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Abstract—In this paper, the joint optimization of the
economic manufacturing quantity (EMQ), safety stock level,
and condition-based maintenance (CBM) is presented for a partially
observable, deteriorating system subject to random failure. The
demand is stochastic and it is described by a Poisson process.
The stochastic model is developed and the optimization problem
is formulated in the semi-Markov decision process framework. A
modification of the policy iteration algorithm is developed to find
the optimal policy. A numerical example is presented to compare
the optimal policy with the policy considering zero safety stock.
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I. INTRODUCTION

THE traditional economic manufacturing quantity (EMQ)

model is rarely applied in the actual manufacturing

industries due to simplified and unrealistic assumptions.

Therefore, this model has been extended to satisfy the industry

requirements and make it more applicable. Many EMQ

papers have been published considering imperfect products,

stochastic production or demand rates, and production facility

deterioration [1]-[6]), but very few papers have been developed

considering partial information about the system condition.

One of the main assumptions has been to consider imperfect

process or machine deterioration in extended EMQ models.

The joint optimization of EMQ and maintenance policy has

been investigated in several papers. One of the early works is

[7], where the authors studied the effect of random machine

breakdowns on the optimal lot size. In the next paper,

they included safety stock in their model and obtained the

optimal production quantity [8]. To incorporate preventive

maintenance (PM) in the model, [9] investigated preventive

maintenance and two types of failure in the EMQ model.

Machine is replaced upon major failure and it is repaired at a

lower cost when minor failure occurs. The optimal lot size and

preventive replacement time were found for this model. Later,

[10] developed a joint optimization of EMQ and imperfect

PM, where the age of the system is reduced proportional to

the PM level. The machine replacement is performed when it

is out of control or after m inspections, which is a decision

variable in the model. Various approaches to modeling and

solving the maintenance and lot sizing problem have been

proposed in the literature (see e.g. [11]-[13]), however majority
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of them considered traditional age-based maintenance model.

In fact, [14]-[16] are the only references that took condition

monitoring (CM) information into account and developed the

jointly optimal CBM and EMQ policies considering different

assumptions. Continuous monitoring was introduced in [16],

and [14], [15] assumed that CM is performed periodically

and CM information is available at each sampling epoch.

Reference [14] assumed fully observable deterioration of the

production facility using proportional hazards model (PHM),

whereas [15] considered partially observable machine state

where the information is obtained through CM. These papers

assumed that demand is deterministic with known constant

demand rate, whereas in many real applications, demand can

be stochastic. Stochastic demand in lot sizing problems has

been considered under different assumptions such as dynamic

demand rate [1], [3], [17], Poisson demand arrivals [18]-[20],

demand following a particular probability density function [2],

[21]. Such a drawback of existing models motivates us to

extend the model proposed in [14] by considering stochastic

Poisson demand arrival process.

Also, to satisfy the demand when performing maintenance

actions and reduce inventory shortages in the system, safety

stock is introduced, which is another interesting topic in EMQ

models [22]-[24]. In this paper, we assume a safety stock to

decrease the lost sales cost in the system during production

run. It is assumed that newly produced items are transferred to

the inventory system after completion of the production run.

We formulate a model to address this gap in the literature.

The assumptions and model development are presented in

Section II. The SMDP framework considering CM and

Bayesian control under the stochastic demand assumption is

developed in Section III. Section IV is devoted to the analysis

of the proposed model by developing a numerical example

and investigating its effectiveness. Finally, conclusions and

suggestions for future research are discussed in Section V.

II. MODEL FORMULATION

We consider a manufacturing system which produces the

lot size Q in each production run, with constant production

rate denoted by p, whereas the demand arrives according to a

Poisson process with rate λ. The production facility is subject

to deterioration and random failure and its condition can be

classified to be in one of the three states: a healthy or ”as good

as new” state (state 0), unhealthy or warning state (state 1),

and a failure state (state 2). The healthy and unhealthy states
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are unobservable, only the failure state is observable at any

time. The end of each production run provides an opportunity

to collect the vector of observations through CM. Once the

production facility deterioration exceeds a certain level, then

the observations will change considerably, and the machine

will be in the warning state. When the machine is identified

to be in the warning state, the PM action is initiated. We

assume that the products are available to satisfy the demand

after completion of a production run. Therefore, the demand

during production run will be satisfied from the safety stock,

and the unsatisfied demands are considered as lost sales.

We model the machine state process (Xt : t ∈ R+) as a

hidden Markov process in a partially observable framework

with the state space Ω = {0, 1, 2}. The system is assumed to

start in a healthy state and it can make transitions from state 0

to state 1 with probability p01 or from state 0 to state 2 with

probability p02, where p01 + p02 = 1. It is assumed that the

sojourn times in state 0 and 1 are exponentially distributed,

with parameters ν0 and ν1, respectively. The instantaneous

transition rates for the state process (Xt : t ∈ R+) from state

z to state z′ are given by:

qzz′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

limh→0
P (Xh=z′|X0=z)

h < +∞, z �= z′

−∑
z �=z′ qzz′ , z = z′

0, otherwise,

(1)

where z, z′ ∈ Ω and the state transition rate matrix Q has the

form:

Q =

⎡
⎣ −(q01 + q02) q01 q02

0 −q12 q12
0 0 0

⎤
⎦ , (2)

where q01, q02, q12 ∈ (0,∞). We assume that the state process

is non-decreasing and the failure state is an absorbing state.

Let P = [Pz,z′(t)]z,z′∈Ω represent the transition probability

matrix, then the elements of this matrix are obtained by solving

the Kolmogorov backward differential equations [25].

We start monitoring the production facility condition at

equidistant sampling times (Δ, 2Δ, ...), and data vectors

Y1,Y2, .... ∈ Rd give partial information about the production

facility state, and are assumed to be conditionally independent

given the production facility state, and normally distributed

(readers are referred to [26] for a discussion and proof of

this reasonable assumption). So, the observation Yn given

XnΔ = i for i = 0, 1, has d-dimensional normal distribution

Nd(μi,Σi), where μi,Σi are assumed to be known observation

process parameters.

III. OPTIMAL BAYESIAN CONTROL POLICY

From the theory of partially observable Markov decision

processes, it is well known that the posterior probability

statistic that the system is in a warning state is sufficient

for decision making [27], [28]. Therefore, upon collecting

the samples at the end of each production run, the posterior

probability that the production facility is in the unhealthy state

is updated. For n ≥ 1, Πn denotes the posterior probability at

the nth sampling epoch which can be obtained as:

Πn = P
(
XnΔ = 1 | ξ > nΔ, Y1, ..., YnΔ

)
=

θ1
θ1 + θ2

(3)

where

θ1 = f
(
Yn | 1)(P01(Δ)(1−Π(n−1)Δ)+P11(Δ)Π(n−1)Δ

)

θ2 = f
(
Yn | 0)P00(Δ)

(
1−Π(n−1)Δ

)

f(Yn = y|i)= 1√
(2π)d|Σi|

exp
(
− 1

2
(y−μi)

TΣ−1
i (y−μi)

)
;

i ∈ {0, 1}. (4)

At the end of each production run, a sample is collected at

a cost Cs and the posterior probability Πn is updated using

Bayes’ rule. At sampling epoch nΔ, if Πn exceeds the control

limit, a production facility is inspected to check whether it is

in the healthy or warning state and the inspection cost is CI . If

the production facility is found to be in the healthy state, it will

be left operational without further actions. Otherwise, PM is

performed at a cost CP . If a failure occurs, failure replacement

is carried out immediately with the corresponding cost CF .

We also assume that the machine failure can occur only in

the production phase and the failure is observable at any time.

The products are stored at the end of a production run at the

holding cost rate of CH , and the demands are satisfied from

the inventory stock. If there are unsatisfied demands, then the

lost sales cost occurs denoted by CL. Also, the set-up cost

of Cu is charged upon initiating the new production run. The

objective is to find the optimal values of the production lot size

Q∗, the control limit Π̄∗ ∈ [0, 1], and safety stock level s∗ that

minimize the long-run expected average cost per unit time.

We develop an efficient computational algorithm in

the semi-Markov decision process (SMDP) framework to

determine the optimal production and maintenance policy.

Suppose that at the end of the nth production run, the

production facility has not failed, i.e. ξ > nΔ. The state

space of the posterior probability [0,1] is discretized into K
sub-intervals. The intervals should be selected small enough

to provide accurate result in a reasonable time. For a fixed

K, the SMDP is defined to be in state (z, i), where z is the

coded value of the posterior probability, and i represents the

inventory level. The coded value of the posterior probability

is z, if the current value of Πn lies in the interval [ z−1
K , z

K ).

Therefore, the state space of the SMDP is defined as

Ψ = {(0, s)} ∪ {(z, i) : z ∈ (0, 1]} ∪ {(PM, l)} ∪ {(F, j)},

where {(PM, l)} and {(F, j)} are the preventive maintenance

and failure states with the corresponding inventory levels

l, j, respectively. Now, for a set of SMDP states Ψ, the

long-run expected average cost is determined by the transition

probabilities, expected costs, and expected sojourn times,

which are defined as:

Ph,l= the probability that at the next production run the

production facility will be in state l ∈ Ψ given the

current state is h ∈ Ψ.

Ch= the expected cost incurred until the next production run



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:7, 2019

451

given the current state is h ∈ Ψ.

τh= the expected sojourn time until the next production run

given the current state is h ∈ Ψ.

For given production lot size, control limit, and safety

stock, and the long-run expected average cost per unit time,

g(Q, Π̄, s), can be obtained by iteratively solving the system

of linear (5):

Zh = Ch−g(Q, Π̄, s)τh+
∑
l∈Ψ

Ph,lZl, for each h, l ∈ Ψ,

Zj = 0, for some j ∈ Ψ.(5)

Now, we need to determine the SMDP quantities, i.e.

Ph,l, τh, Ch for h, l ∈ Ψ, to obtain the optimal production and

maintenance policy minimizing the long-run expected average

cost [25].

A. Transition Probabilities
The SMDP transition probabilities for all states are derived

in this section. Since, the system may start in state (0, s), then

we have:

1) The SMDP transition probability P(0,s),(z′,j) from state

(0, s) to state (z′, j) where z′ < Π̄ is given by:

P(0,s),(z′,j) =P
(z′ − 1

K
≤ Π1 <

z′

K
|ξ > Δ,Π0=0

)

·R(Δ|Π0 = 0) · (λΔ)me−λΔ

m!
; j = Q+ s−m,

m = 0, 1, ..., s− 1. (6)

If the demand during production run exceeds the safety

stock level, then the next state will be (z′, Q), and we

have:

P(0,s),(z′,Q) =P
(z′ − 1

K
≤ Π1 <

z′

K
|ξ > Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=s

(λΔ)me−λΔ

m!
. (7)

where R(Δ|Π0 = 0) is the conditional reliability

function at the first production run which is given by:

R(t|Π0 = 0) = 1−P02(t). (8)

The general formulas for the conditional reliability

function and for the transition probabilities will be

developed in (15) and (17), respectively.

2) If the posterior probability exceeds the control limit, then

inspection is performed and the result can be true or

false alarm. If it is a false alarm, then the system will

be in the state (0, j), and the transition probability can

be derived as:

P(0,s),(0,j)=
∑
z′∈M

P
(z′−1

K
≤Π1<

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0) · (λΔ)me−λΔ

m!
· (1−z′); j=Q+s−m,

m = 0, 1, ..., s− 1, (9)

where M={z′ : z′≥Π̄}.

When the demand during production run is greater than

the safety stock level, then the system makes transition

to the state (0, Q):

P(0,s),(0,Q) =
∑
z′∈M

P
(z′ − 1

K
≤Π <

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=s

(λΔ)me−λΔ

m!
·(1−z′). (10)

However, if the inspection reveals that it is true alarm,

then the system will be in the state (PM, j), and the

transition probability is given by:

P(0,s),(PM,j)=
∑
z′∈M

P
(z′−1

K
≤Π <

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0 = 0) · (λΔ)me−λΔ

m!
· z′; j = Q+ s−m,

m = 0, 1, ..., s− 1, (11)

where the demand is less than safety stock level,

otherwise, the system makes transition to the state

(PM,Q), and we have:

P(0,i),(PM,Q)=
∑
z′∈M

P
(z′−1

K
≤Π <

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=i

(λΔ)me−λΔ

m!
· z′. (12)

3) Upon failure, the system will be in the state (F, j), and

we have:

P(0,s),(F,j)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫Δ

0
−d
dt R(t|Π0=0) · (λt)me−λt

m! dt;
j = q + s−m, m = 0, 1, ..., s−1

∫Δ

0
−d
dt R(t|Π0=0)·

∑∞
m=s

(λt)me−λt

m! dt;
j = q,

(13)

where q = �pt	.

4) The SMDP transition probability P(z,i),(z′,j) from state

(z, i) to state (z′, j) where z, z′ < Π̄ is given by:

P(z,i),(z′,j)=P
(z′ − 1

K
≤Πn <

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1 = z) · (λΔ)me−λΔ

m!
; j = Q+ s−m,

m = 0, 1, ..., s− 1 (14)

where R(Δ|Πn−1 = z) is the conditional reliability

function at the nth production run which is given by:

R(t|Πn−1) = (15)

(1−Πn−1) · (1−P02(t)) +Πn−1 · (1−P12(t)).

If the demand during production run exceeds the safety

stock level, then the system makes transition to the state

(z′, Q), and we have:

P(z,i),(z′,Q)=P
(z′−1

K
≤Πn<

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1=z)·
∞∑

m=s

(λΔ)me−λΔ

m!
. (16)
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The first part of (14) is given by:

P
(z′ − 1

K
≤ Πn <

z′

K
| ξ > nΔ,Πn−1 = z

)
= (17)

P
[
2 · ln

[ (1− z′
K )D1

Πn−1

z′
KD0

Πn−1

· δ
]
− C < Vn ≤ 2

· ln
[ (1− z′−1

K )D1
Πn−1

z′−1
K D0

Πn−1

·δ
]
−C|XnΔ=0

]
·
[ D0

Πn−1

D1
Πn−1

+D0
Πn−1

]

+P
[
2 · ln

[ (1− z′
K )D1

Πn−1

z′
KD0

Πn−1

· δ
]
−C <Vn≤2

· ln
[ (1− z′−1

K )D1
Πn−1

z′−1
K D0

Πn−1

·δ
]
−C|XnΔ=1

]
·
[ D1

Π(n−1)

D1
Πn−1

+D0
Πn−1

]
.

where

D0
Πn−1

= P00(Δ)(1−Πn−1)

D1
Πn−1

= P01(Δ)(1−Πn−1) + P11(Δ)Πn−1, (18)

and

Vn = (Yn −B)TA(Yn −B)

A= Σ−1
1 − Σ−1

0

B= (Σ−1
1 − Σ−1

0 )−1(Σ−1
1 μ1 − Σ−1

0 μ0)

C =(μ1
TΣ−1

1 μ1−μT
0 Σ

−1
0 μ0)−BT (Σ−1

1 μ1−Σ−1
0 μ0)

δ = (|Σ1| · |Σ0|−1
)
1/2

. (19)

We can simplify the posterior probability calculation

under the assumption Σ0 �= Σ1, and we have:

Πn =
D1

Πn−1

δ · exp
[
1
2

(
Vn + C

)]
D0

Πn−1
+D1

Πn−1

, (20)

The probabilities in (17) can be derived by using the

closed formula for the cumulative distribution function

of (Vn|XnΔ), where (Yn−B|XnΔ = i) follows normal

distribution N(μi −B,Σi) [29].

5) When the posterior probability exceeds the control

limit Π̄, full inspection is performed and it can be false

alarm or true alarm. If a false alarm occurred, then the

production facility is in as good as new condition, so

the system makes transition to state (0, j).

P(z,i),(0,j)=
∑
z′∈M

P
(z′−1

K
≤Πn<

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1 = z) · (λΔ)me−λΔ

m!
· (1− z′);

j = Q+ s−m, m = 0, 1, ..., s− 1 (21)

After being in the state (0, j), j > s, then the inventory

is depleted to reach the state (0, s), and we have:

P(0,j),(0,s) = 1. (22)

However, when the demand during production run is

greater than the safety stock level, then the system makes

transition to the state (0, Q):

P(z,i),(0,Q)=
∑
z′∈M

P
(z′−1

K
≤Πn<

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1=z) ·
∞∑

m=s

(λΔ)me−λΔ

m!
· (1− z′); (23)

6) If the result of inspection reveals that it was true alarm,

then the system goes to the (PM, j) state, and the

corresponding transition probabilities are given by:

P(z,i),(PM,j)=
∑
z′∈M

P
(z′−1

K
≤Πn<

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1 = z) · (λΔ)me−λΔ

m!
· z′; j=Q+s−m,

m = 0, 1, ..., s− 1 (24)

if the demand is less than safety stock level, otherwise,

the system makes transition to the state (PM,Q), and

the corresponding transition probability is derived as:

P(z,i),(PM,Q)=
∑
z′∈M

P
(z′−1

K
≤Πn<

z′

K
|ξ>nΔ,Πn−1=z

)

·R(Δ|Πn−1=z) ·
∞∑

m=s

(λΔ)me−λΔ

m!
· z′; (25)

7) When observable failure occurs, then the system goes to

the state (F, j).

P(z,i),(F,j)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫Δ

0
−d
dt R(t|Πn−1=z) · (λt)me−λt

m! dt;
j = q + s−m, m = 0, 1, ..., s− 1

∫Δ

0
−d
dt R(t|Πn−1=z)·∑∞

m=s
(λt)me−λt

m! dt;
j = q.

(26)

8) When the machine is in the (PM, j) mandatory

replacement is performed, and we have:

P(PM,j),(0,s) = 1. (27)

9) Finally, when the machine is in the failure state (F, j),
the inventory level may be less than safety stock level or

not. Therefore, the system makes transition to the state

(0, s), and we have:

P(F,j),(0,s) = 1, j ≥ s (28)

However, when the inventory is less than safety stock

level upon failure, then the new production run is

initiated and the system goes to the state (z′, l):

P(F,j),(z′,l) =P
(z′−1

K
≤ Π1 <

z′

K
|ξ > Δ,Π0=0

)

·R(Δ|Π0 = 0) · (λΔ)me−λΔ

m!
; l = Q+ j −m,

m = 0, 1, ..., j − 1, j < s. (29)

If the demand during inspection interval exceeds the

current inventory level, then the next state will be
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(z′, Q), and we have:

P(F,j),(z′,Q) =P
(z′−1

K
≤Π1<

z′

K
|ξ > Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=j

(λΔ)me−λΔ

m!
, j < s. (30)

Also, when the posterior probability crosses the control

limit, then the system will be in the state (0, l) or

(PM, l), depending on whether false or true alarm

occurs, respectively. The transition probabilities are

given by:

P(F,j),(0,l) =
∑
z′∈M

P
(z′−1

K
≤Π1<

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0) · (λΔ)me−λΔ

m!
· (1−z′); l=Q+j−m,

m = 0, 1, ..., j − 1, j < s. (31)

When the demand during production run is greater than

the inventory on hand upon failure, then the system

makes transition to the state (0, Q):

P(F,j),(0,Q)=
∑
z′∈M

P
(z′ − 1

K
≤Π<

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=j

(λΔ)me−λΔ

m!
·(1−z′), j < s. (32)

However, upon detection of true alarm, the system will

be in the state (PM, l):

P(F,j),(PM,l)=
∑
z′∈M

P
(z′−1

K
≤Π<

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0 = 0) · (λΔ)me−λΔ

m!
· z′; l = Q+ j −m,

m = 0, 1, ..., j − 1, j < s, (33)

if the demand is less than safety stock level, otherwise,

the system makes transition to the state (PM,Q), and

we have:

P(F,j),(PM,Q)=
∑
z′∈M

P
(z′−1

K
≤Π <

z′

K
|ξ>Δ,Π0=0

)

·R(Δ|Π0=0)·
∞∑

m=j

(λΔ)me−λΔ

m!
· z′, j < s. (34)

When failure occurs before the production run

completion, the system will go to the state (F, l), and

we have:

P(F,j),(F,l)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫Δ

0
−d
dt R(t|Π0=0) · (λt)me−λt

m! dt;
l = q + j −m, m = 0, 1, ..., j−1

∫Δ

0
−d
dt R(t|Π0=0)·

∑∞
m=j

(λt)me−λt

m! dt;

j = q.

(35)

In the next two sections, the expected sojourn times and

the expected costs in each state are derived.

B. Expected Sojourn Times

The expected sojourn times should be calculated for all

SMDP states. For the initial state, the system whether survives

till next inspection epoch or not. If the production facility

works properly, then the expected sojourn time will be equal

to the sampling interval, however if the production facility has

failed before the next inspection epoch (Δ = Q/p), then the

mean sojourn time for the initial state depends on the failure

time.

So, the sojourn time for the initial state (0, s) can be written

as:

τ(0,s) =E(sojourn time | Π0 = 0, ξ > 0)

= E(sojourn time|Π0=0, ξ>Δ) ·R(Δ|Π0 = 0) +∫ Δ

0

E(sojourn time|Π0=0, ξ>0, ξ=t)·(−d

dt
R(t|Π0=0))dt

=
Q

p
·R(Δ |Π0=0)+

∫ Δ

0

t · −d

dt
R(t | Π0 = 0)dt, (36)

The expected sojourn time in the state (z, i), for which the
posterior probability does not cross the control limit is given
by:

τ(z,i)=E(sojourn time | Πn = z, ξ > nΔ)

=E(sojourn time|Πn=z, ξ>(n+1)Δ)·R(Δ|Πn=z) +∫ Δ

0

E(sojourn time|Πn=z, ξ>nΔ, ξ=nΔ+t)·(−d

dt
R(t|Πn=z))dt

=
Q

p
·R(Δ|Πn=z)+

∫ Δ

0

t · −d

dt
R(t|Πn=z)dt+E(Wi−s) (37)

where Wi−s is the time to deplete the inventory to reach the
safety stock level, which follows Erlang distribution, so (37)
can be written as:

τ(z,i)=
Q

p
·R(Δ|Πn=z)+

∫ Δ

0

t· −d

dt
R(t|Πn=z)dt+

i−s

λ
(38)

If the posterior probability crosses the control limit and a false

alarm occurs, then the system will be in the state (0, j), j > s
and the expected sojourn time at this state depends on the time

when inventory is depleted to reach the state (0, s).

τ(0,j) = E(Wj−s), j > s. (39)

If the inspection reveals the true alarm, then the system goes

to (PM, j) state and the expected sojourn time is given by:

τ(PM,j) = E(Wj−s) (40)

When failure occurs, then the system state will be (F, j), and

the expected sojourn time in this state when j ≥ s will be:

τ(F,j) = E(Wj−s) (41)

However, when the inventory upon failure is less than safety
stock level (F, j), j < s, then the expected sojourn time is
given by:

τ(F,j) =
Q

p
·R(Δ |Π0=0)+

∫ Δ

0

t · −d

dt
R(t|Π0=0)dt, (42)

C. Expected Costs

The expected cost incurred in each SMDP state is computed

in this section.



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:13, No:7, 2019

454

For the initial state (0, s), the expected cost can be obtained

as:

C(0,s) = E(cost | Π0 = 0, ξ > 0) (43)

= E(cost |Π0=0, ξ>Δ)·R(Δ | Π0 = 0)

+

∫ Δ

0

E(cost |Π0=0, ξ>0, ξ = t) · (−d

dt
R(t|Π0=0))dt

= Cu+
(
Cs +Hp(Δ) + Lp(Δ)

)
·R(Δ|Π0 = 0)+CI

·
∑
z′∈M

P
(z′ − 1

K
≤Π<

z′

K
|ξ>Δ,Π0=0

)
·R(Δ|Π0=0)

+

∫ Δ

0

(
CF +Hp(t) + Lp(t)

)
· −d

dt
R(t|Π0 = 0))dt

where Hp(t) and Lp(t) are expected holding and lost sales

costs during production run in t time.

C(0,s) = Cu+
(
Cs+ CH ·

[
s·Δ ·

s∑
j=0

(λΔ)j · e−λΔ

j!
− λΔ2

2

·
s−1∑
j=0

(λΔ)j · e−λΔ

j!
+

s(s+ 1)

2λ
· (1−

s+1∑
j=0

(λΔ)j · e−λΔ

j!
)
]

+CL ·
∞∑

m=s+1

(m−s) · (λΔ)m · e−λΔ

m!

)
·R(Δ|Π0=0)+ CI

·
∑
z′∈M

P
(z′−1

K
≤Π<

z′

K
|ξ>Δ,Π0=0

)
·R(Δ|Π0=0)+

∫ Δ

0

(
CF +CH ·

[
s·t·

s∑
j=0

(λt)j ·e−λt

j!
− λt2

2
·
s−1∑
j=0

(λt)j ·e−λt

j!

+
s(s+ 1)

2λ
· (1−

s+1∑
j=0

(λt)j · e−λt

j!
)
]
+ CL ·

∞∑
m=s+1

(m−s)

· (λt)
m ·e−λt

m!

)
· −d

dt
R(t|Π0=0))dt (44)

The average cost incurred until the next decision epoch for

state (z, i) such that the posterior probability does not cross

the control limit, is given by:

C(z,i)=E(cost|Πn=z, ξ>nΔ)=E(cost|Πn=z, ξ>(n+1)Δ)

·R(Δ|Πn=z)+

∫ Δ

0

E(cost |Πn=z, ξ>nΔ, ξ = nΔ+t)

·(−d

dt
R(t | Πn = z))dt= Cu+

[
Cs+Hp(Δ) + Lp(Δ)

]

·R(Δ|Πn=z)+CI ·
∑
z′∈M

P
(z′−1

K
≤Π<

z′

K
|ξ>Δ,Πn=z

)

·R(Δ|Πn=z)+

∫ Δ

0

[
CF +Hp(t)+Lp(t)

]
·(−d

dt
R(t|Πn=z))dt

+Hd(i− s) (45)

where Hd(q) is the holding cost of depleting q products

during depletion period.

C(z,i)=Cu+
(
Cs+CH ·

[
s·Δ·

s∑
j=0

(λΔ)j · e−λΔ

j!
− λΔ2

2

·
s−1∑
j=0

(λΔ)j · e−λΔ

j!
+

s(s+ 1)

2λ
· (1−

s+1∑
j=0

(λΔ)j · e−λΔ

j!
)
]

+CL ·
∞∑

m=s+1

(m−s) · (λΔ)m · e−λΔ

m!

)
·R(Δ|Πn=z)+CI ·

∑
z′∈M

P
(z′−1

K
≤Π<

z′

K
|ξ>Δ,Πn=z

)
·R(Δ|Πn=z)+

∫ Δ

0

(
CF +CH ·

[
s·t·

s∑
j=0

(λt)j ·e−λt

j!
− λt2

2
·
s−1∑
j=0

(λt)j ·e−λt

j!

+
s(s+ 1)

2λ
· (1−

s+1∑
j=0

(λt)j · e−λt

j!
)
]
+CL ·

∞∑
m=s+1

(m−s) ·

(λt)m ·e−λt

m!

)
· −d

dt
R(t|Πn=z)dt+CH · (i−s)(i−s+1)

2λ
(46)

When the posterior probability exceeds the control limit, then

the system will go to the state (0, j), j > s and the average

cost in this state is given by:

C(0,j) = Hd(j − s)=CH · (j−s)(j−s+1)

2λ
. (47)

If the inspection reveals that it was true alarm, then the average

cost incurred in (PM, j) state is:

C(PM,j)=CP +Hd(j − s)= CP +CH · (j−s)(j−s+1)

2λ
.(48)

Also, upon failure the system state will be (F, j), and the

expected cost is given by:

C(F,j) = CF +Hd(j − s)

= CF +CH · (j−s)(j−s+1)

2λ
, j > s, (49)

where the inventory on hand upon failure is greater than the

safety stock level. For j ≤ s, we have:

C(F,j)=CF + Cu+
(
Cs+ CH ·

[
j ·Δ ·

j∑
k=0

(λΔ)k · e−λΔ

k!
−

λΔ2

2
·
j−1∑
k=0

(λΔ)k ·e−λΔ

k!
+

j(j+1)

2λ
· (1−

j+1∑
k=0

(λΔ)k ·e−λΔ

k!
)
]

+CL ·
∞∑

m=j+1

(m−j) · (λΔ)m · e−λΔ

m!

)
·R(Δ|Π0=0)+CI

·
∑
z′∈M

P
(z′−1

K
≤Π<

z′

K
|ξ>Δ,Π0=0

)
·R(Δ|Π0=0)+

∫ Δ

0

(
CF +CH ·

[
j ·t·

j∑
k=0

(λt)k ·e−λt

k!
− λt2

2
·
j−1∑
k=0

(λt)k ·e−λt

k!

+
j(j + 1)

2λ
· (1−

j+1∑
k=0

(λt)k · e−λt

k!
)
]
+ CL ·

∞∑
m=j+1

(m−j)
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· (λt)
m ·e−λt

m!

)
· −d

dt
R(t|Π0=0))dt, j ≤ s. (50)

Now, all the SMDP quantities have been determined and the

optimal policy is found by iteratively solving (5).

IV. EXPERIMENTAL RESULTS

We illustrate the proposed computational procedure by

extending the numerical example introduced in [14]. We

assume that the production facility deterioration follows a

hidden Markov process with the set of possible states Ω =
{0, 1, 2}. States 0 and 1 are unobservable, representing the

healthy and warning states, respectively, and state 2 refers to

the observable failure state. The sojourn times in healthy and

warning states are exponentially distributed with parameters

ν0 = q01 + q02, and ν1 = q12. The transition rates of the state

process are given by:

q01 = 0.024, q02 = 0.004 and q12 = 0.3.

The observation process Y1, Y2, ... ∈ R2 represents the

information collected through CM at equidistant sampling

epochs and it is assumed to follow normal distribution

N2(μ0,Σ0) and N2(μ1,Σ1) depending on whether the system

is in the healthy or unhealthy state, where:

μ0 =

(
0.21
−0.01

)
Σ0 =

(
1.50 0.61
0.60 1.90

)

μ1 =

(
0.75
0.54

)
Σ1 =

(
1.81 1.97
1.97 2.22

)
.

Then, the corresponding transition probability matrix is

obtained by solving Kolmogorov backward differential

equations and it is given by:

P = [Pi,j(t)] =⎡
⎣ e−ν0t q01(e

−ν1t−e−ν0t)
ν0−ν1

1−e−ν0t− q01(e
−ν1t−e−ν0t)
ν0−ν1

0 e−ν1t 1− e−ν1t

0 0 1

⎤
⎦ ,

which is used to compute the SMDP transition probabilities.

The production facility produces 20 items per time unit.

Also, the demand arrival process follows Poisson distribution

with parameter λ = 8. The cost parameters Cs = 1, CI =
10, CL = 2, CH = 0.5, CP = 100, CF = 500, Cu = 20 are

considered in this experiment. The computational algorithm

for the optimal decision variables (Q∗, Π̄∗, s∗) requires an

appropriate discretization level K. The results obtained by

running the algorithm on an Intel Core (TM) i5 CPU with

2.27 GHz reveals that K = 40 is sufficient to get the precise

results in a reasonable computational time.

TABLE I
THE OPTIMAL PARAMETERS AND THE LONG-RUN EXPECTED AVERAGE

COST PER UNIT TIME

Average
Optimal Policy Lot Control s∗ cost per

size (Q∗) limit (Π̄∗) unit time
Proposed model 30 0.250 11 17.5842

Zero safety
stock model 20 0.275 0 20.0315

We applied the proposed model and obtained the results

shown in Table I. Table I shows the long-run expected average

cost per unit time and the optimal decision variables for the

proposed model and also for the model with zero safety stock.

The results in Table I confirm the superiority of the proposed

model when compare with the model considering zero safety

stock.

V. CONCLUSIONS AND FUTURE RESEARCH

In this paper, we have developed a joint optimization

model combining both EMQ and CBM with stochastic

demand. The production facility deterioration has been

described by a hidden Markov process with the set of three

possible states. The first two operational states representing

the healthy and unhealthy states are unobservable and only

failure state is observable at any time. We have assumed

that the demand arrival process can be modeled as a Poisson

process and the safety stock has been introduced to reduce

the effect of lost sales cost in the system. The computational

algorithm has been developed in the SMDP framework

minimizing the long-run expected average cost per unit

time. We have considered the production and maintenance

costs including set-up cost, inventory holding, sampling,

inspection, preventive, corrective maintenance, and shortage

costs. Numerical example has been provided to illustrate the

effectiveness of the proposed model which was compared

with the zero safety stock model. The results indicate that

substantial cost savings can be achieved by introducing safety

stock in the system. Further improvements can be expected

by relaxing the assumption of negligible maintenance times,

which is a suitable topic for future research.
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