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Abstract—In this paper, the techniques to solve time dependent 
electromagnetic wave propagation equations based on the Finite 
Difference Method (FDM) are proposed by comparing the results 
with Finite Element Method (FEM) in 2D while discussing some 
special simulation examples.  Here, 2D dynamical wave equations for 
lossy media, even with a constant source, are discussed for 
establishing symbolic manipulation of wave propagation problems. 
The main objective of this contribution is to introduce a comparative 
study of two suitable numerical methods and to show that both 
methods can be applied effectively and efficiently to all types of 
wave propagation problems, both linear and nonlinear cases, by using 
symbolic computation. However, the results show that the FDM is 
more appropriate for solving the nonlinear cases in the symbolic 
solution. Furthermore, some specific complex domain examples of 
the comparison of electromagnetic waves equations are considered. 
Calculations are performed through Mathematica software by making 
some useful contribution to the programme and leveraging symbolic 
evaluations of FEM and FDM. 
 

Keywords—Finite difference method, finite element method, 
linear-nonlinear PDEs, symbolic computation, wave propagation 
equations.  

I. INTRODUCTION 

ODELLING,  control and design of many electrical 
systems involve calculating a linear or nonlinear partial 

differential equation (PDE). Common analytical techniques, 
based on the assumption that nonlinearities are relatively 
insignificant, sometimes strongly affect the solution with 
respect to the real physics of the phenomenon. Therefore, 
seeking exact and approximate solutions is still a significant 
problem, and it becomes increasingly important to be familiar 
with all traditional and recently developed methods for finding 
exact and approximate solutions and the implementations of 
these methods [1]-[3], [8], [17].    

Computer algebra systems provide the possibility to 
conduct both numerical and symbolic computations [5], [6], 
[16]. Therefore, many traditional algorithms can be improved, 
sometimes considerably via embedding symbolic parts into the 
numerical algorithms. These hybrid techniques involve 
numeric and symbolic manipulations to provide arbitrary 
precision in defeating instability problems and reduce the 
number of iterations in general [5], [6], [9], [11]. 

In the literature, 1D and 2D dynamic and non-dynamic 
wave propagation equations and their approximate solving 
techniques have been much studied recently [5]-[16]. In this 
paper, the 2D time-dependent wave propagation equation 
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(PDEs) solved by FEM and FDM permits the cooperation of 
symbolic parameters penetrating into the solution using 
Mathematica toolbox. By means of the Mathematica program 
and solving techniques, some linear and nonlinear wave 
equations or PDEs are handled by examples in general forms. 
The computer algebra system helps the equation solving 
process to be easily implemented and completed in a short 
time while providing different ideas for the phenomena and 
medium [4]-[6], [14]. The problems are solved with the 
discretization method using FEM and FDM to examine the 
compression of the methods [7], [9], [11], [12]. In particular, a 
2D lossy medium alone and a lossy medium with a nonlinear 
source, which are the examples of problems that have 
difficulties being resolved via equations because of the 
structure of nonlinearity, inaccurate approximation, difficulties 
in meshing and non-rapidly convergent calculations [10], [15], 
are being considered and visualized. The main objective of 
this contribution is to introduce a comparative study for the 
usability of the methods and to show that both methods can be 
applied to the wave problems in either linear or nonlinear 
cases. The solution methods applied using a computer are easy 
and more convenient to implement while searching the 
problems’ features and diversity with some special initial and 
boundary conditions. Although for most cases in the literature, 
FEM appears to be more appropriate to obtain the results of 
the problems [2], here, after many comparing studies and 
plotting results, the FDM solution and results are considered 
to be more appropriate for some nonlinear cases such as lossy 
medium with or without source [9], [13]. In addition, when the 
constants value in the equation is needed to increase, the FEM 
solution accuracy stays behind the FDM solution. However, in 
some cases, the advantages of two methods can be combined, 
i.e. efficiency of FDM and convenience and flexibility for free 
boundary of FEM [11]. Calculations are performed through 
Mathematica, which provides some useful contributions in 
terms of programming and leveraging the visualization of the 
symbolic evaluations of FEM and FDM via its simulation 
visualization. The results show that these methods are efficient 
and convenient and can be applied to a large class of wave 
propagation problems. However, after the first figure, since 
the FDM solution is apparently more convenient to use in 
solving such problems, FDM has been used to solve some 
specific following problem equations.  

II. METHODS 

In this study, the structure of the FEM and FDE equations is 
presented. The principal algorithm for the FEM and FDM for 
the electromagnetic wave propagation equation, including all 
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possible wave propagation distributions on the domain ( ) 
with initial and boundary conditions, involves a nonlinear or 
linear PDE written in the general form which are shown as: 

 
2 2 2

2 2 2 2
( , , ) ( , , ) 1 ( , , )

( , , ) ( , , )

, ,

u t x y u t x y u t x y
u t x y u t x y

x y t

x y t



  
  

   
  

     (1) 

 
If the initial conditions are applied in general as following: 
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The boundary conditions are applied like: 
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In Cartesian coordinates, system ( , , )u t x y satisfies the 2D 

scalar wave equation in the x  direction from the boundaries 
which are pulsed with time-dependence of the fields, where 
w is the angular frequency, L  denotes the length of domain 
in x  and y  directions and   denotes the wave speed in 

medium. The discussion of the optimization and convergence 
of the medium and source analysis and the method of building 
of the wave propagation are not the subjects of this paper; for 
more details, refer to the work of [4], [10]. 

Fig. 1 shows the 2D scalar wave equation using a time 
equation schematic representation on the domain. All the 
materials in the wave propagation equation examples are 
completely open and customizable which fulfills one’s needs 
or simply creates the functions to use Mathematica's built-in 
tools as building functions [5], [6], [16]. Here, PDEs are 
defined, modified and improved using Mathematica tools.  
Further to this study, the dynamic analysis of the subject can 
be studied to see the detail of the wave behavior on domain 
using animation or dynamic tool, see appendix. 

III. NUMERICAL RESULTS AND DISCUSSION 

In this section, the feasibility and efficiency of the FEM and 
FDM are simulated via the cases below in the sense that their 

analytical answers are not known in advance. Initial and 
boundary conditions are taken equal for different PDE 
examples to show the equations’ variation on the domain. 

A. Lossless Media with Free Source 

The wave propagation equations are best described in 
spatial and temporal lossless media and source free conditions 
as linear case in 2D as: 
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FEM results at a given time for the equations are given 

below. 
In Figs. 2 (a)-(d), simulation of the FEM solution with the 

triangle element on the domain is solved for time dependent. 
Since the drawing the triangular mesh for finite elements 
darkens the figures, no meshing is shown in Figs. 1 (b)-(d). 
The wave propagation equation is realized with some 
difficulty in Mathematica's own solving system [16]. 
Especially, the solution techniques and the computational 
process, which includes the constant value of v, directly affect 
the solution stability and inconsistency of the results. A stable 
increment in the value of the constants and stability of the 
initial conditions should be an appropriate process; otherwise, 
the PDE's solution cannot be obtained via the FEM solution 
[6], [11]. The FDM solutions are given below. 

 

 

Fig. 1 Schematic representation of the 2D scalar wave equation with 
the (t,x,y) operator [1] 

 

 

(a)                                               (b) 
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(c)                                                                         (d) 
Fig. 2 FEM solution for (4) (alphabetical order defines t=1 s t=2 s, t=3s, t=4 s, respectively). 

 

 

(a)                                                                                            (b) 
 

 

(c)                                                                                   (d) 

Fig. 3 FDM Results for (4) t=1 s, t=2 s, t=3s,t=4 respectively 
 

The differences between the two methods with time 
variation are visualized in Figs. 2 and 3. When the constant 
values are increased in equations, FDM solution gives more 
details and more accurate value (u) on the domains, depending 
on time, in the linear case. Because the linear equation case is 
previously realized in more details, the following examples are 
only solved for FDM. Moreover, FDM solving system has a 
short CPU time (in Fig. 7 (b)) and few acceptable warnings 
results which are like in FEM in differential equations solving 
[11], [12]. The visualized solutions for (4) without the 

Neumann condition are below. 
The appearance of the solution exhibits the classical wave 

propagation behavior over time with less wave peaks. The 
values of the solution of wave propagation are  the nearly 
same with those of  the previously solved examples (Figs. 2 
and 3, Re( )u  values), and each figure in Fig. 4 changes in a 

different manner over time, as shown in Figs. 4 (a)-(d). It has 
the shortest CPU time which is shown in Figs. 7 (b). 
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A. Lossy Media without a Source 

In a lossy or inhomogeneous, nonlinear medium, the 
nonlinear equation with the same initial and boundary 
conditions is given in (5) [13], [14]. The wave propagation 
mathematical equations are written as: 
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  (5) 

 
To demonstrate the nonlinear case of wave lossy 

propagation in a standard setting, an arbitrary spatially 

dependent coefficient xe  multiplication with a time fractional 
derivative is also included into (5). 

The visualization of (5) is displayed in Figs. 5 (a)-(d). The 
theoretical explanation [15], completely corresponds to the 
visualization of the solution of (5) with the decreasing effect 
of the lossy medium. Although the lossy effect is seen by the 
time, in detail from Figs. 5 (c) and (d), the constant values 
play important role in the solving equation. Additionally, an 
increment in the constant’s value makes the lossy equation 
solution unpredictable in both FEM and FDE solution. 
However, FDM solution gives more stable and more accurate 
results which are supported with the theory in [1], [15]. 

 

 

(a)                                                                         (b) 
 

 

(c)                                                                                                (d) 

Fig. 4 FDM Results for (4) 
 

 

(a)                                                                         (b) 
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(c)                                                                                 (d) 

Fig. 5 FDM analysis result for (5) 
 

 

(a)                                                                             (b) 
 

 

(c)                         (d) 

Fig. 6 FDM equation for (6) 
 

A. Lossy Media with a Source 

The wave equations in a lossy medium with a source 
element are written as: 
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The source constant element is denoted as K . If the source 

element is considered depending on the dimensions and time 
in (6), then Fig. 6 plotting is nearly similar to Fig. 2 [9], [12]. 

The FDM solution in a lossy medium with a source element 
makes the nonlinear cases the more difficult to solve. 
However, this type of equation is the most encountered in real 
wave equations [12]-[14]. 

In Figs. 6 (a)-(d), the increasing effect of the source element 
on the domain is clearly seen orderly. Over the time, the 
impact of the source element’s appearance becomes tapered, 
as shown in Fig. 6 (d) [15]. In Fig. 7 (a), dominant source 
effect is seen clearly. 
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(a) 
 

 

(b) 

Fig. 7 (a) Source effect (b)CPU time 

IV. CONCLUSION 

Preliminary studies on examples of the linear or nonlinear 
PDEs, and even inhomogeneous PDEs, in 2D wave 
propagation equations are presented. Some of the complex and 
most common problems encountered are solved by using 
Mathematica tools, such as FEM and FDM. The overall results 
indicate that FEM and FDM are reliable and efficient in 
numerically solving all types of PDEs in electromagnetic 
wave propagation equations. Preliminary studies on examples 
of the linear or nonlinear PDEs, and even inhomogeneous 
PDEs, in 2D wave propagation equations are presented. Some 
of the complex and most common problems encountered are 
solved by using Mathematica tools, such as the methods of 
FEM and FDM. Also, it has been experienced that although 
FEM has some advantages in lossless medium such as the 
more clear visualization, more suitable constant value 
penetration, the FDM solution has more appropriate and has 
more accurate results in lossy medium with source or without 
source equations. 

The result of the comparison of the cases indicates some 
important data:  
 The effect of a lossy medium is observed clearly at the 

boundaries, which plays a decreasing role in values.  
 The constant source propagation affects all the regions as 

time increases.  
 If the initial Neumann conditions are not used, then the 

solution of the equations does not permit radical changes 
in appearance.  

Mathematica solving system enables some modifications 
and certain extensions in studying wave propagation equations 
that overcome the equations’ disadvantages and nonlinearity 
and satisfy the requirements of experimental comparison. 
However, further and developed computational research is 
required on large and complex regions. 

APPENDIX 

wavesol ൌ NDSolveሾሼ𝐷ሾ𝑢ሾ𝑡, 𝑥, 𝑦ሿ, 𝑡, 𝑡ሿ ൌ
ൌ 𝜈ଶ𝐷ሾ𝑢ሾ𝑡, 𝑥, 𝑦ሿ, 𝑥, 𝑥ሿ ൅ 𝜈ଶ𝐷ሾ𝑢ሾ𝑡, 𝑥, 𝑦ሿ, 𝑦, 𝑦ሿ, 𝑢ሾ0, 𝑥, 𝑦ሿ ൌ
ൌ 0, 𝑢ሾ𝑡, െ5, 𝑦ሿ ൌൌ 𝑢ሾ𝑡, 5, 𝑦ሿ ൌൌ 0, 𝑢ሾ𝑡, 𝑥, െ5ሿ ൌൌ 𝑢ሾ𝑡, 𝑥, 5ሿ ൌ
ൌ Sinሾ𝜔𝑡 െ 𝑥ሿ, 𝑢ሺଵ,଴,଴ሻሾ0, 𝑥, 𝑦ሿ ൌ
ൌ 0ሽ, 𝑢, ሼ𝑡, 0,4ሽ, ሼ𝑥, െ5,5ሽ, ሼ𝑦, െ5,5ሽ, PrecisionGoal → 1, Method
→ ሼ"DAEInitialization" → ሼ"Collocation", "CollocationDirection"
→ "Forward"ሽሽሿሿሿ 
AnimateሾPlot3Dሾwavesolሾ𝑡, 𝑥, 𝑦ሿ, ሼ𝑥, െ5,5ሽ, ሼ𝑦, െ5,5ሽ, PlotRangeെ

൐ All, PlotPoints → 15, Method
→ "FiniteElement", MaxRecursion → 3, Mesh
→ Allሿ, ሼ𝑡, 1,4ሽሿ 

For CPU time; 
 TimingሾTableሾPlot3Dሾwavesolሾ𝑡, 𝑥, 𝑦ሿ, ሼ𝑥, െ5,5ሽ, ሼ𝑦, െ5,5ሽ, PlotRange
→ Full, Method → "FiniteElement", PlotPoints
→ 20, MaxRecursion → 2(*, Mesh → None*)ሿ, ሼ𝑡, 1,4ሽሿሿ 

 

 

Fig. 8 Animation for 2D time dependent wave propagation equation 
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