal tension applied to 
the free sliding roller support as 
 

𝑊 𝑇 1 𝜀 1 𝜀 𝑦 𝑑�̅�  (8) 

The virtual work of the top horizontal tension can be 
expressed by 
 

𝛿𝑊 𝑇 𝛿𝑦 𝑑�̅�  (9) 

B. Virtual Work Due to Effective Weight 

The virtual work of effective weight for the marine cable is 
 

𝛿𝑊 𝑤 𝛿𝑦 𝑑�̅�  (10) 
 
while the effective weight of the marine cable 𝑤  can be 
defined by 
 

𝑤 𝜌 𝐴 𝜌 𝐴 𝑔 (11) 
 
where 𝜌  and 𝜌  are the densities of the cable and external 
fluid, respectively. 𝐴  and 𝐴  are the cross-sectional areas of 
the marine cable and outside diameter, respectively, and 𝑔 is 
the gravitational acceleration. 

C. Virtual Work Due to the Current Drag Force 

The current drag force on the marine cable is composed of 
forces acting both in the normal and tangential directions with 
respect to the neutral axis, the virtual work of the current drag 
force can be expressed as 
 

𝛿𝑊 𝑓 𝑓 𝛿𝑦 𝑑�̅�  (12) 
 

The current drag force in the normal and tangential 
directions are given by 
 

𝑓 𝜌 𝐷 𝐶 |𝑉 |𝑉   (13) 
 
and 

𝑓 𝜌 𝜋𝐷 𝐶 |𝑉 |𝑉   (14) 
 
where 𝐷  is the diameter of the external fluid, 𝐶 , and 𝐶  are 
the normal and tangential drag coefficients, and 𝑉  and 𝑉  
are the current velocities in normal and tangential directions, 
respectively. 

The total virtual work in static equilibrium can be expressed 
as: 

 

𝛿𝜋

⎩
⎪
⎨

⎪
⎧ 𝑇 𝛿𝑦

𝑤 𝛿𝑦 𝑓 𝑓 𝛿𝑦
⎭
⎪
⎬

⎪
⎫

𝑑�̅�  (15) 

 
Schematic of static equilibrium and dynamic configuration 

of the large-sag extensible marine cable and the dynamic 
displacement from static equilibrium position to dynamic 
displaced position in u and v of the Cartesian coordinate 
system is illustrated in Fig. 2. 
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Fig. 2 Schematic of static and dynamic configuration of marine cable 
 

The arc-length at the stretched state (ds) can be defined by 
 

𝑑𝑠 𝑥 𝑢′ 𝑦 𝑣′ 𝑑�̅�  (16) 
 

The total strain at displaced state 𝜀  described in total 
Lagrange descriptor can be expressed by 
 

𝜀
̅

̅ ̅
1 𝑥 𝑢 𝑦 𝑣 1 (17) 

 
and its derivative is 
 

𝛿𝜀   (18) 

D. Virtual Strain Energy Due to Axial Deformation 

The variation of the axial strain energy for the marine cable 
due to the stretching can be expressed by [10] 
 

𝛿𝑈 𝐸𝐴𝜀 𝛿𝜀 𝑑�̅�  (19) 
 

Substitution of (17) and (18) into (19) yields 
 

𝛿𝑈 𝐸𝐴 𝑥 𝑢 𝑦 𝑣

1 𝑑�̅�  (20) 

 
The dynamic updated Green’s strain 𝛾  given by 

Chucheepsakul et al. [8] is  
 

𝛾 𝑥 𝑢 𝑦 𝑣

𝑢 𝑣   

(21) 

 
With the approximation using the binomial series, and the 

higher order term is neglected for linearization purpose,  
 

1 2𝛾
!

2𝛾 1 𝛾  (22) 

 

The arc-length at the stretched state can be simplified using 
(22): 

 

𝑥 𝑢 𝑦 𝑣

𝑥 𝑦 2 𝑥 𝑢 𝑦 𝑣 𝑢 𝑣 1 2𝛾 1 𝜀  

(23) 
 

The variation of the axial strain energy can be simplified by 
using (22) and (23): 
 

𝛿𝑈 𝜀 𝛾 𝑥 𝑢 𝛿𝑢 𝑦 𝑣 𝛿𝑣 𝑑�̅� (24) 

 
Equation (24) can be rearranged by using (21) and the 

expression of tension in equilibrium state 𝑇 𝐸𝐴𝜀  becomes 
 

𝛿𝑈

⎣
⎢
⎢
⎡

𝑥 𝑢 𝑦 𝑣

𝑢 𝑣 ⎦
⎥
⎥
⎤

𝑥 𝑢 𝛿𝑢 𝑑�̅�

⎣
⎢
⎢
⎡

𝑥 𝑢 𝑦 𝑣

𝑢 𝑣 ⎦
⎥
⎥
⎤

𝑦 𝑣 𝛿𝑣 𝑑�̅�(25) 

E. Virtual Work Due to Effective Weight and Inertia Force 

The virtual work done due to effective weight and inertia 
forces for the marine cable is expressed by [10]. 
 

𝛿𝑊 𝑤

⎩
⎪
⎨

⎪
⎧ 𝑢𝛿𝑢

𝑣 𝛿𝑣
⎭
⎪
⎬

⎪
⎫

𝑑�̅�  (26) 

 
where 𝑤  is the effective weight; 𝑤 𝜌 𝐴 𝜌 𝐴 𝐶 𝑔 and 
𝐶  is the added mass coefficient, 𝑢 and 𝑣 are the acceleration 
in x and y directions, respectively. 

III. EQUATIONS OF MOTION 

The total virtual work-energy is written as  
 

𝛿Π 𝛿𝑈 𝛿𝑊 0 (27) 
 

Substitution of (24) and (26) to (27) yields the expression of 
total virtual work as follows: 
 

𝛿Π

⎩
⎪⎪
⎨

⎪⎪
⎧

   

⎣
⎢
⎢
⎡

𝑥 𝑢 𝑦 𝑣

𝑢 𝑣 ⎦
⎥
⎥
⎤

𝑥 𝑢 𝛿𝑢

𝑤 𝑢𝛿𝑢 ⎭
⎪⎪
⎬

⎪⎪
⎫

𝑑�̅�
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

   

⎣
⎢
⎢
⎡

𝑥 𝑢 𝑦 𝑣

𝑢 𝑣 ⎦
⎥
⎥
⎤

𝑦 𝑣 𝛿𝑣′

𝑤 𝑣 𝛿𝑣
⎭
⎪
⎪
⎬

⎪
⎪
⎫

𝑑�̅� (28) 

 
In order to perform the equation of motion, we applied 

integration by part twice and considering the marine cable for 
static equilibrium, 𝛿𝜋 0 and 𝑢 𝑣 𝑢 𝑣 𝑢
𝑣 0. The Euler equation in (28) in u and v directions is 
reduced to 
 

𝑥 ′
 

0  (29) 

 
and  

𝑦 ′
 

0  (30) 

 
For the marine cable in motion, 𝑢 0, 𝑣 0, 𝑢 0, 𝑣′

0, 𝑢 0, 𝑣′′ 0. The Euler equation in u and v directions 
becomes 
 

𝑥 𝑢

𝑥 𝑢 𝑥 𝑦 𝑣 𝑥 𝑢 𝑥 𝑣

𝑥 𝑢 𝑦 𝑢 𝑣 𝑢 𝑢 𝑣

𝑤 𝑢 0   

(31) 

 
and 

𝑦 𝑣

𝑥 𝑦 𝑢 𝑦 𝑣 𝑦 𝑢 𝑦 𝑣

𝑥 𝑢 𝑣 𝑦 𝑣 𝑣 𝑢 𝑢 𝑣 𝑣

𝑤 𝑤 𝑣 0  

(32) 

 
Subtracting (29) from (31) and subtracting (30) from (32), 

we obtain the equations of motion for large sag extensible 
marine cable in u and v directions, respectively. This can be 
written as  
 

𝑚 𝑢 𝑓 𝑢 , 𝑣′′ 0 (33) 
 
and 

𝑚 𝑣 𝑔 𝑢 , 𝑣′′ 0 (34) 
 

The linear and nonlinear stiffness matrix coefficients in (33) 
and (34) can be expressed as: 
 

𝑓 𝑢 , 𝑣

⎝

⎜
⎛

𝑥 𝑢 𝑥 𝑦 𝑣
3𝑥 𝑢 𝑦 𝑣 𝑢
𝑥 𝑣 𝑦 𝑢 𝑣

𝑢 𝑣 𝑢 𝑢 𝑣 𝑣 ⎠

⎟
⎞

 

 (35) 

 

𝑔 𝑢 , 𝑣

⎝

⎜
⎛

𝑥 𝑦 𝑢 𝑦 𝑣
𝑥 𝑣 𝑦 𝑢 𝑢

3𝑦 𝑣 𝑥 𝑢 𝑣′′

𝑢′𝑣 𝑢′′ 𝑢 𝑣 𝑣 ⎠

⎟
⎞

(36) 

A. Linear Free Vibration 

The linear stiffness matrix can be arranged in the matrix 
form as: 
 

𝑚 0
0 𝑚

𝑢
𝑣

𝑘 𝑘
𝑘 𝑘

𝑢
𝑣

𝟎   (37) 

 
where the mass of the marine cable in u and v directions is 
defined by  
 

𝑚 𝑚 𝑤   (38) 

 
The linear axial stiffness matrix of the second order 

derivative is  
 

𝑘 𝑘
𝑘 𝑘   (39) 

B. Nonlinear Free Vibration 

The nonlinear free vibration of the very sag extensible 
marine cable can be expressed by 
 

𝑚 0
0 𝑚

𝑢
𝑣

𝑘 𝑘
𝑘 𝑘

𝑘 𝑘
𝑘 𝑘

𝑢
𝑣

𝟎  (40) 

 
The first order nonlinear axial stiffness matrix is 

 
𝑘 𝑘
𝑘 𝑘

3𝑥 𝑢 𝑦 𝑣 𝑥 𝑣′ 𝑦 𝑢
𝑥 𝑣 𝑦 𝑢′ 3𝑦 𝑣′ 𝑥 𝑢

(41) 

 
The second order nonlinear axial stiffness matrix is 

 

𝑘 𝑘
𝑘 𝑘

𝑢 𝑣 𝑢 𝑣′

𝑢 𝑣′ 𝑣 𝑢
(42) 

IV. FINITE ELEMENT METHOD 

The static equilibrium configuration is obtained using finite 
element method and Newton-Raphson iterative procedure in 
previous work by Punjarat and Chucheepsakul, [9], [10]. The 
equation of motion is solved using the method of the Galerkin 
finite element method by Cook et al. [11]. The displacement 
components vector in Cartesian coordinate is written as.  
 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:13, No:11, 2019

683

 

 

𝒖 𝑢 𝑣 𝑵 𝒅  (43) 
 
where the cubic polynomial shape function matrix, 𝑵  at the 
displaced state is 
 

𝑵
𝑁 𝑁 0 0 𝑁 𝑁 0 0
0 0 𝑁 𝑁 0 0 𝑁 𝑁

  (44) 

 
and the generalized coordinate of nodal displacement is 
 

𝒅 𝑢 𝑢′ 𝑣 𝑣′ 𝑢 𝑢′ 𝑣 𝑣′  (45) 

A. Linear Free Vibration Solution 

Equation (37) can be written in the form of matrix 
following the Galerkin finite element method as: 
 

∑ 𝑁
𝑚 0
0 𝑚 𝑁 𝑑𝑠 𝑑

𝑁
𝑘 𝑘
𝑘 𝑘 𝑁 𝑑𝑠 𝑑 0   

(46)

 
where j is the element number and 𝑵′  and 𝑵′′  is the 
derivative of cubic polynomial shape function.  

The finite element equation of the global system for free 
vibration can be expressed by 
 

𝑴 𝑫 𝑲𝑳 𝑫 𝟎  (47) 
 

where 𝑫  and 𝑫  are the acceleration and displacement 
vectors, respectively can be obtained by assembling the 
element acceleration and displacements, therefore 
 

𝑫 ∑ 𝒅   (48a) 
 
and 

𝑫 ∑ 𝒅   (48b) 
 

The global mass matrices [M] is defined by 
 

𝑴 ∑ 𝒎   (49) 
 
where [m] is the element mass matrix which given by  
 

𝒎 𝑚 𝐶∗ 𝑵 1 0
0 1

𝑵 𝑑𝑠  (50) 

 
where 𝑚  and 𝐶∗ are the mass of the marine cable and the 
external fluid including the added mass coefficient, 
respectively. The linear global stiffness matrices 𝑲𝑳  is  
 

𝑲𝑳 ∑ 𝒌𝑳   (51) 
 
where 𝒌  is the element linear stiffness matrix  
 

𝒌

⎩
⎨

⎧ 𝑵 𝑇 0
0 𝑇

𝑵

𝑵′
𝑥 𝑥 𝑦

𝑥 𝑦 𝑦
𝑵′

⎭
⎬

⎫
𝑑�̅�   (52) 

Using standard procedure of the Galerkin finite element 
method, (47) leads to the eigenvalue problem as: 
 

𝑲𝑳 𝜔 𝑴 𝑫 𝟎  (53) 
 
where 𝜔  represents the natural frequency of vibration and 𝐷  
is the corresponding mode shapes in the Cartesian coordinate. 

B. Nonlinear Free Vibration Solution 

For the nonlinear free vibration, the equation of motion can 
be written as 
 

𝑴 𝑫 𝑲𝑳 𝑲𝑵𝑳 𝑫 𝟎  (54) 
 
where the nonlinear axial stiffness matrix is. 
 

𝑲 𝒌 𝒌  (55) 
 
in which the first order nonlinear axial stiffness matrix is 
 

𝒌 𝑵′
3𝑥 𝑢 𝑦 𝑣 𝑥 𝑣′ 𝑦 𝑢
𝑥 𝑣 𝑦 𝑢′ 3𝑦 𝑣′ 𝑥 𝑢

𝑵′ 𝑑�̅�(56) 

 
and the second order nonlinear axial stiffness matrix is 
 

𝒌 𝑵′
𝑢 𝑣 𝑢 𝑣′

𝑢 𝑣′ 𝑣 𝑢
𝑵′ 𝑑�̅�(57) 

 
Using standard procedure of the Galerkin finite element 

method, (54) leads to the eigenvalue problem as: 
 

𝑲𝑳 𝑲𝑵𝑳 𝜔 𝑴 𝑫 𝟎  (58) 

 

where 𝜔  represents the natural frequency of vibration and 𝐷  
is the corresponding mode shapes in the Cartesian coordinate. 

The nonlinear equation of motion shown in (58) is time-
dependent; a time-independent nonlinear eigenvalue problem 
can be obtained by substituting a certain properties of the time 
function at the point of the maximum amplitude or at the 
reversal point of the motion. The eigenvalue problem is 
obtained by assuming the dynamic displacement value and 
substituting the characteristic of the time function as an instant 
with harmonic function [12]. 
 

𝑫 𝜔 𝑫  (59) 
 
where 𝜔  is the natural frequencies of the marine cable and 
𝑫  represents the dynamic displacement at the nodal 

point of maximum amplitude [10].  
Substitution of (59) to (54) yields the equation of motion for 

large amplitude free vibration with time independent as: 
 

𝑲𝑳 𝑲𝑵𝑳 𝜔 𝑴 𝑫 𝟎  (60) 

 
The relationship between the dynamic displacements of the 

marine cable at the point of maximum amplitude in (60) and 



International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:13, No:11, 2019

684

 

 

the vibration mode shape can be expressed by  
 

𝑫 𝑎 𝑽𝒏  (61) 
 
where a represents the maximum amplitude of vibration and 
𝑽𝒏  for the normalized corresponding mode shapes. 

V. NUMERICAL RESULTS 

A. Natural Frequency Spectrum of Marine Cable 

This section presents the study of the natural frequency 
spectrum for the cable, where the dimensionless frequencies 
Ω  are plotted against the cable parameter 𝜆  which is 

proposed by Irvine and Caughey [1] for the cable with the 
support at the same elevation and sag value is relatively small, 
Triantafyllou and Grinfogel [2] proposed the cable parameter 
for the cable with the inclined support. The following 
dimensionless quantities are employed. 

The cable parameter, 𝜆  
 

𝜆 𝐿 𝑐𝑜𝑠 𝜙   (62) 

 
The dimensionless natural frequency, Ω 

 

Ω   (63) 

 
where w is weight of cable (N/m), 𝑇  is the static cable tension 
(N) at 𝜙 𝜙 , 𝜙  is the angle of cable chord inclination 
(radian), E is the Elastic modulus of cable (N/m2), A is the 
cross-sectional area of cable (m2), 𝐿  is the horizontal span 
length (m), 𝐿  is the stretched cable length (m), 𝜔  is the 
natural frequency (radian/second), M is the total mass of cable 
per unit length (kg/m).  

In this study, the cable with support at the same elevation is 
investigated for the natural frequency spectrum. The various 
top horizontal tensions from large to small value are applied to 
the free-sliding roller support. The cable length and the cable 
diameter are 869.42 m and 0.023 m, respectively. The cable 
unit weight is 9.48 N/m and the elastic modulus is varying 
from 1.794x106 kN/m2 to 1.794x109 kN/m2. 

The natural frequency spectrum of the cable with the 
support at the same elevation is plotted between the cable 
parameter 𝜆/𝜋  and the dimensionless frequency parameter 
Ω/π  for the first eight mode shapes in Figs. 3-6. The small 

values of cable parameter correspond to a small sag and the 
large values of cable parameter correspond to a large-sag 
cable. The cable tends to change vibration behaviors for the 
top horizontal tension of 4 N, the plotted reverses back when 
top horizontal tension lower than 4 N which gives the very 
large sag cable, this illustrated the occurrence of two 
frequencies for the same cable parameters of very large-sag 
cable but the mode shapes are different.  

 

 

Fig. 3 Natural frequency spectrum of cable with elastic modulus, E = 
1.794 x 106 kN/m2 

 

 

Fig. 4 Natural frequency spectrum of cable with elastic modulus, E = 
1.794 x 107 kN/m2 

 

 

Fig. 5 Natural frequency spectrum of cable with elastic modulus, E = 
1.794x108 kN/m2 

B. Large Amplitude Free Vibration Behavior 

In order to demonstrate the effect of the extensibility on the 
nonlinear free vibration of the marine cable, the numerical 
investigation is carried out with the input parameters remain 
the same as natural frequency spectrum; except the current 
velocity of 1.0 m/s and the added mass coefficient of 1.0 are 
added. 
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Fig. 6 Natural frequency spectrum of cable with elastic modulus, E = 
1.794 x 109 kN/m2 

 

The effect of top horizontal tension on the relation between 
nonlinear frequency ratios 𝜔 /𝜔  and amplitude of 
vibration (a/r) for cable supports at the same level and 
specified elastic modulus, E = 1.794x107 kN/m2, 1.794x108 
kN/m2, 1.794x109 kN/m2, and 1.794x1010 kN/m2 are plotted in 
Figs. 7 (a)-(d), respectively. The nonlinear frequency in these 
figures showed a softening type for all value of elastic 
modulus and the degree of softening increased as the top 
horizontal tension value decreased.  

The nonlinear behavior of the marine cable with support at 
different level of 300 m exhibits the hardening type for lower 
elastic modulus value of 1.794x107 kN/m2 and 1.794x108 
kN/m2, and a softening type for the elastic modulus value of 
1.794x109 kN/m2 and 1.794x1010 kN/m2. 

 

 

(a) Elastic modulus, E = 1.794 x 107 kN/m2       (b) Elastic modulus, E = 1.794 x 108 kN/m2 
 

 

(c) Elastic modulus, E = 1.794 x109 kN/m2            (d) Elastic modulus, E = 1.794 x 1010 kN/m2 

Fig. 7 Effect of top horizontal tension on the relation between nonlinear frequency ratios 𝜔 /𝜔  and amplitude of vibration (a/r) for cable 
supports at the same level and specified elastic modulus, E = 1.794 x 107 kN/m2 to E = 1.794 x 1010 kN/m2 
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(a) Elastic modulus, E = 1.794x107 kN/m2       (b) Elastic modulus, E = 1.794 x 108 kN/m2 
 

 

(c) Elastic modulus, E = 1.794 x 109 kN/m2       (d) Elastic modulus, E = 1.794 x 1010 kN/m2 

Fig. 8 Effect of top horizontal tension on the relation between nonlinear frequency ratios 𝜔 /𝜔  and amplitude of vibration (a/r) for cable 
supports at different level, 300 m and specified elastic modulus, E = 1.794x107 kN/m2 to E = 1.794x1010 kN/m2 

 
VI. CONCLUSION 

The model formulation based on the variational approach 
for large amplitude free vibration of a very sag extensible 
marine cable had been proposed. In the formulation, the arc-
length coordinate adopted from the Lagrangian description 
was used as the independent variable. The total virtual work 
for the extensible marine cable in two dimensions was 
formulated, the linear and nonlinear stiffness matrices, and 
mass matrices were obtained. The eigenvalue problem of the 
linear and nonlinear free vibration analysis was solved by the 
inverse iteration method and the direct iteration method, 
respectively. 

The natural frequency spectrum of the cable with the 
support at the same elevation was plotted between the cable 
parameter 𝜆/𝜋  and the dimensionless frequency parameter 
Ω/π  for the first eight mode shapes and illustrated that the 

small cable parameter corresponded to a small sag cable, 
while the large cable parameter corresponded to a very-large-
sag cable. The cable had a tendency to change vibration 
behaviors for the low value of top horizontal tension, the 
natural frequencies spectrum reverses back and illustrated the 

occurrence of two frequencies parameter for the same cable 
parameters. The simple case of the large amplitude free 
vibration of the very sag extensible marine cable were 
presented and shown the hardening type for lower elastic 
modulus value and a softening type for the higher value of the 
elastic modulus. 
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