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Abstract—Geometric modeling plays an important role in the
constructions and manufacturing of curve, surface and solid
modeling. Their algorithms are critically important not only in
the automobile, ship and aircraft manufacturing business, but are
also absolutely necessary in a wide variety of modern applications,
e.g., robotics, optimization, computer vision, data analytics and
visualization. The calculation and display of geometric objects
can be accomplished by these six techniques: Polynomial basis,
Recursive, Iterative, Coefficient matrix, Polar form approach and
Pyramidal algorithms. In this research, the coefficient matrix (simply
called monomial form approach) will be used to model polynomial
rectangular patches, i.e., Said-Ball, Wang-Ball, DP, Dejdumrong and
NB1 surfaces. Some examples of the monomial forms for these
surface modeling are illustrated in many aspects, e.g., construction,
derivatives, model transformation, degree elevation and degress
reduction.

Keywords—Monomial form, rectangular surfaces, CAGD curves,
monomial matrix applications.

I. INTRODUCTION

IN computer-aided design and manufacturing, curves and

surfaces are widely used to produce models, prototypes,

and products. Typically, curve and surface modeling schemes

can been represented by polynomial bases, e.g., Bézier and

B-spline. These polynomial bases are more potential than basic

geometric shapes because they can represent complex models.

In the recent years, when 3D models are popularly applied

in a wide variety of work, the rectangular surface modeling

plays an important role in many applications. However, the

traditional way of the rectangular patch construction employs

polynomial basis. This method consumes much computational

time and it is the problem of interactive application. In this

research, the monomial form approaches are proposed in

surface construction and their applications.

In CAGD, the rectangular surfaces can be constructed by

a roughly rectangular grid of control points and polynomial

functions. The polynomial functions of surface can be derived

from polynomial basis of curve using Cartesian product. The

most famous polynomial basis is Bernstein polynomials[1]

because it is widely used to represent the Bézier curves

and surfaces. The rectangular Bézier surface are resided

within a rectangular grid satisfied by convex hull property.

Moreover, Bernstein polynomial can be simply implemented

the surfaces. However, the degree of polynomial function

is varied proportional to the number of control points. The
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high degree of rectangular Bézier surface may not practically

applied.

Besides the Bézier /Bernstein polynomials, there are

some polynomials of curves and surfaces that possess the

convex hull property and shape preserving like Bernstein.

These curves were developed to improve curve and surface

construction, i.e., reduce computational time. By the restriction

of Bézier curve and surface, the higher degree of curves

and surfaces can not be accepted in the application due

to high computational time. To apply curves and surfaces

in higher degree, Said-Ball[2] developed the Ball basis

functions[3][4][5]. Moreover, Hu et al.[6] presented the degree

elevation and degree reduction of Said-Ball polynomials.

With these properties, Said-Ball polynomial can be efficiently

utilized in any degrees.

Since there have been the problem in the curve construction,

the Bernstein polynomial has quadratic complexity function.

Therfore, many researchers proposed the new polynomial

with linear complexity function such as Wang-Ball[7],

Delgado-Peña [8], NB1[9][10] and Dejdumrong [11]

polynomials. However, these polynomials were complex to

implement the curve and the surface.

Besides of polynomial basis, there are several techniques for

surface construction, e.g., recursive algorithm, iterative form,

and monomial form. The recursive algorithm is appropriate

in software implementation but more static storage is needed

while processing. The iterative form has a mechanism to

interpolate pairs of adjacent control points for generating new

points. The process is repeated until the corresponding point

on a surface is acquired. However, this approach cannot be

adopted to polynomial properties such as degree elevation,

degree reduction, and conversion.

In this paper, the coefficient matrix or monomial form

approach is demonstrated to construct the curves and surfaces.

With its merits, the curves and surfaces can be modeled simply

and efficiently by matrix products. Monomial matrix approach

and its applications for CAGD curves were introduced

in[12][13]. In this work, the coefficient matrix for the

Said-Ball, Wang-Ball, DP, Dejdumrong and NB1 surfaces are

formulated. Moreover, monomial matrices can be facilitated

in degree elevations, degree reductions, and conversion among

polynomials.

II. MONOMIAL FORMS

In order to understand the uses of monomial matrices for

surface constructions, it is necessary to review the monomial

matrices for each curve[12].
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Proposition 1. (Bézier Monomial Form[12]) A Bézier curve of
degree n, denoted by Bn(t), with n+1 control points, denoted
by {bi}ni=0, can be written in terms of the power basis form
as follows: [14]

Bn(t) =
n∑

i=0

n∑
j=0

bi ·mi,j · tj , (1)

where

mi,j = (−1)j−i

(
n

j

)(
j

i

)
. (2)

Proposition 2. (Said-Ball Monomial Form)[12] An nth-degree
Said-Ball curve, denoted by Sn(t), given by n+1 control
points, denoted by {Vi}ni=0, can be expressed in power basis
form as follows:

Sn(t) =

n∑
i=0

n∑
j=0

Vi · si,j · tj , (3)

where

si,j =
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(4)

Proposition 3. (Wang-Ball Monomial Form)[12] A Wang-Ball
curve, denoted by An(t), provided with n+1 control points,
denoted by {pi}ni=0, can be shown as

An(t) =
n∑

i=0

n∑
j=0

pi · ai,j · tj , (5)

where

ai,j =
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(6)

Proposition 4. (DP Monomial Form)[12] An nth-degree DP
curve, denoted by Cn(t), given by a set of n+1 control points,
denoted by {qi}ni=0, can be formulated in power basis form
by

Cn(t) =
n∑

i=0

n∑
j=0

qi · ci,j · tj , (7)

where

ci,j =
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Proposition 5. (Dejdumrong Monomial Form)[12] A
Dejdumrong curve of degree n, denoted by Dn(t), with n+1
control points, denoted by {di}ni=0, can be computed by

Dn(t) =
n∑

i=0

n∑
j=0

di · di,j · tj , (9)

where

di,j =
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Proposition 6. (NB1 Monomial Form)[12] An NB1 curve of
degree n, Nn(t), with n+1 control points, denoted by {yi}ni=0,
can be formed by the power basis form as follows:

Nn(t) =
n∑

i=0

n∑
j=0

yi · gi,j · tj , (11)

where
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III. MONOMIAL FORM APPROACH TO SURFACE

MODELING

Regarding monomial matrix approach, it facilitates

construction of CAGD curves and CAGD curve properties,

e.g., the derivatives, the degree elevations, the degree

reductions and the CAGD curve conversions. Besides of the

cases of curves, the surface modeling can be utilized by using

monomial matrices.

A. Monomial Forms
Applying monomial forms for constructing surfaces, the

matrix products must be expressed and the coefficient matrix

can be formulated for each surface as follows.

1) Bézier rectangular surface with Bézier control net, P ∈
{{bi,j}pi=0}qj=0 can be defined as

B(u, v) = (Bp · U) · P · (Bq · V )� (13)

where

Bn =

⎡
⎢⎢⎢⎣

m0,0 m0,1 . . . m0,n

m1,0 m1,1 . . . m1,n

...
...

. . .
...

mn,0 mn,1 . . . mn,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

,

(14)

and mi,j is defined in (2).

2) Said-Ball rectangular surface with Said-Ball control net,

Q ∈ {{Vi,j}pi=0}qj=0 can be given by

S(u, v) = (Sp · U) ·Q · (Sq · V )� (15)

where

Sn =

⎡
⎢⎢⎢⎣

s0,0 s0,1 . . . s0,n
s1,0 s1,1 . . . s1,n

...
...

. . .
...

sn,0 sn,1 . . . sn,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

, (16)

and si,j is defined in (4).

3) Wang-Ball rectangular surface with Wang-Ball control

net, K ∈ {{pi,j}pi=0}qj=0 can be shown as

A(u, v) = (Ap · U) ·K · (Aq · V )� (17)

where

An =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n
a1,0 a1,1 . . . a1,n

...
...

. . .
...

an,0 an,1 . . . an,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

, (18)

and ai,j is defined in (6).

4) DP rectangular surface with DP control net, Y ∈
{{qi,j}pi=0}qj=0 can be expressed by

C(u, v) = (Cp · U) · Y · (Cq · V )� (19)

where

Cn =

⎡
⎢⎢⎢⎣

c0,0 c0,1 . . . c0,n
c1,0 c1,1 . . . c1,n

...
...

. . .
...

cn,0 cn,1 . . . cn,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

, (20)

and ci,j is defined in (8).

5) Dejdumrong rectangular surface with Dejdumrong

control net, H ∈ {{di,j}pi=0}qj=0 can be determined as

D(u, v) = (Dp · U) ·H · (Dq · V )� (21)

where

Dn =

⎡
⎢⎢⎢⎣

d0,0 d0,1 . . . d0,n
d1,0 d1,1 . . . d1,n

...
...

. . .
...

dn,0 dn,1 . . . dn,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

, (22)

and di,j is defined in (10).

6) NB1 rectangular surface with NB1 control net, G ∈
{{yi,j}pi=0}qj=0 can be specified by

N(u, v) = (N p · U) ·G · (N q · V )� (23)

where

Nn =

⎡
⎢⎢⎢⎣

g0,0 g0,1 . . . g0,n
g1,0 g1,1 . . . g1,n

...
...

. . .
...

gn,0 gn,1 . . . gn,n

⎤
⎥⎥⎥⎦
(n+1)×(n+1)

, (24)

and gi,j is defined in (12).

IV. SOME APPLICATIONS OF USING MONOMIAL

MATRICES

By using monomial matrices, surfaces can be constructed

simply and efficiently. Furthermore, it can enhance the

speed of construction by using parallel programming. Besides

surface construction, there are other benefits of using

monomial form approach as follows:

A. Surface Constructions

Monomial matrices can be applied to construct surfaces,

e.g. Bézier , Said-Ball, Wang-Ball, DP, Dejdumrong and NB1

surfaces as shown in Figures 1, 2, 3, 4, 5 and 6, respectively.

B. Curve Conversions

Monomial matrices can be used to convert from one surface

into the other model. This transformation can be applied by

the same concept as shown in [12].

C. Degree Elevations and Degree Reductions

Monomial matrices can be used to compute the degree

elevation and the degree reduction of surfaces [13].

In the following section, an example of the degree elevation

will be introduced only for the case of Wang-Ball surfaces. The

other surface cases can be readily applied from the Wang-Ball

case.

Definition 1. An extended Wang-Ball monomial matrix,
denoted by An+1

n , is expressed by attaching 1 column vector
of n+1 zeros to the Wang-Ball monomial matrix, denoted by



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:8, 2019

456

Fig. 1 Bézier Surface

An. The extended monomial matrix with n+1 rows and n+2
columns, denoted by An+1

n , can be written by

An+1
n =

⎡
⎢⎢⎢⎣

a0,0 a0,1 . . . a0,n 0
a1,0 a1,1 . . . a1,n 0

...
...

. . .
...

...
an,0 an,1 . . . an,n 0

⎤
⎥⎥⎥⎦
(n+1)×(n+2)

(25)

It can be defined the extended monomial matrices for the

Said-Ball, DP, Dejdumrong and NB1 surfaces respectively,

denoted by Sn+1
n , Cn+1

n , Dn+1
n , and Nn+1

n , respectively.

Theorem 1. A degree elevation matrix for raising an nth

degree of a Wang-Ball surface to an (n + 1)th degree of the
same surface, denoted by E

(1)
n , can be defined as follows:

E(1)
n = An+1

n · (An+1)
−1 (26)

Proposition 7. Given a set of Wang-Ball control nets, denoted
by K, the degree elevation of this surface in terms of the
new Wang-Ball control points, K(1), can be explicitly obtained
from

K(1) =
[An+1

n · (An+1)
−1

] ·K · [An+1
n · (An+1)

−1
]�

(27)

Theorem 2. A degree reduction matrix for reducing an nth

degree of a Wang-Ball surface into an (n+ 1)th degree of the
same surface, denoted by K

(−1)
n , can be defined as follows:

K(1)
n = An · (An

n−1)
� · [An

n−1 · (An
n−1)

�]−1
(28)

Proposition 8. Given a set of Wang-Ball control nets, denoted
by K, the degree reduction of this surface in terms of the new
Wang-Ball control points, K(−1), can be explicitly obtained
from

K(−1) =
[
K(−1)

n

]
·K ·

[
K(−1)

n

]�
(29)

D. Normal and Derivatives of Surfaces

Tangent vectors of a surface can be easily obtained by using

monomial matrices.

Fig. 2 Said-Ball Surface

Fig. 3 Wang-Ball Surface

Fig. 4 DP Surface

Fig. 5 Dejdumrong Surface

Fig. 6 NB1 Surface
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V. CONCLUSION

The monomial form approach is an efficient method

for surfaces construction and properties. This approach can

process simply by using matrix multiplication. Moreover,

it is applied in parallel computation because each point

on surface can computed independently. Adopting in

parallel programming, the higher degree of surfaces can

be represented with less computational time than other

approaches. Additionally, some properties of surfaces can be

simplified by using monomial form. For example, two surfaces

with different polynomials can be simply converted into each

other by matrix product. Thus, the monomial form can be

utilize for any applications concerning curves and surfaces

with simple and efficient process.
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