
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

469

Optimizing Network Latency with Fast Path
Assignment for Incoming Flows

Qing Lyu, Hang Zhu

Abstract—Various flows in the network require to go through
different types of middlebox. The improper placement of network
middlebox and path assignment for flows could greatly increase
the network latency and also decrease the performance of network.
Minimizing the total end to end latency of all the ows requires to
assign path for the incoming flows. In this paper, the flow path
assignment problem in regard to the placement of various kinds
of middlebox is studied. The flow path assignment problem is
formulated to a linear programming problem, which is very time
consuming. On the other hand, a naive greedy algorithm is studied.
Which is very fast but causes much more latency than the linear
programming algorithm. At last, the paper presents a heuristic
algorithm named FPA, which takes bottleneck link information and
estimated bandwidth occupancy into consideration, and achieves
near optimal latency in much less time. Evaluation results validate
the effectiveness of the proposed algorithm.

Keywords—Latency, Fast path assignment, Bottleneck link.

I. INTRODUCTION

FLOWS in network often change rapidly. Many of which

are required to go through a chain of middlebox to meet

the performance and security demand. The flows may suffer

significant latency due to the improper assignment of the

flow paths and load distributions, unbalancing the network

resources. This may further cut down the network resource

utilization, such that some middlebox will be loaded with too

many ows and thus risk packets losses.

In the context of Software Defined Network (SDN) [1], [2]

and Network Function Virtualization (NFV) [3], the devices of

the network turn to be programmable, and network middlebox

can be deployed as software modules/components. The flows’

status are changing frequently, when some flows are finishing

transmitting, some other flows are being formulated and begin

to transmit at the same time. At the same time, a flow

may require to go through several different middlebox or

a ordered sequence of middlebox, i.e., service chain [4].

The path assigned for a specific flow should include specific

types of middlebox or service chain. To keep pace with the

rapidly changing flows and complex middlebox requirements,

how to efficiently handle the incoming flows to optimize

the utilization of network resource is a tough problem. In

order that the flow paths adapt to the dynamic changes of

the network environments, flow paths should be carefully

assigned to accommodate the network topology and global

information should be taken into consideration so that network

Qing Lyu is with the Department of Automation and Research Institute
of Information Technology, Tsinghua University, Beijing, China (email:
lvq16@mails.tsinghua.edu.cn).

Hang Zhu is with Johns Hopkins University, USA.

resource utilization is optimized. Moreover, flows should be

assigned among different middlebox to avoid the disable of

the instance of middlebox and keep the network operating in

a good condition.

Many recent works focus on middlebox placement as

well as the path switching problem in the network [5]–[8].

[9] addresses the problem of load distribution in datacenter

network when there are traffic spikes. A hybrid approach is

proposed to handle the load distribution problem when there

are traffic spikes. The system is consisted of a load distributing

controller in the control plane and a load distributor in the

data plane. For the flat flows, the controller will assignment

paths for them according to the topology and bandwidth

information. While for spiked flows, the load distributors are

classied into several groups in advance to handle different

flows. For a incoming flow, the controller will firstly checks

the statuses of the distributors in its group and choose the

idlest distributor to distribute the flow, if the distributors in

the group are too busy to meet the constraint to handle the

incoming flow, then the controller will guide the flow to other

groups until it is effectively guided to the wanted destination.

The grouping are updated periodically by the controller

according to the load statuses of the distributors. SIMPLE

[10] turns the policies in the middlebox to forwarding rules

in SDN switches in the condition of load balance. SIMPLE

consists of a resource manager, a modification handler and

a rule generator. The resource manager takes care of the

load balance among the middlebox, the modification handler

deals with the changes caused by the middlebox, and the

rule generator converts the policies in middlebox to rules

in the SDN switches. Reference [11] considers the traffic

rate changing effect of middlebox and puts forward a traffic

aware middlebox placement scheme. It first sort the middlebox

according to the traffic rate changing factor in the increasing

order. For a single flow with predetermined path, it adopts

a rule called Least-First-Greatest-Last (LFGL) to place the

middlebox. While for multiple flows without predetermined

paths, it is proved that the middlebox placement problem is

NP-hard and can not be solved in polynomial time, a MinMax

path guided heuristic is applied to address the problem.

[12] takes into account the service chains and propose a

solution to place the middlebox in the optimal locations when

network information such as topology is known as well as

the policies specifications. The authors firstly convert the

placement problem to 0− 1 programming and prove that it is

NP-hard, then two heuristic algorithms, greedy algorithm and

simulated annealing based algorithm, are employed to obtain

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

470

TABLE I
A FLOW EXAMPLE

Source IP Destination IP Source Port Destination Port Protocol Required Bandwidth Service Chain
59.66.8.2/24 64.10.8.2/24 0-65535 80 TCP 600bps FW,IDS

a sub-optimal solution.

Other works such as [13]–[15] target on the policy

enforcement problem and distribute the policy on switches.

Furthermore, [16] solves the network-wide middlebox

extending problem by using FlowTags. Reference [17]

considers the security problem in finding the optimal path as

well as the updating problem. Reference [18] uses SDN to

manage the middlebox placement.

The middlebox aware flow path assignment is formulated to

a optimization problem in this paper. The optimization goal is

to minimize the total end to end latency of the flows. However,

the optimization goals can also be flexibly generalized to other

metrics such as maximizing the utilization of bandwidth or

minimizing the maximum link load ratio (the ratio of current

link load to link bandwidth capacity) [11] in the network.

We put out a strategy to dynamically assignment path for

each incoming flow. We firstly formulate the problem to a

linear programming (LP) problem, but due to the difficulties

of handling the path loops in the network, finding optimal

solution to the LP problem is time consuming. Therefore,

we come up with a heuristic algorithm FPA which takes into

consider the bandwidth occupancy of each link and assigns the

shortest path that does not impact the path assignment of the

following flows to the current flow. We verify our proposed

heuristic algorithm in three different network topologies by

comparing to it the LP method and a naive greedy algorithm.

Evaluation results show that FPA assigns latency optimized

paths for arriving flows efficiently.

II. PROBLEM FORMULATION

We formulate the network as a directed graph G(V,E),
where G represents the nodes set while E represents the

links set. The nodes include the hosts and forwarding devices,

the links denote the connections the nodes. Flows can be

transmitted from hosts to hosts. A flow example is given in

Table I. The first 5 fields are the 5-tuple of a packet, the

other 2 fields are the demanded bandwidth and service chain

respectively. In this example, the specifications are firewall

(FW) and intrusion detection system (IDS).

We define the variables in the network into 3 categories:

topology variable, flow variable and assistant variable.

Topology variable specifies the nodes and links in the network,

nodes represents the hosts and forwarding devices. Denote

(i, j) as the link from node i to node j, Capai,j as the

bandwidth capacity of link (i, j), Lij as the latency of link

(i, j), Mlocam as the positions of middlebox type m, a type

of middlebox may have multiple instances in the network.

M denotes the set of middlebox types, such as FW, IDS,

Proxy, Deep Inspection (DI), Network Address Translation

(NAT), Load Balance, etc [12]. Flow variables describe the

information of flows. Denote F as the set of flows that need

to assignment paths, (s, t) as a flow from source node s to

destination node t, Ms,t as the middlebox that flow (s, t) needs

to go through, Cst as the bandwidth demanded by flow (s, t).
Assistant variables are the decision variable which used in

the linear programming, for example, Xs,t
i,j is an indicating

variable that defined as

xst
ij =

{
1, if (s, t) go through link (i, j)
0, otherwise

(1)

Similarly, ysti is used to indicate a flow (s, t) go through a

node i, ysti can be represented as

∀i ∈ V :

ysti = max

⎧⎨
⎩

∑
j∈V,(j,i)∈E

xst
ji,

∑
j∈V,(i,j)∈E

xst
ij

⎫⎬
⎭

(2)

Equation (2) means that, for any flow and any node in the

network, if the flow goes into the node (the number of ingress

flow is 1) or leaves the node (the number of egress flow is

1), then the flow goes through the node, thus ysti equals to 1.

Otherwise, the the number of ingress flow and the number of

egress flow for the node both equal to 0, and the flow does

not go through the node, thus ysti equal to 0.

ust
i is a defined function of flow (s, t) and satisfies 1 ≤ u ≤

|V |.
According to the forwarding action of a node, we have the

following constraint

∀s, t ∈ F :
∑

i∈V,(i,j)∈E

xst
ij −

∑
k∈V,(j,k)∈E

xst
jk =

⎧⎨
⎩

−1, j = s
0, j �= s, t, j ∈ V
1, j = t

(3)

Equation (3) specifies the fact that for any flow (s, t) in the

network, if j = t, it means that node j is the ingress node for

flow (s, t), the number of ingress flows is 1 and the number

of egress flows is 0, thus the number of ingress flows subtract

the number of egress flows is 1, (3) holds. If j = s, vice versa,

the subtract value is −1. If j �= s, t, j ∈ V , whether flow (s, t)
go through node j or not, the subtract value is 0. Equation (3)

also determines that a flow is successfully routed.

To make sure there is no forwarding loop in the network,

we make the following constraint

∀(s, t) ∈ F, ∀(i, j) ∈ E : ust
i −ust

j +|V |xst
ij ≤ |V |−1. (4)

From (4) we know that for any flow (s, t) and any link

(i, j) in the network, if flow (s, t) does not go through link

(i, j), then xst
ij = 0, as we have assumed the assistant variable

1 ≤ u ≤ |V |, thus (4) holds. Otherwise, flow (s, t) does go

through link (i, j), xst
ij = 1, the constrain (4) makes sure that

ust
i − ust

j ≤ −1. Which means that, for the node that a flow

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

471

goes through before, its node value u is less than that the flow

goes through later. If there is a loop in the flow path, there

should be a node that the flow goes through twice or more.

Without loss of generality, assume there is a flow goes through

nodes {a, b, c, d, e, f, a} sequentially, we can obtain

ust
a − ust

b ≤ −1,

ust
b − ust

c ≤ −1,

ust
c − ust

d ≤ −1,

ust
d − ust

e ≤ −1,

ust
e − ust

f ≤ −1,

ust
f − ust

a ≤ −1,

(5)

sum the items of Equation (5) by adding left to left side and

right to right side, we can obtain

0 ≤ −6, (6)

which makes contradiction. Therefore, there should be no loop

according to (4).

For the link bandwidth constrain, we have

∀(i, j) ∈ E :
∑

(s,t)∈F

xst
ij × Cst ≤ Capaij . (7)

Equation (7) specifies that the total demanded bandwidth of

all flows that go through a link does not exceed the bandwidth

capacity of that link.

Furthermore, a flow need to go through a specific type

middlebox, we have the constraint

∀(s, t) ∈ F,m ∈ Mst :
∑

i∈Mlocam

ysti ≥ 1. (8)

Every type of middlebox is placed to certain nodes, each

type may have multiple middlebox instances, for any flow that

need to go through middlebox of a certain type, Equation (8)

configures that the flow go through at least 1 instance node

of the middlebox, thus certain type’s service for that flow is

satisfied.

Lastly, the processing ability of the nodes that deployed

with different types of middlebox should also be considered.

∀i ∈ Mlocam :
∑

(s,t)∈F

ysti R(st) ≤ Ri. (9)

Where R(st) is the processing resource that flow (s,t) needs.

Ri is node i’s processing resource capacity that can be spared

to deal with the flows that routed to node i.

Considering the fact flows with higher bandwidth such as

video may require higher priority, we take the bandwidth

weighted end to end latency as our optimization target, and

the whole optimization problem can be represented as

min
∑

(s,t)∈F

∑
(i,j)∈E

xst
ijLijCst

s.t. (1), (2), (3), (4), (7), (8), (9).

(10)

Algorithm 1 Find Bottleneck Link

Input: Topology, Mloca, flow set F2, bandwidth
Output: Bottleneck link

1: function BOTTLENECK LINK(F2)
2: //Find the shortest latency path with demanded middlebox for

flow set F2

3: for flow f in F2 do
4: //Get the location of middlebox for f: fmb

5: Calculate the shortest path that goes through fmb

6: path = Dijkstra(topology, f, fmb)
7: shortest path[f] = path
8: end for
9: //Calculate the demanded bandwidth for related links

10: for link l in shortest path[F2] do
11: sum demanded bandwidth of flows go through l
12: Calculate ratio of demanded BW and residue BW
13: end for
14: //Find the link with biggest ratio
15: bottleneck link=link with Max ratio
16: return result
17: end function

III. ALGORITHM DESIGN

Solving the optimization problem is time consuming and

can not meet the processing requirement in real deployment,

which will be illustrated in the Section V. We turn to heuristic

algorithms to assign paths for flows rapidly.

Due to the bandwidth constrain of the links, not every

flow can be assigned to the best choice of path with

the minimum latency. We consider both the bandwidth

consumption information of each flow and the bandwidth

residue of each link in the network, and assign path for each

incoming flow aiming at minimizing the total end to end

latency of all the flows.

A natural heuristic algorithm is the greedy algorithm.

For the flow set remains to be assigned paths, we handle

the incoming flows one by one. Calculate the path for the

incoming flow with smallest latency that goes through needed

middlebox by Dijkstra algorithm [19]. If the path can not

meet the bandwidth constrain then go to the path with second

smallest latency until the bandwidth constrain of all the links

in the path are satisfied. Repeat the progress until all the

flows have been assigned paths. It just considers the bandwidth

capacity constraint when calculate the flow path can always

chooses the path with least latency for the current flow.

We propose another heuristic algorithm called FPA. It

considers the effect of the path assignment for the current flow

to the later flows. Suppose there are multiple incoming flows

waiting for path assignment, denote F1 = {f11, f12, ..., f1K}
as the set that flows have already been assigned, F2 =
{f21, f22, ..., f2L} as the set that flows waits to be assigned. As

the bandwidth capacity of each link is limited, and a link may

be demanded by multiple flows, we could not assign path with

the least latency for every flow. We make effort to minimize

the total end to end latency for all flows. Define the link ratio

as the total expected bandwidth of all flows that prepare to go

through the link under the shortest latency path condition with

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

472

TABLE II
A BOTTLENECK LINK EXAMPLE

Flow Included Link Link Ratio

f20 link1, link2 link1
f20,dem+f23,dem
BWresiduelink1

f21 link3, link4 link2
f20,dem+f22,dem
BWresiduelink2

f22 link2, link3 link3
f21,dem+f22,dem+f23,dem

BWresiduelink3

f23 link1, link3 link4
f21,dem

BWresiduelink4

Algorithm 2 Calculate latency1

Input: Topology, Mloca, flow set F2, bandwidth
Output: Latency1

1: function CALCULATE LATENCY1(F2)
2: //Calculate the latency when always assigning the shortest

latency path for current flow
3: for flow f in F2 do
4: current topology=topology
5: for link l in current topology do
6: if l’s bw smaller than f ’s demanded bw then
7: remove l from current topology
8: curr topo=RemoveLinks(l)
9: end if

10: end for
11: //Get the location of middlebox for f: fmb

12: Calculate the shortest path that goes through fmb

13: path=Dijkstra(curr topp, f , fmb)
14: assignment the path to f
15: latency1=0
16: latency1=latency1+f ’s path latency
17: update bandwidth residue
18: move f to F1

19: end for
20: return result
21: end function

the demanded middlebox to the bandwidth residue of that link

linkRatioij =

∑
f∈F2,(i,j)∈pf

fdem

BWresidueij
. (11)

where fdem denote the demanded bandwidth by flow f , pf is

the shortest latency path by Dijkstra algorithm for flow f . We

define the link with highest link ratio as the bottleneck link.

Table II gives an example of the calculation of the

bottleneck link, where the link with the highest link ratio will

be the bottleneck link. The pseudo code to find the bottleneck

link is shown in Algorithm 1.

For the current flow, if the shortest latency path with needed

middlebox on it does not include the bottleneck link, then

choose it as the path for the current flow and go to take care

of the next incoming flow. However, if the shortest latency

path for the current flow does include the bottleneck link,

we have two options, the first one is we still assign the

shortest path for the current flow and assign paths for the later

incoming flows in the same way. Then calculate the end to end

latency. Nevertheless, this may bring troubles to the later flows

because the current flow could occupy the link bandwidth

and the later flows can not choose the wanted paths as the

link bandwidth capacity is exhausted. Under this strategy, the

latency calculation is depicted in Algorithm 2. The second

one is we do not select the path which has the shortest latency

Algorithm 3 Calculate latency2

Input: Topology, Mloca, flow set F2, bandwidth
Output: Latency2

1: function CALCULATE LATENCY2(F2)
2: //Calculate latency when always assigning the shortest latency

path without bottleneck link for current flow
3: latency2=0
4: for flow f in F2 do
5: current topology=topology
6: for link l in current topology do
7: if l’s bw smaller than f ’s demanded bw then
8: remove l from current topology
9: curr topo=RemoveLinks(l)

10: end if
11: end for
12: //Get the location of middlebox for f: fmb

13: Calculate the shortest path that goes through fmb

14: path=Dijkstra(curr topp, f, fmb)
15: bottleneck link=BOTTLENECK LINK(F2)
16: if bottleneck link is not in f ’s path then
17: assignment the path to f
18: latency2=latency2+f ’s path latency
19: update bandwidth residue
20: move f to F1

21: continue
22: else
23: remove the bottleneck link from curr topp
24: curr topo=RemoveLinks(bottleneck link)
25: //Calculate the next shortest latency
26: CALCULATE LATENCY2
27: end if
28: end for
29: return result
30: end function

contains the bottleneck link for for the current flow, we turn to

the second shortest latency path , if it still include a bottleneck

link, then go to the next shortest latency path with demanded

middlebox until there is no bottleneck link in the selected path

for the current flow. If all available path for the flow contains

bottleneck link, choose the first shortest latency for the flow. In

this way the later incoming flows have larger space to choose

the paths as the link bandwidth is relatively adequate. Update

the link bandwidth residue information. Repeat doing this

until all the flows have been assigned paths. Finally calculate

the total end to end latency. Under this strategy, the latency

calculation is depicted in Algorithm 3. Finally, we compare

the total end to end latency of the two methods and choose

the one with the lower value. The path assignment algorithm

FPA is given in Algorithm 4.

IV. IMPLEMENTATION

We generate different network topologies to perform

simulations on the proposed flow path assignment algorithm.

The method described by [20] is used to generate network

topology. The network topology generator takes multiple

parameters as inputs. The number of connection (nodes and

links) can be adjusted conveniently. The degree of connectivity

in the network can be set as low, medium or high. We adopts

three kinds of network topology, Class A, B, C. Specifically,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

473

Algorithm 4 Path assignment

Input: Topology, Mloca, flow set F2, bandwidth
Output: Path assignment

1: function PATH ASSIGNMENT(F2)
2: //assignment path for flows in flow set F2

3: for flow f in F2 do
4: Compare Latency1 and Latency2
5: if Latency1 is smaller than Latency2 then
6: assignment the shortest latency path to f
7: else
8: assignment the shortest latency path without

bottleneck link in it to f
9: end if

10: move f to F1

11: end for
12: return result
13: end function

Class A with 36 nodes and 108 links, Class B with 75

nodes and 196 links, Class C with 115 nodes and 384 links.

For each topology, we allocate link latency and bandwidth

constraints to the links. We generate flows from host to host

based on the topology described above. We classify all the

nodes in the topology into two categories, the edge nodes with

only one connection and the intermediate nodes with multiple

connection. Only the edge nodes can be chosen to deploy

host, and intermediate nodes are chosen to deploy forwarding

devices. We have implement 5 different types of middlebox.

For a certain type of middlebox, several middlebox instances

are randomly connected to the chosen forwarding devices. We

randomly generate small flows between hosts and then merge

the flows with the same source host and terminal host until a

certain number of bandwidth is exhausted. In this way we can

obtain a set of flows which can meet the bandwidth constraints.

Total end to end latency is selected to evaluate the effectiveness

of our flow path assignment algorithm. The algorithm assigns

path for the incoming flows, the path latency can obtained by

adding links’ latency and processing latency. We calculate the

total end to end latency by adding the path latency of all flows.

We implemented the path assignment algorithm in Python.

Network libraries such as FNSS (Fast Network Simulation

Setup) and NetworkX are adopted to generate the network

topology and flows information. FNSS can setup the network,

such as adding or removing links, acquiring link bandwidth

and latency and obtaining the neighbouring nodes of the

current node. Flows between two hosts can also be generated

and removed. NetworkX offers various graph algorithms such

as the shortest path calculation using Dijkstra algorithm.

Furthermore, the formulated LP problem is solved by LP

solvers [21]–[23].

V. EVALUATION

Several simulation results are carried out to evaluate the

proposed ow path assignment algorithm.

The evaluation is conducted under three kinds of topologies

as described above. The topologies are shown in Table III.

With the rapid variation of network flows and network

environments, the path assignment problem takes the overall

TABLE III
NETWORK TOPOLOGIES

Topology Number of nodes Number of links
A 36 108
B 75 196
C 115 384

Fig. 1 Normalized total end to end latency under different topologies

end to end latency as the optimization target. How to rapidly

assign paths for all the flows is the key indicator that should be

cared about. The memory consumption of all the comparing

methods is not a critical point here, so we focus the emphasis

on the processing time of the algorithms.

To evaluate the effectiveness of the proposed path

assignment algorithms FPA, LP and the naive greedy algorithm

are taken as the baseline. The naive greedy algorithm always

chooses the path with the smallest latency for the current

flow under the bandwidth constraints. It does not consider

the impact of the bandwidth consumption of the link, which

may bring trouble to the path assignment of other flows. It

occupies the link bandwidth no matter the link is required

by the following flows or not. However, the link bandwidth

is limited, therefore the rest flows might have to go through

the path with longer latency if the bandwidth of the required

link is exhausted. This algorithm does not take into account

the overall demands of all the flows and always selects the

optimal path for the current flow in each iteration, which may

increase the total end to end latency.

Hereby, consider three critical questions: (1). What kind of

performance can the algorithms achieve to minimize the total

end to end latency when multiple flows need to be assigned

paths. We compare the latency of the three methods: Linear

Programming, proposed path assignment algorithm FPA and

naive greedy algorithm. (2). How many processing time is

needed to handle all the flows for the three methods, here

we do not consider memory consumption of the algorithms

as it is not a key index in the context. (3). What is

the performance gap between the proposed path assignment

algorithm and LP method, how close does the proposed

path assignment algorithm obtain when comparing to the LP

method which is the optimal solution that considers all the

network constraints. Our methods can be convenient scaled

to other optimization targets such as minimize the maximum

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

474

Fig. 2 CDF of the normalized latency for single flow under Topology A.

Fig. 3 CDF of the normalized latency for single flow under Topology B.

Fig. 4 CDF of the normalized latency for single flow under Topology C.

TABLE IV
PROCESSING TIME

Topology A B C
LP 146.81 202.25 266.04

Greedy 0.18 0.31 0.56
FPA 0.28 2.22 22.01

link bandwidth consumption to link bandwidth capacity ratio

or maximize the bandwidth utilization. All we need to do is

to modify the optimization target, add or remove constraints

under the current network model.

LP considers the overall network condition, and dedicates

to find the optimal solution, therefore, the latency is the

least among all the methods. To compare the performance

of the algorithms more intuitively, the latency is normalized,

where we calculate the ratio of the achievements of different

algorithms to least latency solution, LP. The results are shown

in Fig. 1, which can be obviously observed that, the latency of

the naive greedy algorithm is the largest as it only consider the

best path for the current flow. The proposed path assignment

algorithm FPA can achieve almost the same performance of

the LP algorithm. which also indicates that the performance

gap between LP and FPA is quite small.

Under different kinds of network topology, the processing

time of each algorithm is illustrated in Table IV. It can

be obviously observed that the processing time of LP is

much longer than that of the naive greedy algorithm and the

proposed path assignment algorithm FPA. This is because

LP is the globe optimal solution for the path assignment

problem. To find the optimized path for every flow, it needs

to consider multiple constraints while finding the optimal

solution that meets all the constraint is very time consuming.

The processing time of the naive greedy algorithm is the least

as it just chooses the path with the smallest latency for the

current flow, it only needs to consider the path goes through

certain types of middlebox, and the links in the path meet the

flow’s bandwidth demand. It does not care about the bandwidth

consumption of the links, which may bring trouble to the

following flows when assigning paths for them. The processing

time for the proposed path assignment algorithm is a little

longer than that of the naive greedy algorithm. The proposed

path assignment algorithm take the network condition into

account and evaluates the impact it may bring to the following

flows when assigning path for the current flow.

To further exhibit the details of the proposed path

assignment algorithm and illustrate the path assignment

strategy for single flow, we plot the CDF curve of the

normalized latency of a single flow for the proposed algorithm

and the naive greedy algorithm, where single flow’s latency is

normalized by calculating the ratio of it to the biggest flow

latency. The results under different topologies are shown in

Figs. 2-4,. From which the difference of the path assignment

results of the proposed algorithm FPA and naive greedy

algorithm can be observed. Under Topology A, the path

assignment results of the two algorithms apart from each other

in the middle stage, which means for flows with medium

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:9, 2019

475

latency, the two algorithms adopt different strategy to assign

the paths and achieve different performance. While under

Topology B, the path assignment results are the different for

the flows with small latency. However, under Topology C,

the path assignment results are quite different for single flow

no matter the flow’s path latency is small or big. This is

because the proposed algorithm and naive greedy algorithm

only choose the same path if the path for the current flow

does not influence the following flows. However, for the

flows which may affect other flows’ path assignment, the

two algorithms make different strategies which leads to the

deviation of the curves.

VI. CONCLUSION

Flows in network often change rapidly. The improper

assignment of the flow paths and load distributions may cause

network to suffer from terrible congest. In this paper, we

consider the problem of path assignment for multiple flows.

How to minimize the total end to end latency while rapidly

assigning paths of all flows need be be carefully addressed.

We first formulate the problem to a LP problem but it is quite

time consuming to find the optimal solution when multiple

network constraints are needed to be considered. To reduce

the processing time, the naive greedy algorithm is put forward,

which always choose the path with smallest latency for the

current. However, the total end to end latency for all the flows

increases as it may cause the later flows to go through path

with longer latency. Therefore, a heuristic algorithm FPA is

proposed, which considers the affects that path assignment for

current flow may bring to the following flows. The algorithm

selects the path for current flow that considers the bandwidth

condition and makes the strategy leads to the minimized

total end to end latency. The evaluation results validate the

effectiveness of the proposed algorithm.

VII. ACKNOWLEDGMENTS

The authors benefit a lot from the fruitful discussions

with colleagues in the Network Security Lab in Tsinghua

University. The authors would also like to thank the

anonymous reviewers for their efforts in the revision. This

work is supported by National Natural Science Foundation

(No. 61872212) and National Key Research and Development

Program (No.2016YFB1000101).

REFERENCES

[1] O. N. Fundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, vol. 2, pp. 2–6, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[3] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[4] Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R. Manghirmalani,
R. Mishra, R. Patneyt, M. Shirazipour, R. Subrahmaniam, C. Truchan,
et al., “Steering: A software-defined networking for inline service
chaining,” in Network Protocols (ICNP), 2013 21st IEEE International
Conference on, pp. 1–10, IEEE, 2013.

[5] A. Gushchin, A. Walid, and A. Tang, “Scalable routing in sdn-enabled
networks with consolidated middleboxes,” in Proceedings of the 2015
ACM SIGCOMM Workshop on Hot Topics in Middleboxes and Network
Function Virtualization, pp. 55–60, ACM, 2015.

[6] A. Hari, T. Lakshman, and G. Wilfong, “Path switching: reduced-state
flow handling in sdn using path information,” in Proceedings of
the 11th ACM Conference on Emerging Networking Experiments and
Technologies, p. 36, ACM, 2015.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, pp. 7–12, ACM, 2012.

[8] A. Abujoda and P. Papadimitriou, “Midas: Middlebox discovery and
selection for on-path flow processing,” in Communication Systems and
Networks (COMSNETS), 2015 7th International Conference on, pp. 1–8,
IEEE, 2015.

[9] Z. Liu, X. Wang, W. Pan, B. Yang, X. Hu, and J. Li, “Towards
efficient load distribution in big data cloud,” in Computing, Networking
and Communications (ICNC), 2015 International Conference on,
pp. 117–122, IEEE, 2015.

[10] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in ACM
SIGCOMM computer communication review, vol. 43, pp. 27–38, ACM,
2013.

[11] W. Ma, J. Beltran, Z. Pan, D. Pan, and N. Pissinou, “Sdn-based traffic
aware placement of nfv middleboxes,” IEEE Transactions on Network
and Service Management, vol. 14, no. 3, pp. 528–542, 2017.

[12] J. Liu, Y. Li, Y. Zhang, L. Su, and D. Jin, “Improve service chaining
performance with optimized middlebox placement,” IEEE Transactions
on Services Computing, vol. 10, no. 4, pp. 560–573, 2017.

[13] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing tables in
software-defined networks,” in INFOCOM, 2013 Proceedings IEEE,
pp. 545–549, IEEE, 2013.

[14] N. Kang, Z. Liu, J. Rexford, and D. Walker, “Optimizing the one
big switch abstraction in software-defined networks,” in Proceedings
of the ninth ACM conference on Emerging networking experiments and
technologies, pp. 13–24, ACM, 2013.

[15] X. Wang, W. Shi, Y. Xiang, and J. Li, “Efficient network security policy
enforcement with policy space analysis,” IEEE/ACM Transactions on
Networking, vol. 24, no. 5, pp. 2926–2938, 2016.

[16] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags.,” in NSDI, vol. 14, pp. 543–546, 2014.

[17] J. Liu, Y. Li, H. Wang, D. Jin, L. Su, L. Zeng, and T. Vasilakos,
“Leveraging software-defined networking for security policy
enforcement,” Information Sciences, vol. 327, pp. 288–299, 2016.

[18] Z. Qazi, C.-C. Tu, R. Miao, L. Chiang, V. Sekar, and M. Yu, “Practical
and incremental convergence between sdn and middleboxes,” Open
Network Summit, Santa Clara, CA, 2013.

[19] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2009.

[20] J. McCauley, Z. Liu, A. Panda, T. Koponen, B. Raghavan, J. Rexford,
and S. Shenker, “Recursive sdn for carrier networks,” ACM SIGCOMM
Computer Communication Review, vol. 46, no. 4, pp. 1–7, 2016.

[21] S. Mitchell, M. OSullivan, and I. Dunning, “Pulp: a linear programming
toolkit for python,” The University of Auckland, Auckland, New Zealand,
http://www. optimization-online. org/DB FILE/2011/09/3178. pdf, 2011.

[22] A. J. Mason, “Opensolver-an open source add-in to solve linear and
integer progammes in excel,” in Operations research proceedings 2011,
pp. 401–406, Springer, 2012.

[23] A. Makhorin, “Glpk (gnu linear programming kit),” http://www. gnu.
org/s/glpk/glpk. html, 2008.

