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Low-Level Modeling for Optimal Train Routing and
Scheduling in Busy Railway Stations
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Abstract—This paper studies a train routing and scheduling
problem for busy railway stations. Our objective is to allow trains
to be routed in dense areas that are reaching saturation. Unlike
traditional methods that allocate all resources to setup a route for
a train and until the route is freed, our work focuses on the use
of resources as trains progress through the railway node. This
technique allows a larger number of trains to be routed simultaneously
in a railway node and thus reduces their current saturation. To
deal with this problem, this study proposes an abstract model and
a mixed-integer linear programming formulation to solve it. The
applicability of our method is illustrated on a didactic example.

Keywords—Busy railway stations, mixed-integer linear
programming, offline railway station management, train platforming,
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I. INTRODUCTION

NOWADAYS, the railway network in Europe and most

areas in the world have a great demand for transport. It

is necessary to make the best use of railway resources while

satisfying commercial objectives without conflicts between

trains and resources. In order to fully explore the capacity

of railway infrastructure, searching for optimal platform stops

and passing through busy railway stations is important. In most

researches, two main problems are investigated: train routing

and train scheduling [1].

The train routing problem is to assign each train to a route

through the railway stations and to a platform in the station.

The number of routings available to each train strongly affects

the size of the problem and the time required to optimally solve

it.

The train scheduling problem is to determine timing and

ordering plans for all trains on the assigned train routes. The

number of possible solutions can be very large depending on

the network structure, the number and type of trains.

A train routing and scheduling problem in railway stations

consists of assigning trains to platforms, so as to satisfy

several constraints such as headway, dwell time and platform

occupation. The schedule must satisfy some commercial

objectives such as desired train arrival and departure times,

platform stops, etc.

In case of simple railway structures with few lines, the

problem is easy since there are few number of routes

for each train. Some works dealing with train routing and

scheduling problem focus mainly on low traffic densities
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within a reasonable computation time. Reference [2] proposes

a mixed-integer program to find train routing which is

concerned with assigning trains and train times for rail links,

stations stop..., so as to avoid train conflicts while minimizing

costs and satisfying travel demands. The numerical example

in this paper has 10 nodes, 28 links and 10 trains that requires

less than one minute to be solved. The strategy of scheduling

is to find the route of trains one at a time until all trains are

routed and if necessary, the route of trains can be rescheduled

until a feasible solution is found. Reference [3], [4] investigate

computational complexity of the problem of routing trains

through railway station. They consider the reservation of a

complete route which guarantees that each train can travel

without interruptions along the reserved route. They also

include shunting decisions and small deviations for preferred

arrival time and departure time of trains. They prove that if

each train has at most two routing possibilities, a solution can

be computed in polynomial time.

The routing and scheduling problem becomes difficult in

busy railway stations, having busy lines and several alternative

platforms. Some research focus on busy complex railway

stations. In [5], they propose a model for busy complex

railway stations. Heuristic methods are developed according

to train planners’ objectives. The algorithm schedules each

train one by one. For each train, they check feasible platforms

and for each of these platforms, they check if there are any

conflicts with other trains that are already scheduled. If there

are conflicts, the arrival time and departure time of train are

changed to resolve conflicts. The experiment example has

12 main platforms (with 34 sub-platforms) and 491 trains

with 900 arrivals and departures. The computation times can

be from a few seconds to several hours depending on the

heuristic method and the train planners’ objectives. Reference

[6] proposes a model dealing with the routing and scheduling

problem for busy complex railway stations by applying a

hybrid algorithm combining branch-and-bound and heuristic

algorithms. In this model, they consider the reservation of a

complete path and the deviation of departure time in a similar

way to [3], [4]. The experiment example has 250 trains divided

in sub-groups, the biggest group has about 60 trains. The

computation time is a few minutes with 182 minutes deviation

of departure times of 37 trains that contains 3 trains postponed

by more than 10 minutes, 8 trains by more than 6 minutes

and 29 trains by less than 5 minutes. Reference [7] proposes

a track-circuit based model dealing with perturbations. In this

paper, all track-circuits belonging to a block must be reserved

for trains. Reference [8] proposes a set packing model to deal

with the problem of routing trains through railway junctions.
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The route locking and sectional release system is used in this

model, a sequence of track sections must be reserved before

the arrival of trains.

In view of the above, the reservation of a complete route is

popularly used to solve the routing and scheduling problem in

railway stations since it can guarantee that trains travel safely

without interruptions. In this method, all sections in the route

of trains are reserved until the trains release the complete route.

One complete route can be reserved by only one train at a

time. In principle, the reservation duration of each section of

route can be calculated. It depends on the length and speed

of train and the length of section. In this paper, we want to

assess the interest and performance of a model considering

the reservation of each section independently. This implies

low-level modeling consideration with respect to the speed

and length of train. A section can be reserved when a train

arrives and it can be released after the train leaves it, so that

the use of available resources can be more efficient. It allows

the full exploitation of the capacity of railway infrastructures.

The paper is structured as follows. In the 2nd section,

first of all, we specify the objectives of this work. Next,

we propose the main concepts for describing the problem. In

the 3rd section we propose a mathematical model allowing a

resolution by a mixed integer programming approach. Section

IV is an application of the proposed model to a case study

to illustrate the feasibility of our approach. In the 5th section,

we conclude with the lessons of this work and indicate its

perspectives.

II. DESCRIPTION OF THE PROBLEM

A. Research Objectives

The objectives of this paper is to propose a model which

can solve two problems:

• Routing problem: the routing of trains passing through

the railway station defined by a sequence of sections for a

train from its origin to its destination. If trains must stop in

platforms, we have to allocate appropriate platforms to these

trains.

• Scheduling problem: the timetable of trains in order to

avoid collisions between trains.

We chose to take into account separately the reservation of

each section on a route of train to improve the capacity of

railway infrastructure. That may lead to some interruptions on

the route of trains, we must therefore minimize the number of

interruptions and the duration of interruptions.

B. Topology and Working Hypotheses

We propose to study a topology based on two types of

generic components: ”section” and ”connector”.

A section is a segment of railway infrastructure that can

contain only one train at a time.

The set of sections in a railway infrastructure is denoted by

S= {s1, s2, .., sS} where S is the cardinal number of S.

A connector is a point which connects several sections.

The set of connectors in a railway infrastructure is denoted

by C= {c1, c2, .., cC} where C is the cardinal number of C.

Relations between sections and connectors: The topology

we consider corresponds to a sequence of sections and

connectors, see Fig. 1. Each section is bounded by only two

connectors.

c1 c2s1

c3

s2

c4

s3

c5

s4

Fig. 1 Relations between sections and connectors

For every c ∈ C, we denote the set of sections connected

with connector c by Sc. In Fig. 1, Sc2 ={s1, s2, s3, s4}.

Sections doublet. (s1, s2) is a doublet of connector c1 when

s1, s2 ∈ Sc1 and trains can traverse from section s1 to section

s2 by connector c1.

The set of doublets of a connector c is denoted by

Kc ={(s1, s′1), (s2, s′2), .., (sK , s′K)} where K is the cardinal

number of Kc.

We must remark that a doublet of connectors represents

only one travel direction. For example, a doublet (s1, s2) of

connector c1 represents the travel direction from section s1 to

section s2 by connector c1. The reverse exists only in case

that we have another doublet (s2, s1) for connector c1.

For example, in Fig. 1, if trains can only

traverse from sections s1, s4 to s2, s3, then

Kc2 ={(s1, s3), (s1, s2), (s4, s2), (s4, s3)}.

Two kinds of sections can exist: sections with one way and

two way directions.

For every s ∈ S, we denote the set of reachable sections

from section s by Ss. In Fig. 1, Ss1 ={s2, s3}.

For every s ∈ S, we denote the set of reachable sections to

section s by Ŝs. In Fig. 1, Ŝs2 ={s1, s4}.

For every s ∈ S, for every s′ ∈ Ss, it exists only one

connector denoted as css′ between these two reachable

sections. In Fig. 1, cs1s3 is c2.

A bordering connector is a connector surrounding the

railway infrastructure where trains can enter or leave railway

infrastructure.

The set of bordering connectors in a railway infrastructure is

denoted by B= {b1, b2, .., bB} where B is the cardinal number

of B. Thus, B ⊂ C.

An external section is a section surrounding the railway

infrastructure, represented by a line which connects from a

bordering connector to the outside of the infrastructure where

trains can enter or leave railway infrastructure. The set of

external sections in a railway infrastructure is denoted by E=

{e1, e2, .., eE} where E is the cardinal number of E. Thus, E

⊂ S.

A platform is a section which is used for passengers that

can await, board or unboard from trains. Train can usually

stop long-time in platforms.

The set of platforms in a railway infrastructure is denoted

by P= {p1, p2, .., pP } where P is the number of platforms.

Thus, P ⊂ S and P ∩ E = ∅.
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An internal section is a section inside railway infrastructure

where trains can pass through. The internal sections are

not platforms. The set of internal sections in a railway

infrastructure is denoted by I= {i1, i2, .., iI} where I is the

cardinal number of I. Thus, I ⊂ S, I ∩ E = ∅, I ∩ P = ∅

and S = I ∪ E ∪ P .

An example of the railway infrastructure is represented in

Fig. 2 and the correspondences between sections of this figure

are listed in Table I.

b1

s9

s1
c1

c2s2

c3s
4 s7 c4

s 5

b4

s6

b3

s8

s3

b2
s10

s12
s11

Fig. 2 An example of railway infrastructure

TABLE I
THE CORRESPONDENCES BETWEEN SECTIONS OF FIG. 2

Section External section Internal section Platform
s1 i1
s2 p1
s3 i2
s4 i3
s5 i4
s6 i5
s7 p2
s8 i6
s9 e1
s10 e2
s11 e3
s12 e4

C. Trains’ Activities

Train: The traffic in the railway infrastructure is defined by

a set of trains T= {t1, t2, .., tT } where T is the number of

trains.

Routing of trains. A train passing through the railway

station is given two external sections and need to be assigned

to a route. The external sections of train t are denoted by

etin, etout ∈ E. The train enters the railway station from the

external section eint , arrives at a platform, after that the train

departs from the platform and leaves the railway station by

the external section etout.
Train platform. We must allocate one and only one

platform to train t, it is denoted as pt ∈ P. A route for the

train passing through the railway station must be determined

with the condition that the train arrives at and departs from

the same platform pt.
Circulation is an operation of a train which travel from one

section to another.

Every train t ∈ T consists of a set of ordered circulations

Lt = {lt1, lt2, ..., ltLt} where Lt is the cardinal number of Lt.

Three types of circulation are defined:

• Entering circulation is a circulation of a train which

travels from an external section to a platform, see Fig. 3. The

set of entering circulations is denoted by Lent.

elin

t

pt

elin

t

pt

time

Fig. 3 Entering circulation

• Leaving circulation is a circulation of a train which travels

from a platform to an external section, see Fig. 4. The set of

leaving circulations is denoted by Lleav .

elout

t

pt

elout

t
pt

time

Fig. 4 Leaving circulation

• Crossing circulation is a circulation of a train which

passes through the railway station from an external section to

another external section and does not stop at any platform, see

Fig. 5. The set of crossing circulations is denoted by Lpass.

elin elout

t

eloutelin

t

time

Fig. 5 Crossing circulation of a passing train

Hereafter, we only consider trains consist of two circulations

lt1, l
t
2, one entering circulation and one leaving circulation.

Passing trains will be considered in a future work.

Note: Trains can stop at only one platform but they are

allowed to traverse other platforms. Crossing circulations do
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not stop at any platform but they can traverse platforms to go

through the railway infrastructure.

Reference time. An entering circulation l ∈ Lent is

associated to a reference time At. This reference time At is

the preferred arrival time of occupation of the platform by the

train t.

Trains can arrive late to platform within a permissible

deviation time. The maximum permissible deviation is denoted

by L.

Stopping time. The time taken for trains remaining stopped

at a platform to take passengers onboard is denoted by Dt.

Route. The route of a circulation is a sequence of reachable

sections from one to another that the train can use for this

circulation. One circulation can have many routes and we have

to determine which one is the most appropriate.

A route of a circulation lt of train t denoted by r consists of

a set of ordered reachable sections Sr={sr1, sr2, .., srSr} where

Sr is the cardinal number of Sr.

In this study, we consider that every train t consists of two

circulations l1 ∈ Lent, l2 ∈ Lleav . Trains can stop at only

one platform and they are allowed to traverse other platforms

(they do not stop at these platforms).

The external section of the entering circulation el1in of train t

is the external section given etin of this train. The external

section of the leaving circulation el2out of train t is the external

section given etout of this train.

III. MIXED-INTEGER LINEAR PROGRAMMING MODEL

In this section, we propose a mathematical model as

a mixed-integer linear program with the parameters and

hypotheses we presented in the previous section.

A. Parameters

For every train t ∈ T, we have some corresponding

parameters below:

TABLE II
THE PARAMETERS OF TRAINS’ ACTIVITIES

Circulation External section Reference time

l1 ∈ Lent elin At, Dt, L
l2 ∈ Lleav elout

The constant time taken to traverse section s by circulation

l is denoted by Δl
s. These constants depend on the length of

sections and the speed of trains, they can be given as:

Δl
s =

length of section s

speed of circulation l

The time taken for a circulation l going through a connector

is denoted by Θl. These constants depend on the length and

the speed of trains, they can be given as:

Θl =
length of train

speed of circulation l

Note: We assume that the speed of train does not change

during a circulation.

H is a sufficiently large constant.

B. Decision Variables

The function δ(Q) is an indicator such that δ(Q) = 1 if the

condition Q is valid, otherwise 0.

• Sl
s: boolean variable, represents the passage of

circulation l going through section s. Sl
s = δ(circulation l

passes through section s).

• Cl
c: boolean variable, represents the passage of

circulation l going through connector c. Cl
c = δ(circulation

l passes through connector c).

• Y ll′
s : boolean variable, represents the chronological order

of two circulations l, l’ using routes containing a common

section s. Y ll′
s = δ(circulation l passes through section s before

circulation l’).

• X ll′
c : boolean variable, represents the chronological order

of two circulations l, l’ using routes containing a common

connector c. X ll′
c = δ(circulation l passes through connector c

before circulation l’).

• Zl
ss′ : boolean variable, represents the passage from

section s to section s’ in the route of circulation l. Zl
ss′ =

δ(circulation l travels from section s to section s’).

The time interval occupation of sections and connectors are

represented in Fig. 6:

Fig. 6 Occupation time variables

Note: A section is reserved when trains arrive at the

connector connected with this section and the section is

released when trains leave the other connector connected with

this section.

• [αl
s,βl

s]: integer variables, the actual time interval of

occupation of section s by circulation l.

• [υl
c, ω

l
c]: integer variables, the actual time interval of

occupation of connector c by circulation l.

• W l
s: integer variables, the time taken for circulation l

remaining stopped at section s.

• P l
p: boolean variables, represents the stopping platform of

circulation l. P l
p = δ(platform p is allocated to circulation l as

a stopping platform).

C. Constraints

Routing constraints. This section presents constraints

which ensure that circulations can travel from their origin to

their destination.

• If the doublet (s, s′) does not exist, it means that section

s and section s’ are not reachable. Thus, Zl
ss′ is equal to 0:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ /∈ Ss Zl
ss′ = 0 (1)
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• If a circulation passes from section s to s’, it cannot pass

from section s’ to s:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ + Zl

s′s ≤ 1 (2)

Route of circulation:
• If a circulation enters a section, this circulation must pass

through this section:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S
∑
s′∈Ŝs

Zl
s′s = 1 ⇒ Sl

s = 1

The constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S Sl
s ≥

∑
s′∈Ŝs

Zl
s′s (3)

• If a circulation leaves a section, this circulation must pass

through this section:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S
∑
s′∈Ss

Zl
ss′ = 1 ⇒ Sl

s = 1

The constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S Sl
s ≥

∑
s′∈Ss

Zl
ss′ (4)

Note: The inequality in constraints (3) and (4) represents

the case of external sections and platforms. For example, a

circulation can pass through an external section but it cannot

enter this external section in case that this external section is

the first section in the route of this circulation.

• If a circulation travels from section s to section s’, it must

use the connector css′ between these two sections:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ = 1 ⇒ Cl

css′ = 1

The constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ ≤ Cl

css′ (5)

Constraints of external sections:
• Entering circulation l must pass through and leave the

external section given elin:

∀t ∈ T, ∀l ∈ Lt
ent Sl

elin
= 1 (6)

∀t ∈ T, ∀l ∈ Lt
ent

∑
s′∈S

el
in

Zl
elins

′ = 1
(7)

• This entering circulation l must not pass through others

external sections:

∀t ∈ T, ∀l ∈ Lt
ent, ∀s ∈ E\{elin} Sl

s = 0 (8)

• Leaving circulation l must enter and pass through the

external section given elout:

∀t ∈ T, ∀l ∈ Lt
leav Sl

elout
= 1 (9)

∀t ∈ T, ∀l ∈ Lt
leav

∑
s′∈Ŝ

elout

Zl
s′elout

= 1
(10)

• This leaving circulation l must not pass through others

external sections:

∀t ∈ T, ∀l ∈ Lt
leav, ∀s ∈ E\{elout} Sl

s = 0 (11)

Constraints of internal sections: If a circulation enters an

internal section, it must leave this internal section. Conversely,

if this circulation leaves this internal section, it must enter this

internal section.

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ I
∑
s′∈Ŝs

Zl
s′s =

∑
s′′∈Ss

Zl
ss′′ (12)

Constraints of non-stopping platforms: We consider that

trains can pass through some platforms but might not stop

at these platforms. If a circulation enters an non-stopping

platform, it must leave this platform. Conversely, if this

circulation leaves this platform, it must enter this platform:

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P P l
p = 0 ⇒

∑
s′∈Sp

Zl
ps′ =

∑
s′′∈Ŝp

Zl
s′′p

These constraints are expressed using the linear constraints

below:

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P{ ∑
s′∈Sp

Zl
ps′ −

∑
s′′∈Ŝp

Zl
s′′p ≤ H · P l

p∑
s′′∈Ŝp

Zl
s′′p −

∑
s′∈Sp

Zl
ps′ ≤ H · P l

p

(13)

Note: If P l
p = 0, the inequation (13) implies that∑

s′∈Sp
Zl
ps′ − ∑

s′′∈Ŝp
Zl
s′′p ≤ 0 and

∑
s′′∈Ŝp

Zl
s′′p −∑

s′∈Sp
Zl
ps′ ≤ 0, it means that

∑
s′∈Sp

Zl
ps′ =

∑
s′′∈Ŝp

Zl
s′′p.

If P l
p = 1, the inequation is always true because H is a big

constant.

Constraints of stopping platforms:
• There is only one stopping platform for a circulation:

∀t ∈ T, ∀l ∈ Lt
∑
p∈P

P l
p = 1 (14)

• An entering circulation and a leaving circulation of a same

train must have the same platform:

∀t ∈ T, ∀l, l′ ∈ Lt, ∀p ∈ P P l
p = P l′

p (15)

• An entering circulation must enter a stopping platform:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P P l

p = 1 ⇒
∑
s∈Ŝp

Zl
sp = 1

The constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P

∑
s∈Ŝp

Zl
sp ≥ P l

p (16)

• An entering circulation must not leave the stopping

platform:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P P l

p = 1 ⇒
∑
s∈Sp

Zl
ps = 0

The constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P

∑
s∈Sp

Zl
ps ≤ (1− P l

p) (17)
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• A leaving circulation must leave a stopping platform:

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P

∑
s∈Sp

Zl
ps ≥ P l

p (18)

• A leaving circulation must not enter the stopping platform:

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P

∑
s∈Ŝp

Zl
sp ≤ (1− P l

p) (19)

Constraints of relations between sections and
connectors: If a circulation l passes through a connector

c, there must be two sections, connected to this connector,

which are in the route of circulation l:

∀t ∈ T, ∀l ∈ Lt, ∀c ∈ C Cl
c = 1 ⇒

∑
s∈Sc

Sl
s = 2

This constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt, ∀c ∈ C

{ ∑
s∈Sc

Sl
s − 2 ≤ H · (1− Cl

c)
2−∑

s∈Sc
Sl
s ≤ H · (1− Cl

c)
(20)

Note: We remind that Sc is a set of sections connected with

connector c. We consider that circulations are not allowed to

pass through a connector many time in this model. Circulations

can pass a connector only one time.

Actual time interval of occupation of sections and
connectors.

The actual time interval of occupation of a section s ∈ S

by a circulation l is defined by [αl
s, β

l
s] and the time taken

for circulation l remaining stopped at section s is defined by

variables W l
s.

The actual time interval of occupation of a connector c ∈ C

by a circulation l is defined by [υl
c, ω

l
c].

Fig. 7 The actual time intervals of occupation of sections and connectors

• The actual time intervals of occupations of sections and

connectors are represented in Fig. 7. The constraints of all

connectors are expressed as follows:

∀t ∈ T, ∀l ∈ Lt, ∀c ∈ C ωl
c = υl

c +Θl (21)

• The constraints of all sections which are not the stopping

platform are expressed as follows:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ I βl
s = αl

s +Δl
s + 2Θl +W l

s (22)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ E βl
s = αl

s +Δl
s +Θl +W l

s (23)

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P

P l
p = 0 ⇒ βl

p = αl
p +Δl

p + 2Θl +W l
p

This constraint is expressed using the linear constraints

below:

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P{
αl
p +Δl

p + 2Θl +W l
p − βl

p ≤ H · P l
p

βl
p − αl

p −Δl
p − 2Θl −W l

p ≤ H · P l
p

(24)

Note: If P l
p = 0, the inequation (24) implies that αl

p+Δl
p+

2Θl + W l
p − βl

p ≤ 0 and βl
p − αl

p − Δl
p − 2Θl − W l

p ≤ 0,

it means that βl
p = αl

p + Δl
p + 2Θl + W l

p. If P l
p = 1, the

inequation is always true.

There is only one connector connected with external

sections. Thus, the constraint (23) applies for all external

sections.

Succession of sections:
The actual time intervals of occupations of two consecutive

sections are represented in Fig. 8.

Fig. 8 The actual time intervals of occupation of two consecutive sections.

• If circulation l travels from section s to section s’ by

connector c, we consider that the section s’ is reserved when

connector c is occupied by circulation l. Thus, we have the

constraint below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ = 1 ⇒ υl

css′ = αl
s′

This constraint is expressed using the linear constraints

below:
∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss{

υl
css′ − αl

s′ ≤ H · (1− Zl
ss′)

αl
s′ − υl

css′ ≤ H · (1− Zl
ss′)

(25)

• If a circulation travels from section s to section s’, we have

the constraint for the time interval of occupation of these two

sections below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ = 1 ⇒ βl

s = αl
s′ +Θl

This constraint is expressed using the linear constraints

below:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss{
αl
s′ +Θl − βl

s ≤ H · (1− Zl
ss′)

βl
s − αl

s′ −Θl ≤ H · (1− Zl
ss′)

(26)
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Note: If Zl
ss′ = 1, the inequation (26) implies that αl

s′ +
Θl−βl

s ≤ 0 and βl
s−αl

s′−Θl ≤ 0, it means that βl
s = αl

s′+Θl.

If Zl
ss′ = 0, the inequation is always true.

Actual time interval of occupation of stopping platform:
The time interval of occupation of stopping platform of an

entering circulation must respect the preferred arrival time At

which can be adjusted within a time interval L.

Fig. 9 The actual time interval of occupation of a platform

The actual time interval of occupation of a platform is

represented in Fig. 9, we assume that the entering circulation

of a train arrives at a stopping platform when the train leaves

the connector connected with the platform. Hence, the entering

circulation allows passengers to board or unboard the train.

After that, the leaving circulation of this train will pass through

and leaves the platform.

• The time interval of occupation of a stopping platform of

an entering circulation must respect the preferred arrival time

of platform At:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P

P l
p = 1 ⇒ At ≤ αl

p +Θl ≤ At + L

This constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P{

At − αl
p −Θl ≤ H · (1− P l

p)
αl
p +Θl −At ≤ L+H · (1− P l

p)

(27)

• The time interval of occupation of stopping platform of an

entering circulation must respect the stopping time at platform

Dt:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P P l

p = 1 ⇒ βl
p = αl

p +Θl +Dt

This constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P{

βl
p − αl

p −Θl −Dt ≤ H · (1− P l
p)

αl
p +Θl +Dt − βl

p ≤ H · (1− P l
p)

(28)

• The constraint of the time interval of occupation of a

stopping platform of an entering circulation and a leaving

circulation of the same train is expressed below:

∀t ∈ T, ∀l1 ∈ Lt
ent, ∀l2 ∈ Lt

leav, ∀p ∈ P P l1
p = 1 ⇒ αl2

p = βl1
p

This constraint is expressed using the linear constraint

below:
∀t ∈ T, l1 ∈ Lt

ent, l2 ∈ Lt
leav, ∀p ∈ P{

βl1
p − αl2

p ≤ H · (1− P l1
p )

αl2
p − βl1

p ≤ H · (1− P l1
p )

(29)

• The constraint of the time interval of occupation of

stopping platform of a leaving circulation is expressed below:

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P

P l
p = 1 ⇒ βl

p = αl
p +Δl

p +Θl +W l
p

This constraint is expressed using the linear constraint

below:

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P{

αl
p +Δl

p +Θl +W l
p − βl

p ≤ H · (1− P l
p)

βl
p − αl

p −Δl
p −Θl −W l

p ≤ H · (1− P l
p)

(30)

Security constraints. The security constraints ensure that

two circulation cannot pass the same section or the same

connector at the same time. We use the actual time interval

variables and ordering variables defined previously to express

these constraints.

The chronological order of two circulations l, l’ passing

through a common section s is denoted by Y ll′
s .

• With two circulations using the same section, one

circulation must be scheduled before the other:

∀t, t′ ∈ T, ∀l ∈ Lt, ∀l′ ∈ Lt′ , l 
= l′, ∀s ∈ S Y ll′
s + Y l′l

s = 1
(31)

Occupation of sections: Two circulations passing through

a common section cannot be scheduled during the same time

interval:

∀t, t′ ∈ T, t 
= t′, ∀l ∈ Lt, ∀l′ ∈ Lt′ , ∀s ∈ S{
βl
s ≤ αl′

s +H · (3− Sl
s − Sl′

s − Y ll′
s )

βl′
s ≤ αl

s +H · (3− Sl
s − Sl′

s − Y l′l
s )

(32)

Note: If section s is in the route of both circulations l and

l’, so that Sl
s = 1, Sl′

s = 1 and either Y ll′
s = 1 or Y l′l

s = 1. It

means that 3−Sl
s−Sl′

s −Y ll′
s = 0 or 3−Sl

s−Sl′
s −Y l′l

s = 0.

In the first case, we have βl
s ≤ αl′

s , it means that circulation l

leaves section s before the arriving of circulation l’ at section

s. The second constraint is trivially verified (Y l′l
s = 0). In

the other case, we have βl′
s ≤ αl

s, it means that circulation l’

leaves section s before the arriving of circulation l at section

s.

The chronological order of two circulations l, l’ passing

through a common connector c is denoted by X ll′
c .

• With two circulations using the same connector, one

circulation must be scheduled before the other:

∀t, t′ ∈ T, ∀l ∈ Lt, ∀l′ ∈ Lt′ , l 
= l′, ∀c ∈ C X ll′
c +X l′l

c = 1
(33)
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Occupation of connectors: Two circulations passing

through a common connector cannot be scheduled during the

same time interval:

∀t, t′ ∈ T, t 
= t′, ∀l ∈ Lt, ∀l′ ∈ Lt′ , ∀c ∈ C{
ωl
c ≤ υl′

c +H · (3− Cl
c − Cl′

c −X ll′
c )

ωl′
c ≤ υl

c +H · (3− Cl
c − Cl′

c −X l′l
c )

(34)

Note: If connector c is in the route of both circulations

l and l’, so that Cl
c = 1, Cl′

c = 1 and either X ll′
c = 1

or X l′l
c = 1. It means that 3 − Cl

c − Cl′
c − X ll′

c = 0 or

3−Cl
c−Cl′

c −X l′l
c = 0. In the first case, we have ωl

c ≤ υl′
c , it

means that circulation l leaves connector c before the arriving

of circulation l’ at connector c. The second constraint is

trivially verified (X l′l
c = 0). In the other case, we have

ωl′
c ≤ υl

c, it means that circulation l’ leaves connector c before

the arriving of circulation l at connector c.

List of inequations and equations of all constraints:

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ /∈ Ss Zl
ss′ = 0 (1)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ + Zl

s′s ≤ 1 (2)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S Sl
s ≥

∑
s′∈Ŝs

Zl
s′s (3)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S Sl
s ≥

∑
s′∈Ss

Zl
ss′ (4)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss Zl
ss′ ≤ Cl

css′ (5)

∀t ∈ T, ∀l ∈ Lt
ent Sl

elin
= 1 (6)

∀t ∈ T, ∀l ∈ Lt
ent

∑
s′∈S

el
in

Zl
elins

′ = 1
(7)

∀t ∈ T, ∀l ∈ Lt
ent, ∀s ∈ E\{elin} Sl

s = 0 (8)

∀t ∈ T, ∀l ∈ Lt
leav Sl

elout
= 1 (9)

∀t ∈ T, ∀l ∈ Lt
leav

∑
s′∈Ŝ

elout

Zl
s′elout

= 1
(10)

∀t ∈ T, ∀l ∈ Lt
leav, ∀s ∈ E\{elout} Sl

s = 0 (11)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ I
∑
s′∈Ŝs

Zl
s′s =

∑
s′′∈Ss

Zl
ss′′ (12)

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P{ ∑
s′∈Sp

Zl
ps′ −

∑
s′′∈Ŝp

Zl
s′′p ≤ H · P l

p∑
s′′∈Ŝp

Zl
s′′p −

∑
s′∈Sp

Zl
ps′ ≤ H · P l

p

(13)

∀t ∈ T, ∀l ∈ Lt
∑
p∈P

P l
p = 1 (14)

∀t ∈ T, ∀l, l′ ∈ Lt, ∀p ∈ P P l
p = P l′

p (15)

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P

∑
s∈Ŝp

Zl
sp ≥ P l

p (16)

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P

∑
s∈Sp

Zl
ps ≤ (1− P l

p) (17)

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P

∑
s∈Sp

Zl
ps ≥ P l

p (18)

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P

∑
s∈Ŝp

Zl
sp ≤ (1− P l

p) (19)

∀t ∈ T, ∀l ∈ Lt, ∀c ∈ C{ ∑
s∈Sc

Sl
s − 2 ≤ H · (1− Cl

c)
2−∑

s∈Sc
Sl
s ≤ H · (1− Cl

c)

(20)

∀t ∈ T, ∀l ∈ Lt, ∀c ∈ C ωl
c = υl

c +Θl (21)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ I βl
s = αl

s +Δl
s + 2Θl +W l

s

(22)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ E βl
s = αl

s +Δl
s +Θl +W l

s

(23)

∀t ∈ T, ∀l ∈ Lt, ∀p ∈ P{
αl
p +Δl

p + 2Θl +W l
p − βl

p ≤ H · P l
p

βl
p − αl

p −Δl
p − 2Θl −W l

p ≤ H · P l
p

(24)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss{
υl
css′ − αl

s′ ≤ H · (1− Zl
ss′)

αl
s′ − υl

css′ ≤ H · (1− Zl
ss′)

(25)

∀t ∈ T, ∀l ∈ Lt, ∀s ∈ S, ∀s′ ∈ Ss{
αl
s′ +Θl − βl

s ≤ H · (1− Zl
ss′)

βl
s − αl

s′ −Θl ≤ H · (1− Zl
ss′)

(26)

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P{

At − αl
p −Θl ≤ H · (1− P l

p)
αl
p +Θl −At ≤ L+H · (1− P l

p)

(27)

∀t ∈ T, ∀l ∈ Lt
ent, ∀p ∈ P{

βl
p − αl

p −Θl −Dt ≤ H · (1− P l
p)

αl
p +Θl +Dt − βl

p ≤ H · (1− P l
p)

(28)

∀t ∈ T, l1 ∈ Lt
ent, l2 ∈ Lt

leav, ∀p ∈ P{
βl1
p − αl2

p ≤ H · (1− P l1
p )

αl2
p − βl1

p ≤ H · (1− P l1
p )

(29)

∀t ∈ T, ∀l ∈ Lt
leav, ∀p ∈ P{

αl
p +Δl

p +Θl +W l
p − βl

p ≤ H · (1− P l
p)

βl
p − αl

p −Δl
p −Θl −W l

p ≤ H · (1− P l
p)

(30)
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∀t, t′ ∈ T, ∀l ∈ Lt, ∀l′ ∈ Lt′ , l 
= l′, ∀s ∈ S Y ll′
s + Y l′l

s = 1
(31)

∀t, t′ ∈ T, t 
= t′, ∀l ∈ Lt, ∀l′ ∈ Lt′ , ∀s ∈ S :{
βl
s ≤ αl′

s +H · (3− Sl
s − Sl′

s − Y ll′
s )

βl′
s ≤ αl

s +H · (3− Sl
s − Sl′

s − Y l′l
s )

(32)

∀t, t′ ∈ T, ∀l ∈ Lt, ∀l′ ∈ Lt′ , l 
= l′, ∀c ∈ C X ll′
c +X l′l

c = 1
(33)

∀t, t′ ∈ T, t 
= t′, ∀l ∈ Lt, ∀l′ ∈ Lt′ , ∀c ∈ C{
ωl
c ≤ υl′

c +H · (3− Cl
c − Cl′

c −X ll′
c )

ωl′
c ≤ υl

c +H · (3− Cl
c − Cl′

c −X l′l
c )

(34)

IV. NUMERICAL EXPERIMENTS

In this experiment, our topology is depicted in Fig. 10 and

the correspondences between sections of this figure are listed

in Table III.

c1

s1

s2 s20

s3 s26

c9 c10

s8 s13

c14c13

s9

s
17 s 1

8

c5

s5

s22

s
1
9

c16c15

s10 s27

s
2
5

c8

s12s11

s
1
5

s
1
6

s21

s 2
4

c2

c3

s
2
3

s14 s4

c4c11

c7

c12 c6

s6

s7

Fig. 10 The topology of the railway station

TABLE III
THE CORRESPONDENCES BETWEEN SECTIONS OF FIG. 10

Section External section Platform
s1 e1
s2 e2
s3 e3
s4 e4
s5 e5
s6 e6
s7 e7
s8 p1
s9 p2
s10 p3

Seven external sections (e1 to e7) are considered for the

arrival and departure of trains. There are three platforms

(p1 to p3) which are used for the boarding or unboarding

of passengers. There are a total of 27 sections and

16 connectors in this railway station. We assume that

all sections are sections with two-way directions. For

example, the set of doublets of connector c1 is Kc1 =
{(s1, s11), (s11, s1), (s1, s15), (s15, s1)}. All pairs of sections

are not reachable (they are not doublets) even if two sections of

these pairs are connected with a same connector. These pairs

of unreachable sections are as follows: (s15, s11), (s11, s16),

(s15, s16), (s15, s2), (s16, s20), (s16, s23), (s20, s23), (s20, s24),

(s23, s3), (s23, s24), (s24, s26), (s14, s18), (s14, s17), (s17, s18),

Fig. 11 The occupation of sections of train 4 and train 10

(s18, s5), (s17, s19), (s19, s6), (s22, s25), (s25, s7). For example,

the pair of unreachable sections (s15, s16) means that trains are

not allowed to travel from section s15 to section s16 and from

s16 to s15.

We run the experiments for 10 trains which correspond to

20 circulations. The data of each train are presented in Table

IV.

TABLE IV
EXAMPLE OF PROBLEM

Train Circulation Type External section At Dt

1 1 ent e1 180 30
1 2 leav e6
2 3 ent e2 275 40
2 4 leav e4
3 5 ent e2 315 20
3 6 leav e4
4 7 ent e2 125 30
4 8 leav e6
5 9 ent e1 190 40
5 10 leav e4
6 11 ent e4 220 40
6 12 leav e1
7 13 ent e5 140 30
7 14 leav e2
8 15 ent e5 285 40
8 16 leav e1
9 17 ent e3 245 40
9 18 leav e7
10 19 ent e3 125 40
10 20 leav e6

The following constants are used:

• Maximum permissible deviation for At: L=3

• Duration to traverse section by circulation Δ=20 for all.

• Duration to traverse connector by circulation Θ=2 for all.

Note: Times are counted by seconds.

We run the experiments with the objective function of

minimizing the total of waiting time
∑

l∈L

∑
s∈S W

l
s and

minimizing the total travel time
∑

l∈L

∑
s∈S Δ

l
s ∗ Sl

s.

We consider minimizing the total time of interruptions is

more important than the total travel time. Thus, we affect the

weight of the total waiting time to 10 and the weight of total

travel time to 1.

Objective function: MIN
∑

l∈L

∑
s∈S(10 ∗W l

s +Δl
s ∗Sl

s)
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Fig. 12 Graphic timetable

The computation study is conducted under C++ in Visual

Studio 2017 and CPLEX version 12.8. The hardware

architecture is Windows x64, with Intel i7-870 CPU at 2.93

GHz and 4GB memory of RAM. The results are presented in

Table V and the graphic timetable (Fig. 12). The time needed

to solve the problem is 1.44 seconds. The results show that

there are 4 interruptions of trains with a total waiting time of

55 seconds. The model considered has 1332 constraints and

2416 variables.

We can see clearly the occupation of sections of two trains

t4 and t10 in Fig. 11. Train 4 has an interruption at section

s25, it must wait train 10 leave section s6 to enter this section.

We must remark that train 10 use switch at connector c3 and

c12 to go to platform 2 (section s9) and train 4 use switch at

connector c2 and c3 to go to platform 3 (section s10), in the

future experiment we should propose an appropriate objective

function to avoid the use of switch unnecessarily.

In Fig. 12, train 3 must wait at section s26 before entering

the platform 3 (section s10) to satisfy the reference arrival time

At. Train 7 must wait to enter section s2 but it does not stop

TABLE V
RESULTS OF PROBLEM

Train Circ Route Platform [αp, βp]

1 1 s1, s15, s23, s26, s10 p3
[181,213]

1 2 s10, s27, s25, s6 [213,235]
2 3 s2, s20, s21, s9 p2

[273,315]
2 4 s9, s22, s19, s18, s4 [315,337]
3 5 s2, s23, s26, s10 p3

[313,335]
3 6 s10, s27, s25, s19, s18, s4 [335,357]
4 7 s2, s23, s26, s10 p3

[126,158]
4 8 s10, s27, s25, s6 [158,180]
5 9 s1, s15, s20, s21, s9 p2

[191,233]
5 10 s9, s22, s19, s18, s4 [233,255]
6 11 s4, s14, s13, s8 p1

[218,260]
6 12 s8, s12, s11, s1 [260,282]
7 13 s5, s17, s13, s8 p1

[141,173]
7 14 s8, s12, s16, s2 [173,211]
8 15 s5, s17, s13, s8 p1

[283,325]
8 16 s8, s12, s11, s1 [325,347]
9 17 s3, s26, s10 p3

[243,285]
9 18 s10, s27, s7 [285,307]
10 19 s3, s24, s21, s9 p2

[123,165]
10 20 s9, s22, s6 [165,187]
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at the consecutive section before section s2 (section s16). It

stops at section s8. Even though the duration of interruption

is not changed, we should consider if trains must stop at the

consecutive section before the section which is occupied in a

future work.

V. CONCLUSION

In this article, we propose a mathematical model and a

mixed-integer linear programming formulation to solve the

optimal train routing and scheduling for busy railway stations.

The main goal is to find a routing and scheduling decision

support tool that is able to improve the capacity of railway

infrastructure. This mathematical model is assessed by the an

experiment with 10 trains consisting of 20 circulations. The

computation time to solve this problem is short.

In a future work, we will increase the size of problem and

implement some appropriate objective function to compare the

results with the models of other researches dealing with the

reservation of route. An implementation of heuristic methods

must be considered to solve problems of larger size. A study

of some strategies to reduce the number of constraints of the

model should be taken into account.
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