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 
Abstract—The application of magnetocardiography signals to 

detect cardiac electrical function is a new technology developed in 
recent years. The magnetocardiography signal is detected with 
Superconducting Quantum Interference Devices (SQUID) and has 
considerable advantages over electrocardiography (ECG). It is 
difficult to extract Magnetocardiography (MCG) signal which is 
buried in the noise, which is a critical issue to be resolved in cardiac 
monitoring system and MCG applications. In order to remove the 
severe background noise, the Total Variation (TV) regularization 
method is proposed to denoise MCG signal. The approach transforms 
the denoising problem into a minimization optimization problem and 
the Majorization-minimization algorithm is applied to iteratively solve 
the minimization problem. However, traditional TV regularization 
method tends to cause step effect and lacks constraint adaptability. In 
this paper, an improved TV regularization method for denoising MCG 
signal is proposed to improve the denoising precision. The 
improvement of this method is mainly divided into three parts. First, 
high-order TV is applied to reduce the step effect, and the 
corresponding second derivative matrix is used to substitute the first 
order. Then, the positions of the non-zero elements in the second order 
derivative matrix are determined based on the peak positions that are 
detected by the detection window. Finally, adaptive constraint 
parameters are defined to eliminate noises and preserve signal peak 
characteristics. Theoretical analysis and experimental results show 
that this algorithm can effectively improve the output signal-to-noise 
ratio and has superior performance. 
 

Keywords—Constraint parameters, derivative matrix, 
magnetocardiography, regular term, total variation.  

I. INTRODUCTION 

IFFERENT from other physiological signals, the MCG 
signal is a non-invasive and non-contact technique [1], 

which provides electrical characteristics of the heart on the 
other hand relative to ECG signals [2], [3]. The MCG signal is 
detected with SQUID that has unparalleled sensitivity for 
measurement of the magnetic fields associated with the 
electrical activity of the heart [4], [5]. Generally, such 
measurements are conducted in order to detect small magnetic 
field signals in the presence of large background noise [6], [7], 
which makes it difficult to extract useful information at low 
SNR. So, removing background noise and recovering useful 
signals are chief objectives. To extract the signals which are 
buried in the noise, signal preprocessing contains essential and 
various tools, e.g., wavelet [8]-[10], EMD [11], [12] and 
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filtering methods such as the Finite Impulse Response (FIR) 
and Infinite Impulse Response (IIR) [13], [14], have been 
evolved and are used. The wavelet transform method for signal 
denoising is based on the use of a set of predefined basis 
functions, in order to decompose the measured signals and 
remove components corresponding to noise. The main 
disadvantage of this method is that the selection of wavelet 
basis seriously affects the denoising results. Empirical Mode 
Decomposition (EMD) is one of the decomposition methods of 
signal denoising, and is widely used to decompose a signal into 
different modes recursively. This method is, however, prone to 
mode mixing, and limited by sensitivity to noise and sampling 
[15]. The mode mixing is significantly reduced by a modified 
noise-assisted data analysis method known as the Ensemble 
Empirical Mode Decomposition (EEMD) method [15], [16]. 
However, the decomposition results are unsatisfactory because 
of the low signal-to-noise ratio. Lately, a new adaptive 
decomposition method called Variational Mode 
Decomposition (VMD) has been proposed [17], [18]. However, 
the research results showed that the decomposition results lack 
of adaptability. The TV [19], [20] regularization model is 
proposed at an early stage and was considered to be a signal 
denoising model that can reasonably maintain signal 
characteristics. Recently, some scholars have applied TV based 
approach to the denoising of one-dimensional signals and peak 
detection [21], [22]. However, the denoising results show that 
the algorithm may produce step effect and lack of constraint 
adaptability. So, the denoising performance needs to be 
improved.  

In order to overcome the problems above, we propose an 
improved TV regularization method whose regular term 
introduces second derivative matrix with adaptive constraint 
parameters. The rest of this paper is organized as follows: 
Section II introduces the data model required for the TV 
denoising algorithm. In Section III, a TV denoising scheme 
based on the second derivative matrix is proposed. The 
application for denoising methods of MCG signal is shown in 
Section IV. Conclusion is given in Section V. 

II. DATA MODEL 

For one-dimensional signal   ,1x n n N  , the TV, that is, 

the sum of the degree of change in the signal is defined as: 
 

     
1

1
N

n

TV x x n x n


                        (1) 

 
For ease of expression, (1) can also be written as: 
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  1
TV x Dx , where 

1
  represents the 1l  norm, then the 

first-order derivative matrix D  of size  1N N   is defined 

as, 

 1

1 1

1 1
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 
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

 
                 (2) 

 

Assume that the measurement signal  y n  is the signal 

buried in the noise  w n .  x n  is the original signal, and the 

expression is as follows: 
 

     y n x n w n                               (3) 

 

where  w n  is the noise component. Compared with the other 

signal denoising methods, the TVregularization method 
converts the signal recovery into a well-posed problem by 
introducing certain constraints, and ensures the existence and 
uniqueness of the signal recovery result, which has the 
advantage of less noise interference. The method of TV 
regularization for solving the original clear signal can be 
transformed into the following problem of minimizing the 
objective function  F x : 

 

  2

2 1

1

2
F x y x Dx                            (4) 

 
The former is the fidelity constraint, and the latter is the TV 

regularization term.   is the regularization parameter. The 
method is expected to achieve the best denoising effect by 
adjusting the regularization parameter to adjust the two parts of 
the above equation and calculate the minimum value. 

Since the 1l  norm is not divisible, the general optimization 

methods cannot be used to optimize the objective function

 F x . The Majorization-minimization algorithm uses the 

iterative idea to achieve better results in solving the 
optimization problem [23]-[25], which is essentially an 
iterative algorithm. The algorithm consists of two steps: first, 
we need look for an optimization function  kG x  that is easy 

to find the optimal solution and is related to the objective 
function. Then, we can solve the minimum point of the 
optimization function. It should be noted that the selected 
optimization function  kG x  satisfies the following two 

conditions: 

1)     , ,kG x x F x x    

2)        ,k k kG x x F x   

where  kx  represents the current iteration value of the signal to 
be sought. We find the optimization function that satisfies the 
above conditions as follows: 

    

  

2 1

2 1

1 1 1
, ,

2 2 2
k kT T

k

k
k

G x x y x x D Dx Dx

diag Dx

     

 
   (5) 

 

where  diag v  can generate a diagonal matrix, whose 

diagonal elements are the elements of v . The next iteration 
value can be expressed as follows: 
 

    1 arg min ,k k

x
x G x x                           (6) 

 
The 1k   th estimated value of the signal can be obtained by 

minimizing   , kG x x . Matrix inversion lemma is applied to 

solve the iterative formula: 
 

    
1

1 1k kT Tx y D diag Dx DD Dy



     

 
        (7) 

 
The above content is the original TV method denoising 

process. The basic principle of the TV denoising method is to 
use the regular term as the prior knowledge of the original 
signal to constrain the structural distribution of the 
reconstructed signal, thereby obtaining the estimated signal 
with high signal to noise ratio. 

III. PROPOSED NEW TV SCHEME 

TV denoising method can remove unsmooth noises by 
minimizing the difference between adjacent signals. However, 
the method has limited denoising effect on smooth noise such 
as baseline drift noise. In order to further remove the baseline 
drift noise based on the original denoising result, we constrain 
the minimum difference of adjacent data while also 
constraining the difference of the same position in the adjacent 
period. Based on the quasi-periodicity of the MCG signal, a 
new regularization matrix 1D  is defined: 

 

 

( )

1 2 1

1 2 1
1

1 2 1
N p N

D

 

 
  
 
 

 

 
 


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             (8) 

 
For the i th row of the matrix, the non-zero elements are the 

i th and  1i  th and  ii p th elements, and the 

corresponding values are 1,-2,1, where ip  represents the 

number of data points between the i th data point and the point 
at the same position in the next cycle. We can use the QRS peak 
as a benchmark to find ip . The specific process is as follows: 

1) Detect signal QRS peak position. First, we need determine 
the window length L  of a detection window.  In general, 
L  is the number of sampling points in a heartbeat cycle. 

2) Determine whether the i th data point of the noise signal 
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 y i is a peak. If  y i satisfies the formula:

   max ,
2 2

L L
y i y n i n i

      
 

 , it is a peak. Then, we 

continue to detect the next point until all peaks are 
recorded. 

3) Calculate the peak point closest to the i th data point, 
where ip  is defined as the distance between the peak point 

and the next peak point. 
The new matrix can constrain the correlation of adjacent 

periods of the signal to effectively remove baseline drift noise. 
There are multiple peaks in the MCG signal. Constraining 

the difference between adjacent data will weaken the peaks. 
Although the traditional algorithm can retain the signal 
characteristic information, the details are partially distorted. In 
order to improve the adaptability of the algorithm, we introduce 
adaptive constraint parameter  . The function of this 
parameter is to reduce the constraint strength in the sharp wave 
band and increase the constraint strength in the smooth wave 
band. Based on the above matrix 1D , each row of the matrix is 
multiplied by a constraint parameter. We can get a new 
adaptive constraint matrix 2D . 

 

1 1 2 22 1 , 1 , , 1
T

N p N pD D D D                      (9) 

 

where 1iD  represents the i th row of the matrix 1D , which is 
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Multiplying the i th row of the matrix by the sequence x  , 
2iD x  can adaptively constrain the difference between the 

adjacent data and the adjacent period. The above matrix shows 
that the greater the value of  , the stronger the constraint 
strength, conversely, the smaller the value of  ,the weaker the 
constraint strength. We expect to obtain the value of the 
adaptive parameter by priori knowledge of the noise signal. 
Here, we need to segment the noise signal and then calculate 
the variance to solve  . It is obvious that the adaptive 
parameter i  is inversely proportional to the variance that 

indicates the degree of signal variation at the i  point. The 
adaptive parameter i is defined as: 

 

 
 

,
1

,

1
var

var

N

i seg
i

i

i seg

y
N

a
y

 


                        (11) 

 
where ,i segy  represents a small segment of noise signal with a 

fixed length segL  and is centered on i . a  is a constant used to 

adjust the value of the adaptive parameter. The larger the 

variance of each segment of the signal, the more severely the 
changing near the center of the signal. At this time, the adaptive 
parameters become smaller and the constraint strength becomes 
smaller, which ensures that the signal characteristics are 
preserved. We replace the original matrix with the new matrix 

2D  as the regular term. The iterative formula can be derived 
by Majorization-minimization algorithm: 
 

    
1

1 1
2 2 2 2 2k kT Tx y D diag D x D D D y




     

 
   (12) 

 
Summarizing this denoising process might be done as 

follows: first, the detection window is applied to detect the peak 
position of the noise signal. Then, the parameter values ip  and

i  are calculated to determine the form of the matrix 2D . 

Finally, majorization-minimization algorithm is performed to 
obtain the iterative formula. The detailed procedures are as 
follows: 
1) Set the regularization parameter   . Generally, the higher 

the signal-to-noise ratio, the smaller the value of  , the 
range is taken 0~2. 

2) Determine the form of the regularization matrix 1D  , firstly 
use the detection window method to detect the signal 
peaks, and find the same position of the to-be estimated 
point in the next cycle based on the adjacent peak value, so 
as to determine the value of ip  . That is, for the i th row of 

the matrix, the value of the i th and the  ii p th elements 

is 1, and the value of the  1i  th element is -2. Finally, 

each row of 1D  is obtained in turn. 
3) Calculate the constraint parameters i  corresponding to 

each data point to determine the form of the regularization 
matrix 2D . 

4) Let 0k  , initialize the value of 0x . 

5) According to the principle of majorization-minimization 
algorithm, choose an optimization function  kG x to 

satisfy: 
 

    , ,kG x x F x x   

       ,k k kG x x F x  

 
6) Minimize the optimization function to get estimated 

sequence: 

 1 arg mink kx G x   

 

7) Calculate the sequence 1kx   using the iterative formula. 

Iteration is stopped until the minimum condition is 
satisfied. Otherwise let 1k k  , and return to step 5. 

IV. RESULTS AND DISCUSSION 

Three different types of noise have been added to the MCG 
signal, in order to investigate the effectiveness of denoising by 
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an improved TV denoising method. The types of noise include 
a low frequency (0.3 Hz) sinusoidal signal for simulating the 
baseline drift, 50 Hz sinusoidal signal for simulating the 
interference at power line frequency, and high frequency 
random noise. Reference [26] shows the denoising results of 
the MCG signals by the EEMD algorithm and the VMD 
algorithm. The denoising performance of these two algorithms 
is discussed below. 

The signal is denoised by different algorithms. In Fig. 1, we 
compare the original signal with the reconstructed signals 
obtained from EEMD based denoising methods using soft and 
hard thresholding. The results show that the hard threshold 
processing can reconstruct the QRS peak waves, but there are 
obvious errors in the reconstruction of other signal parts. 

Based on the bandwidth of the measurement signal and 
multiple tests, the number of modes decomposed by VMD is 
assigned to 6. The initial value of quadratic penalty  is 
assigned to 2000, and the default of the bandwidth  is 0. In Fig. 
2, we compare the original signal with the reconstructed signals 
obtained from VMD methods with soft and hard thresholding. 
The results show that the baseline of the reconstructed signal is 
not uniform with the original signal. To make matters worse, 
there is serious distortion in the reconstructed signal from the 
soft thresholding processing. 

In order to get more useful research results, the TV denoising 
method is applied to denoise the MCG signal. The denoising 
result of the original algorithm is shown in the upper part of 
Fig. 3. It is seen from the figure that TV denoising method 
cannot effectively remove baseline drift noise. At the same 
time, we can see that the signal waveform is not smooth and 
slightly distorted. The reason is that the algorithm is prone to 
step effect. 

 

 

Fig. 1 A comparison of the original signal (dotted line) with the 
reconstructed signals (solid line) obtained from EEMD based 

denoising methods with soft and hard thresholding. The panel above is 
the result of hard thresholding processing and the following panel is 

the result of soft thresholding processing 

 

Fig. 2 A comparison of the original signal (dotted line) with the 
reconstructed signals (solid line) obtained from VMD based denoising 

methods with soft and hard thresholding is shown in the figure 
 

 

Fig. 3 A comparison of the original signal (dotted line) with the 
reconstructed signals (solid line) obtained from TV based denoising 

method and the proposed method is shown in the figure 
 

To get a better result, we use the proposed method to denoise 
the signal. According to many experiments, we choose the 
parameter value with better effect as the next simulation initial 
values. The regularization parameter  is set in the range of 0 to 
2. The length L of the detection window is assigned as 360, 
which is the number of sampling points in a heartbeat cycle. 
The length segL  of the data segment that needs to be solved for 

variance is assigned as 31. The constant a  for adjusting the 
adaptive constraint parameters can be set according to the 
detailed data features and is the range 1 and 3. The denoising 
result of the improved TV denoising algorithm is shown in the 
lower part of Fig. 3. By comparing the reconstructed signal 
with the original signal, we can find that the fitting degree 
between the reconstructed signal and the original signal is 
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good, and all three kinds of noise in the signal are effectively 
removed. It may also be noted that, the signal to noise ratio 
improvement of the improved TV denoising method is much 
better than other methods. 

 

 

Fig. 4 The root-mean-square deviation (RMSE) of the EEMD, the 
VMD, and the improved TV methods are revealed. The improved TV 

method outperforms other methods 
 

In order to better compare the performance of the algorithms, 
we use the root-mean-square error (the square root of the mean 
of the sum of squared residuals, RMSE) to characterize the 
fitting degree of the reconstructed signal and the original signal. 
In Fig. 4, we compare the root-mean-square deviation (RMSE) 
of the four methods with the different input signal-to-noise ratio 
(SNR). In the case of low input SNR, the RMSE of the 
improved TV denoising method is significantly less than the 
other three methods, and the method has better denoising 
performance even with the low input SNR. 

In Fig. 5, we compare the performance of the original TV 
method, the improved TV method, the EEMD method, and the 
VMD method. For computing SNR, the logarithmic ratio of 
variance of a signal (from the beginning of P-wave to the end of 
T-wave for one cardiac cycle) to the variance of noise (from the 
end of T-wave to the beginning of P-wave, i.e., in the TP 
interval) has been taken. It is seen from Fig. 5 that the original 
TV algorithm applied to denoise the MCG signal cannot 
effectively improve the signal to noise ratio. Signal to noise 
ratio improvement of other threshold-based denoising 
algorithms is limited. Obviously, the improved TV method is 
capable of achieving better SNR when compared with EEMD 
and VMD methods. 

From the above simulation results, we can see that the 
proposed algorithm has better denoising performance 
compared with EEMD and VMD methods. Although there are 
slight disturbances in the QRS spikes and S-T waves obtained 
by filtering, it does not affect the calculation of heart related 
parameters. Measurements of magnetic field energy and 
current density remain accurate. In the case of the low input 
signal-to-noise ratio used in this paper, the SNR improvement 
of the proposed algorithm can be above 15 dB. The algorithm 

filtering results can support feature extraction of MCG and 
detection of heart disease. 

 

 

Fig. 5 The variation of the output signal-to-noise ratio (SNR) by 
EEMD, VMD，TV and the improved TV methods. The improved TV 

method outperforms other methods. 

V. CONCLUSION 

The proposed method in this paper overcomes the 
unadaptable constraint problem of TV, which improves the 
availability and precision of denoising of the MCG signal. This 
method adaptively adjusts the second derivative matrix of 
regular term by detecting signal peaks and calculating the 
variance of the segmentation signal. The low-frequency noise is 
eliminated, according to adjusting the position of the last 
non-zero element of each row of the second derivative matrix. 
The variance described above is used to calculate the adaptive 
constraint parameters. Then, iterative formula is used to solve 
the denoised sequence. The simulation experiments show the 
superiority of the improved TV in denoising performance for 
the MCG signal. The acceleration of the proposed method and 
the suitable signal preprocessing methods should be considered 
in future research and applications.  
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