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Abstract—The large pose discrepancy is one of the critical
challenges in face recognition during video surveillance. Due to
the entanglement of pose attributes with identity information, the
conventional approaches for pose-independent representation lack
in providing quality results in recognizing largely posed faces. In
this paper, we propose a practical approach to disentangle the pose
attribute from the identity information followed by synthesis of a face
using a classifier network in latent space. The proposed approach
employs a modified generative adversarial network framework
consisting of an encoder-decoder structure embedded with a classifier
in manifold space for carrying out factorization on the latent
encoding. It can be further generalized to other face and non-face
attributes for real-life video frames containing faces with significant
attribute variations. Experimental results and comparison with state
of the art in the field prove that the learned representation of the
proposed approach synthesizes more compelling perceptual images
through a combination of adversarial and classification losses.

Keywords—Video surveillance, disentanglement, face detection.

I. INTRODUCTION

HUMAN identity recognition is one of the most

systematically researched direction in video surveillance

for providing adequate security solutions. Face recognition

plays a pivotal role in identifying individuals’ identity.

However, different face and non-face attributes pose several

challenges in the face recognition process. Because, the

accuracy of face recognition is affected by changes in these

attributes like pose, hairstyle etc. Recently, most researchers

focused on disentanglement representation. Disentanglement

provides a way of separating different types of information that

enable learning from distinctive features independently. With

the use of disentangled representation, it is possible to separate

the face identity and rest of face and non-face attributes.

Several prominent researches improved face recognition task

to a significant accuracy level in the last decade [1], [2], [3],

[4].

Schroff et al. [5] showed human-level performance in their

research. However, it has been realized that Pose-Invariant

Face Recognition (PIFR) is still a challenging process. Gupta

et al. [6] proved that the performance of frontal-frontal

verification differs by a significant amount from frontal-profile

face identification, whereas human performance differs by

a small amount. The findings of their research motivated

many researchers to bridge the gaps and even surpass human

performance for PIFR methods.
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The face recognition task involves learning a latent space

to synthesize a frontal [7], [8], [9], [10], [11], [12] from

an input profile followed by applying existing deep-learning

methods to recognize individuals’ identity from synthesized

frontal. The task can also be done by learning of a group of

models from different face attributes separately [13], [5] or by

multiple single standing models for each pose[14], [15]. In this

work, we propose a combined generative adversarial network

framework based on PIFR and disentanglement methods to

improve face recognition by learning a pose-independent

representation.

Fig. 1 presents the overview of working on the proposed

framework for face identification task. The proposed

framework involves flipping the pose switch for any profile

image that will generate a frontal with the same identity

using the generative adversarial network (GAN). GAN [16]

is one of the popular approaches for generating images

from the learned data distribution through a min-max loss

function. In this work, we propose to control the learned

data distribution for face synthesis to get real-looking, high

quality, and identity preserving face images. To achieve this

task, we present a modified conventional Generator into an

encoder-decoder architecture that converts a face image with

any pose by passing it through the encoder and resulting in

an encoded representation. The decoder synthesizes face from

the resulting encoded representation. The learning of encoded

representation, called latent space, is controlled by a classifier

forcing the identity disentanglement from the pose attribute.

The discriminator is also modified to perform identity and pose

classification apart from distinguishing fake and real images

resulting in identity preserving face images.

Original GAN consists of the learning of the image space by

generator for synthesising fake images through a noise vector.

In this work, we synthesize fake images using a decoder which

takes a concatenation of encoded representation, pose, and

noise. The encoder learns the mapping from the input image

space known as pixel space to latent space called manifold.

The proposed framework takes advantage of the input data

distribution to find the correct manifold and noise that acts as

traversal in the manifold. The pose is concatenated to control

target pose at the output. It results in the generation of frontal

as well as profile face images using the proposed framework.

The key contributions of this work involve 1) The proposal

of a modified GAN architecture for providing a way to control

learning the latent space and way to traverse it; 2) The plan of a

classifier network that explicitly enforces the disentanglement

in latent space; 3) Disentanglement of identity and pose for

face image datasets to generalize to other face attributes;
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Fig. 1 For face image with any pose, the proposed framework synthesizes
frontal which is photo-realistic high quality as well as identity preserving

front face images which greatly improves PIFR capability

4) Evaluating the proposed framework and comparing with

state-of-the-art in the field of face recognition using CFP

dataset [6].

Rest of the paper is as follows. Section II presents state of

the art in the field. Section III provides formal definition of

the problem. It is followed by a description of the proposed

framework by explaining proposed architecture, its comparison

with traditional GAN architectures and research methodology

in Section IV. Section V presents a setup for conducting a

comprehensive set of experiments and reported the results in

this work. Finally, Section VI concludes at the end of the

paper.

II. RELATED WORK

This section provides a comprehensive review of existing

prominent researches for different issues of accurate face

recognition.

Frontal Generation: The largely posed faces cause

self-occlusion leading to increase in difficulty of generating

the frontal view. The traditional computer vision methods

use 2D texture warping or 3D based modelling [7], [17],

[11], statistical methods[9] for frontal synthesis. Whereas,

deep-learning based methods [8], [18], [10] use averaged

3D face for frontal synthesis. Kan et al. [8] employed

auto-encoders to rotate the face to the front progressively

while Yang et al. [18] used the recurrent connection

to rotate face at fixed steps. Deep learning produces

an identity-preserving synthesis and employs intermediate

features for face recognition. The landmark localization

method is proposed in [9] with a constrained low-rank

minimization model.

Generative Adversarial Network (GAN): Generative

models were first introduced by Goodfellow et al. [16]. It is

based on a min-max two-player game that provides a powerful

way to estimate the target distribution both two players,

generator and discriminator learn simultaneously. GAN has

been widely used in deep learning and computer vision field.

Most researchers used GAN for generating photo-realistic

image samples from the learned data distribution. Recently,

several researchers modified GAN models [19], [20] for

providing methods to synthesize image. The authors of [9],

[21] proposed discriminator to act as a classifier, whereas Liu

et al. [3] added a latent code for regularizing the output. These

advancements of GANs motivate us to synthesize face image

based on GAN. If x is the input image and z is the noise,

then GAN optimizes the following two objective functions to

create x̂ similar to x.

max
D

VD(D,G) = Ex∼pd(x)[logD(x)] (1)

+ Ez∼pz(z)[log(1−D(G(z)))]

max
G

VG(D,G) = Ez∼pz(z)[log(D(G(z))] (2)

We elaborate on different applications used in our work in

the proceeding sections.

Latent Representation: Learning a suitable representation

needs an appropriate objective function [22]. Initially, Huang

et al. [23] proposed encoder-decoder representation. In

this work, we proposed a framework on the basis of

DRGAN [24] that employs an auto-encoder using disentangled

representation learning. Kulkarni et al. [25] suggested

DC-IGN as a way to use the architecture, but no explicit

disentanglement was mentioned. These applications helped in

building the prototype for our overall architecture.

Attribute Factorization: The latent space is supposed

to represent input information as a whole. We control the

different area to learn the pose-invariant representation. Huang

et al. [26] presented a way to use a classifier to force

disentanglement in the latent space.

Our work differs from prior work in some aspects. Firstly,

we embed a classifier in the manifold space to separate identity

and the pose information. The proposed framework involves

the use of a classifier loss to train the encoder to produce

required disentangled encoding and adversarial loss to generate

high-quality perceptual images.

III. PROBLEM FORMULATION

For a labeled dataset containing a face image x as the

input image with label y has the pose information and z is

the noise. The objective function comprises of two interlinked

steps. The first step involves learning of a standalone identity

representation disentangled from pose information. The second

step synthesizes face from a learned representation with

controlled target pose. In order to achieve the first objective,

the classifier is trained according to the following objective

function:

min
C

max
Genc

Lbce (C(f(x)), y) = min
C

max
Genc

Lbce(ỹ, y) (3)

Here, y is the real pose and ỹ is the classifier prediction.

Classifier C is trained in a way to minimize the difference

between y and ỹ, whereas Genc will try to produce such f(x)
which confuse the classifier and maximize the dissimilarity.

In contrast to the conventional discriminator, we employ

a multi-task CNN as suggested by DRGAN [24] to

perform the classification of identity and pose. Identity

classification alleviates the problem of identity preservation.
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When discriminator has real face image x, the network is

trained using real identity and pose y; while synthetic face

image from the decoder x̂ = G(x,ỹ,z) is given, discriminator

train itself to classify the image as fake. ỹ is the desired pose

irrespective of the original pose y. The objective function V is

defined as per following equation.

max
D

VD(D,G) = Ex,y∼pd(x,y) [logDidentity(x) + logDpose(x)]

(4)

+Ez∼pz(z),y′∼py′ (y′) [log (Didentity(G(x,y′, z)))]
Similarly, Genc learns the identity representation f(x) and

Gdec trained to synthesize a face image x̂ = Gdec(f(x), y′, z).
The main objective of G is to fool D maximally in

classifying synthetic images as real. Its objective function is

defined as below.

maxG VG(D,G) = Ex,y∼pd(x,y), [log (Didentity(G(x,y′, z)))+
log (Dpose(G(x,y′, z)))]

Both G and D are trained simultaneously to optimize each

other. Generator strives to produce more realistic face images,

and Discriminator tries to classify them as fake and provide

gradient to the generator for creating more realistic images.

The latent representation f(x) is not only useful for creating

realistic face images but also provides a unique representation

for a different identity.

IV. THE PROPOSED FRAMEWORK

This section provides the proposed framework, a

comparison with traditional GANs, network architecture, loss

functions and description of controlling disentangled attribute.

A. The Proposed Architecture

In this work, we aim to synthesize a controlled pose face

image from a given face image with any pose. Fig. 2 presents

the working methodology of the proposed framework in a

broader sense. Genc encodes the normalized input image x into

a latent encoding f(x). The input images lie in a pixel space of

width × height × channel dimension. Encoder narrows down

the pixel space into the manifold by learning the mapping of an

input image distribution to latent space. The classifier ensures

that f(x) does not contain any information regarding pose.

f(x) is then concatenated with desired pose vector and noise

vector. Noise is added to provide variation over the manifold.

Different poses may have different manifolds. Thus, adding the

pose vector helps to find the desired manifold and synthesize

required pose image. The concatenated vector is then passed

through the decoder to synthesize a face image. The target

image should be photo-realistic as well as preserve the same

identity of the input image. To handle this issue, we performed

identity and pose classification using the discriminator in

addition to the adversarial loss for high perceptual quality. The

network parameters are trained by minimizing the combined

loss function Loverall explained in section III.

Loverall = λpixelLpixel + λadvLadv + λclsLcls (5)

B. Comparison with Traditional GANs Architectures

We compare the proposed framework against traditional

and, most commonly used architectures as shown in Fig. 3.

• Conditional GAN: In case of conditional GAN [27],

[28], Discriminator is also fed with class labels to

synthesize images conditioned on class labels. The

presence of labels to both the discriminator and the

generator makes the network to learn constrained

representation, which helps in finding the correct

manifold. Conditional GAN classifies a real image

without following the constraints to be fake. This imposes

robust learning on the generator to meet the conditions.

In this work, we modify discriminator to classify a real

image to its true identity and pose.

• Classification GAN: GAN can also be used for

classification rather than just generating fake images.

The discriminator is trained to work as a discriminative

classifier [29]. It not only distinguishes the synthetic

images but also can classify the image into one of its

classes. In this work, we train the discriminator to do

both tasks. Firstly, it checks for the authenticity of the

image, followed by the classification of the image based

on its identity and its pose.

• Adversarial Autoencoder (AAE): The central principle

of the autoencoder is to learn a mapping that compresses

the input image to smaller dimensions, capturing all the

necessary information to retrieve the original image back.

In AAE, there is no constraint on latent data distribution,

and AAE tends to find the arbitrary distribution that

matches input distribution. In our framework, we

proposed to control the latent space learning by a

classifier network which ensures a manifold disentangled

from the pose attribute. Also, there is no provision of

classification in AAE while we modify discriminator for

classification.

C. The Proposed Methodology

This section describes the methodology adopted in this work

to conduct experiments comprehensively. It includes details of

network architecture, combined loss function and controlling

disentangled attributes.

1) Network Architecture: Tables I-III show the network

structure for Genc, Gdec and Classifier C respectively. Encoder

and discriminator are designed based on CASIA-Net [30]

with batch normalization. Since training a GAN is a highly

unstable min-max game. So, we replaced sparse gradient

layers of max-pool and Relu with strides convolution and

ELU activation. In discriminator, a fully connected layer is

added with soft-max for identity and pose classification in

addition to differentiating real and fake images. The generator

consists of encoder and decoder with a classifier network

working on the basis of learn-able latent encoding. The

latent encoding is a representation of identity information

trained in a way to fool the classifier network. The classifier

network is trained using latent encoding and real pose.

The disentangled encoding is then concatenated with pose

vector to control the target pose and with noise to provide
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Fig. 2 Overall architecture the proposed framework. It fulfills two purposed:1) learning a standalone identity representation. 2) synthesis of frontal from the
disentangled representation

TABLE I
NETWORK STRUCTURE 1

Genc and D
Layer Name Filter Details Output

Convolution(11) 3 x 3/1 96 x 96 x 32
Convolution(12) 3 x 3/1 96 x 96 x 64
Convolution(21) 3 x 3/2 48 x 48 x 64
Convolution(22) 3 x 3/1 48 x 48 x 64
Convolution(23) 3 x 3/1 48 x 48 x 128
Convolution(31) 3 x 3/2 24 x 24 x 128
Convolution(32) 3 x 3/1 24 x 24 x 96
Convolution(33) 3 x 3/1 24 x 24 x 192
Convolution(41) 3 x 3/2 12 x 12 x 192
Convolution(42) 3 x 3/1 12 x 12 x 128
Convolution(43) 3 x 3/1 12 x 12 x 256
Convolution(51) 3 x 3/2 6 x 6 x 256
Convolution(52) 3 x 3/1 6 x 6 x 160
Convolution(53) 3 x 3/1 6 x 6 x (320+1)
Average Pooling 6 x 6/1 1 x 1 x (320+1)

Fully Connected(D only) (450+2+1)

important variation in the face. The decoder part is made

up of combinations of fractionally-strided convolutions which

transforms the concatenated encoded vector into an image x̂,

which lies in the same pixel-space of x.

2) Combined Loss Function: In order to train different parts

of the architecture, we proposed to use a different combination

of loss and functions carefully.

• Pixel-level Loss: In this work, we employ L2 loss

between the ground truth face image x and synthetic

image x̂ to learn the mapping between the two.

Lpixel = LL2(x, x̂) = ‖x− x̂‖2 (6)

Although L2 loss cannot capture high-frequency details

resulting in blurry images, it is an essential part

because it accelerates the optimization and gives overall

improvement.

• Adversarial Loss: This loss is provided by the

discriminator, and it distinguishes real frontal images

from the synthetic images. For input image x and

synthesized image as x̂, it is calculated as follows:

Ladv =
1

N

N∑

n=1

− logD(G(x)) (7)

This helps to preserve the perceptual quality by guiding

the synthesis to the frontal image manifold.

• Classifier Loss: The classifier is a network trained to

get confused and cannot predict the correct pose from

the latent encoding f(x). Then the loss is defined as per

following equation.

Lcls = Lcrossentropy (C (f(x)) , y) = Lcrossentropy(ỹ, y)
(8)
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Fig. 3 Comparison of the proposed architecture with traditional GAN-based architectures

TABLE II
NETWORK STRUCTURE 2

Gdec

Layer
Name

Filter
Details

Output

FullyConvolution 6 x 6 x 320
FullyConvolution52 3 x 3/1 6 x 6 x160
FullyConvolution51 3 x 3/1 6 x 6 x 256
FullyConvolution43 3 x 3/2 12 x 12 x 256
FullyConvolution42 3 x 3/1 12 x 12 x 128
FullyConvolution41 3 x 3/1 12 x 12 x 192
FullyConvolution33 3 x 3/2 24 x 24 x 192
FullyConvolution32 3 x 3/1 24 x 24 x 96
FullyConvolution31 3 x 3/1 24 x 24 x 128
FullyConvolution23 3 x 3/2 48 x 48 x 128
FullyConvolution22 3 x 3/1 48 x 48 x 64
FullyConvolution21 3 x 3/1 48 x 48 x 64
FullyConvolution13 3 x 3/2 96 x 96 x 64
FullyConvolution12 3 x 3/1 96 x 96 x 32
FullyConvolution11 3 x 3/1 96 x 96 x 1

TABLE III
NETWORK STRUCTURE 3

Classifier
Layer Input size Output Size

Linear1 320 1000
Linear2 1000 1000
Linear2 1000 2
Softmax

The encoder is also trained simultaneously to produce

such representation which can fool the classifier network.

D. Controlling Disentangled Attribute

In order to obtain the desired pose face as an output, we

concatenate a pose vector with latent encoding having identity

information. After concatenating with a noise vector, it is

passed to the decoder. We use pose = 1 for frontal and pose =

0 for the profile image. Thus, simply setting the pose bit to 1

in the representation space leads to generating a frontal face.

V. EXPERIMENTS AND RESULTS

This section presents an experimental setup, results of face

synthesis and face recognition using the proposed framework.

The proposed generative framework involves two phases. 1)

The first phase presents a way to learn disentangled latent

space. 2) The second phase involves the synthesis of an

image-realistic pose-controlled face image while preserving

the identity information of the input image. Section IV-B and

IV-C present the experimental results qualitatively on face

synthesis and quantitative on face recognition and section

IV-D presents a visualization of the manifold to illustrate the

disentanglement.

A. Experimental Setup

• Dataset: CFP dataset [6] is one of the most widely used

face datasets containing frontal and profile images of

celebrities. It consists of 500 images of the individuals,

each having four different pose images and ten frontal

face images. The dataset is well organized leading to

a faster data pipeline. As per the evaluation metric,

Face verification for both frontal-frontal (FF) pair and

frontal-profile (FP) pair is carried out on ten folds with

350 similar identity pair and 350 different identity pair.

The generator is provided with enough face frontal

images to learn the frontal pose distribution well.
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• Implementation: As per [30], all the faces are aligned

with a 100 × 100 view and a random 96 × 96

crop is sampled for data augmentation. All images are

normalized to a range of [-1,1]. The CFP dataset is

organized in such a way so as to provide folder names

for labels for corresponding images. The framework

is implemented in PyTorch. After creating the data

pipeline, we set the hyper-parameters. The batch size

is taken as 64, considering enough group information

and GPU capabilities. All weights are initialized from a

zero-centred normal Gaussian distribution. The standard

deviation is 0.02. We use Adam optimized with an initial

learning rate of 0.002 and momentum set as 0.5.

The training process of the proposed framework consists

of four stages involving changes in the training

periodicity of discriminator relative to generator training

epochs. We start with 20 steps of Generator for one

step of Determinator. After achieving the stability in

the training process (after 800 epochs), we switch the

periodicity to 10 that makes the discriminator learn faster.

But, it may affect generator training, so we increase the

periodicity to 20 in steps of 5 in each stage of training.

The training seems to converge after around 4600 epochs.

B. Results
1) Face Synthesis:
• Adversarial Loss: Existing face rotation methods [18],

[10], [31] use L2 loss for training the input-output

mapping. The mapping can be frontal-frontal or

profile-frontal. L2 loss produces blurry images [24] which

are not perceptually good, and post-processing algorithms

fail to work on the output image. This low-frequency

synthesis results in a lower face recognition performance.

Fig. 4 shows the adversarial generated images which

contain the high-frequency details.

• Extreme Profiles: Most of the prior methods work

well for limited pose-variance only and fail to recover

mostly posed faces. Our framework learns the identity

representation for extensive training data and can help

to improve the frontal face from the ill-posed face.

The ability to synthesize the frontal face from the

image-realistic image while preserving its identity allows

handling mostly posed faces. We take advantage of the

known pose for training the generator, latent classifier and

discriminator for classification. Not only pose, but other

attributes such as ear, forehead and cheeks are preserved

due to the consistency in identity. Apart from that, it

also retains non-facial characteristics like spectacles, hair

colour, hairstyle, etc. from the input profile image.

In the proposed work, varying the noise or pose does

not affect the identity of the face. It also enables the

retention of the structure of the face, resulting in better

PIFR performance. Traversing the learned manifold by

varying noise generates smooth changes for the same

identity , confirming that the model has learned the

identity representation.

• Face Rotation: The proposed framework not only

does the frontalization but is also trained to synthesize

any output pose. Fig. 4 shows face frontalization on

CFP dataset. Given extreme profiles in the top row,

the synthesis is very close to the real frontal face.

Extreme profiles are largely affected by pose and

contain the minimum information regarding identity.

Frontal synthesis is shown, and any artefacts are due

to image cropping in the pre-processing. Gdec rotates

the face at each of its layers without affecting identity

information. The experimental results prove that this

synthesis is superior qualitatively due to adversarial loss

and improved PIFR performance due to disentangled

representation and identity preservation.

TABLE IV
EXPERIMENTAL RESULTS ON CFP DATASET

Method Frontal-Frontal Frontal-Profile
DR-GAN 97.13 ± 0.68 90.82 ± 0.28

Current Work 98.23 ± 0.83 91.92 ± 0.59

2) Attribute Factorization: The proposed framework

disentangles the information as it is trained to produce

fake images to fool the discriminator. Learning a controlled

underlying representation is necessary for PIFR. When the

latent encoding does not have any information about pose

the classifier network. It fails to classify correctly. Thus, we

enforce the encoder not to put any information regarding the

pose in encoding to confuse the latent classifier maximally.

The framework produces identity preserving faces with

high-quality visual details. We evaluate the model for face

recognition performance. Unlike DR-GAN, we train the

proposed framework for a single image at a time. The

comparison with state-of-the-art is presented in Table IV. The

experimental results prove the improved and quality results

for largely posed faces using the proposed framework in

comparison to the other methods.

Table IV shows the comparison of CFP dataset for

input-output pair of frontal-frontal and profile-frontal. Average

face verification accuracy is reported with a standard deviation

over ten folds. We achieve similar results for frontal-frontal

verification, and we minimize the gap further between human

performance and deep learning methods.

3) Feature Visualization: To see the mapping of input

to latent encoding, we employ the t-SNE framework to

visualize the latent space. We project the 320-dimensional

latent encoding vector onto a 2D plane and plot it. Fig. 5

shows how similar faces are grouped together based on identity

and pose. Also, we observe a very narrow gap between some

clusters and those represent the high similarity between two

identities. We analyze the plot at multiple epochs and observe

the encoder that tries to group the whole space into two

clusters for profile and frontal and then cluster within that

base of identity. When a face image is provided, it is encoded

into a pose-invariant representation. The identity information

decides the identity cluster and poses vector determine the

frontal or profile face to generate a sample for providing a

realistic face image with the desired pose and identity.
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Fig. 4 Face frontalization on CFP dataset is shown. The top row is the input to the model. Next row is frontalized faces by the proposed framework. The
bottom row represents the ground truth frontal face. The artefacts are due to pre-processing of the input. The face rotations are shown for challenging

extreme profiles and in-the-wild face data

Fig. 5 Two-dimensional projection of Latent space. Different colour represents a different identity. Profile faces are grouped differently than frontal faces.
Face image for one identity is shown

VI. CONCLUSION

This paper presents a generative framework for PIFR, Face

rotation and Face synthesis. The modified GAN architecture

learns to disentangle identity representation from other face

attributes. This approach can be generalized to non-face

attributes also. Attribute factorization using a latent classifier

to help force disentanglement has been explored. It has

been found that the disentangled representation preserves

the identity information even for extreme profiles, and the

adversarial network synthesizes perceptually clear face images.

Different losses were used in the framework, and their impact

was observed during training. A superior frontal synthesis

capability and better face recognition performance have been

found on the CFP dataset with the use of a latent classifier.

The proposed framework can be referenced for further research

in face attribute disentanglement. For profile face synthesis,

the visual images are not perceptually appealing, but still

outperforms in face recognition. In the future, we will focus

on the areas to improve perceptual quality.
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