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 
Abstract—Numerical modeling of fluid flows, whether 

compressible or incompressible, laminar or turbulent presents a 
considerable contribution in the scientific and industrial fields. 
However, the development of an approximate model of a supersonic 
flow requires the introduction of specific and more precise techniques 
and methods. For this purpose, the object of this paper is modeling a 
supersonic flow of inviscid fluid around a dihedral airfoil. Based on 
the thin airfoils theory and the non-dimensional stationary Steichen 
equation of a two-dimensional supersonic flow in isentropic 
evolution, we obtained a solution for the downstream velocity 
potential of the oblique shock at the second order of relative 
thickness that characterizes a perturbation parameter. This result has 
been dealt with by the asymptotic analysis and characteristics 
method. In order to validate our model, the results are discussed in 
comparison with theoretical and experimental results. Indeed, firstly, 
the comparison of the results of our model has shown that they are 
quantitatively acceptable compared to the existing theoretical results. 
Finally, an experimental study was conducted using the AF300 
supersonic wind tunnel. In this experiment, we have considered the 
incident upstream Mach number over a symmetrical dihedral airfoil 
wing. The comparison of the different Mach number downstream 
results of our model with those of the existing theoretical data 
(relative margin between 0.07% and 4%) and with experimental 
results (concordance for a deflection angle between 1° and 11°) 
support the validation of our model with accuracy. 
 

Keywords—Asymptotic modelling, dihedral airfoil, supersonic 
flow, supersonic wind tunnel. 

I. INTRODUCTION 

HE supersonic flows are frequently encountered in many 
fields of application. Indeed, many aerospace applications 

are concerned regular by highly compressible flows (aircraft, 
spaceship, missile...). In general, all these flows are very 
complex, despite, for simple geometries involving straight and 
oblique shocks, detachments and attachments and strong 
interactions between shock waves and boundary layer. For 
these studies, several resolutions have been adopted based on 
numerical simulation or experimental measurements [1], [2]. 
The numerical modeling of supersonic flow around the airfoils 
has been the topic of wide research, in the engineering 
applications [3]. The combination of analytical and numerical 
methods is conceivable by study of chaotic motions [4]. 

Others studies interested to local existence and the 
uniqueness of weak shock solution in steady supersonic flow 
past a wedge [5]. An analytical solution for the generation of 
shock wave obtained a result of supersonic flow around a 

 
A. Naamane and M. Hasnaoui are with the Mechanic Department, Royal 

Air Force Academy, Marrakesh, Morocco (e-mail: 
azeddine.naamane@gmail.com, hasnaouimohammed@hotmail.com). 

wedge [6]. Others methods are deployed to study the 
supersonic flow profile: the method of hydraulic analog 
simulation (the method of gas-hydraulic analogy) [7] and 
simulation using both continuum and particle approaches with 
inter-molecular collision modeling [8]. 

In this work, we use asymptotic methods to develop a 
model of a supersonic flow around thin wing airfoil. Then, we 
employ an application on the dihedral airfoil and an 
experimental study to validate the developed model. 

II. PROBLEM FORMULATION 

Taking into account the Bernoulli integral and the slip-
condition, for a compressible, isentropic, and irrotational 
Eulerian fluid flow, and in a two-dimensional steady-state 
case, we obtain the non-dimensional Steichen Equation, 
namely: 
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where M  is the characteristic far upstream Mach number,

( , )x z  is the velocity potential around the body,   is a 

constant with the value 1.40 for dry air and  characterizes a 
perturbation parameter.  

We obtained (1) after the linearization of non-dimensional 
Steichen Equation about the particular solution, far upstream 
of an obstacle, as: 
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                                   (2) 

 
where u( x,z  and w( x,z )  are the velocity components. 

The steady-state Steichen (1) is a hyperbolic equation. But, 
the signal speed of disturbances is finite in compressible flow.  

According to the “Least Degeneration Principle”, by 
keeping the maximum terms in (1) and consequently a lot of 
information, the dimensionless equation of fluid flow around a 
profile in the (x, y) plane is: 
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             ( )z f x     ;    0,1x
                         

(3) 

 
The relation (1) shows that the flow perturbation is caused 

by the relative thickness of the obstacle. 
In most applications, the bodies of interest are thin, so that 

generally ɛ is a small parameter. So, an interesting case, from 
the point of view of asymptotic methods, is the so-called 
supersonic case when: 

 

             
1        and        1M                              (4) 

 

Thus, we suppose that the velocity potential ( , , )x z 
admits a generalized asymptotic expansion with respect to ε 

with the parameters   and M  fixed [9], [10], as: 
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Thus, using the Taylor expansion in the vicinity of
( )z f x  with the slip condition and the boundary 

conditions associated with the limits, the appropriate equations 
of our problem are written:  

At order 0 in ɛ: 
 

2 2
2 0 0

2 2

0
0

0 0

( 1) 0

   0 1

0; 0 ;  

z

M
x z
df

x
z dx

x
x z

 



 





  
  

 
    
 

    

                      (6) 

 
At order 1 in ɛ: 
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The systems (6) and (7) show that if the solution at order 0 

in ɛ is known then we can deduce the solution at order 1 in ɛ. 

III. RESOLUTION PROCESS 

In order to avoid detachment of the leading edge shock 
wave, the leading edge and the trailing edge of the supersonic 
airfoils should be sharp (or only slightly rounded), and the 
section should be relatively thin. Otherwise, the shock wave 
will be detached and relatively strong. Moreover, for thin 
airfoils, the thickness, the camber and the angle of attack of 
the section are such that they weakly perturbe the upstream 

flow. This is due to the fact that the compression changes in 
the direction of the flow are sufficiently small for the inviscid 
flow to be everywhere isentropic. 

In reality, when the supersonic flow encounters the two-
dimensional double-wedge airfoil, an attached shock wave is 
formed. Thus, since the shock wave is attached to the leading 
edge and is planar, the downstream flow is isentropic. 

If we restrict our attention to supersonic flow, the first 
equation of the system (6), at order 0 in ɛ, is the 2-D wave 
equation and has solutions of hyperbolic type, namely: 
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Where 2 1n M  , x nz    and x nz   . 

Along the characteristics all properties of the flow, velocity, 
pressure, temperature are constant . So the supersonic flow is 
analyzed using the fact that the properties of the flow are 
constant along the characteristic lines x ± nz = constant.  

Fig. 1 illustrates supersonic flow past a thin airfoil with 
several characteristics lines shown. Notice that in the linear 
approximation the characteristics lines are all parallel to one 
another and lie at the Mach angle   of the free stream. 

Information about the flow is carried in the value of the 
potential assigned to a given line characteristic and in the 
spacing between lines characteristics for a given flow change. 

 

 

Fig. 1 Right and left leaning characteristics on a thin 2D airfoil. 
 

Since disturbances only propagate along downstream 
running characteristics we can deduce the velocity potential 
for the upper and lower surfaces. 

The solution, at order 1 in ɛ, is obtained by integrating twice 
the (8) and taking into account the slip condition (2nd 
equation of the system (7)). Indeed, on the upper side, we 
obtain: 
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where 
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Similarly, on the lower side, we obtain 1 ( , )   . 

Relations (8)-(10) allow to determine the velocity field and 
then the Mach number at each point along the upper and lower 
profile surfaces. Indeed, the Mach number along the profile, at 
order 2 in ɛ, is defined as: 
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In relation (11), the denominator is defined at order 3  (i.e. 

all terms proportional to 3  will be neglected). We note that 
the model developed depends on several physical parameters 
as the upstream Mach number, the relative thickness and 
equation of the profile, and the nature of the gas. 

IV. APPLICATIONS AND VALIDATION 

In a wide variety of physical situations, a compression 
shock wave occurs which is inclined at an angle to the flow. 
Such a wave is called an oblique shock. This type, either 
straight or curved, can occur in such varied examples as 
supersonic flow over a thin airfoil or the presence of a wedge 
in a supersonic stream or during a supersonic compression in a 
corner (see Fig. 2). 

 

 

Fig. 2 Attached an oblique shock for a corner flow 
 
We consider a supersonic flow passes over a slender semi-

wedge of   angle, as shown in Fig. 2, the plane shock wave is 
formed and is inclined by an angle of   with respect to the 

incoming flow direction. When the upstream supersonic 
stream encounters a compression corner, the downstream flow 
is deflected by an angle .   

In order to validate our model, we compare the results of 
our model with those of the theory. Indeed, we refer to the 
existing theoretical data to extract different Mach number 
downstream. The values for downstream Mach number of 
oblique shock, as a function of the deflection angle and the 
Mach number upstream, are shown in Fig. 3. 

 

 

Fig. 3 Weak oblique shock for Mupstream=1,5 
 

 
Fig. 4 AF300 supersonic wind tunnel TecQuipment Company 

 
In Fig. 3, for the Mach number (Mupstream=1.5), we remark 

that the results of our model are in good agreement with 
theoretical data for a deflection angle between 1 ° and 11 °. 
But beyond, a divergence between our model and the 

theoretical data is observed when the downstream flow 
becomes subsonic. 

Finally, we note that in the weak shock solution, M2 is 
supersonic, except for a small region near θmax. 
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V. EXPERIMENTAL STUDY 

Experimentation was carried out in the AF300 supersonic 
wind tunnel. The test section has a rectangular shape, the top 
wall has the convergent-divergent profile and the bottom wall 
plate has 25 pressure taps, see Fig. 4.  

The double-wedge airfoil dimensions are 25 by 25 mm with 
the angle of 10°. The double-wedge airfoil is showed in Fig. 5 
(a). 

 

 

(a)                                                      (b) 

Fig. 5 The double-wedge airfoil: (a) experimental setup; (b) 
dimensions (mm) 

 
In Fig. 5 (b), circle containing double wedge airfoil 

represents the+ 
 Schlieren window. On the other hand, with the aim to 

know the flow behavior in the double-wedge airfoil, an 
experiment was realized at 1.4 Mach number and the static 
pressure data were registered at this condition. The static 
pressure used to compute the Mach number, temperature and 
density in the wind tunnel test section. These results are shown 
in Fig. 6, for upstream pressure of 0.391 bar. 

 

 

Fig. 6 Evolution of downstream Mach number on the dihedral airfoil. 
 

Fig. 7 presents the experimental development that includes 
the procedure of oblique shock. Also shows, in Fig. 7 (b), the 
compression area (1st zone), and the Mach number decreases 
to 1.22 due at change of flow direction, while expansion area 
(2nd zone) the flow is accelerating to reach a 1.61 Mach 
number.  

Fig. 7 (a), wave visualization characteristics in the leading 
edge and trailing edge on the double-wedge airfoil, at 1.4 
Mach number, by means of the Schlieren method. The Mach 
angle in oblique shock wave in the leading edge is 46˚. The 
shock wave is visible only on the top side of the profile. 

 

 

(a) 

 

(b) 

Fig. 7 Oblique shock waves on double-wedge airfoil: (a) visualization 
characteristics; (b) schematic of compression and expansion zones 

 
In order to validate our model, we compare the model 

results with the experimental data above. Indeed, we consider 
a 10° angle dihedral airfoil (ϴ=5°), in which equation profile 
is split in two zones (Fig. 7 (b)), as:  
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Then, using the relation (11), we finds according to our 

model that, for an upstream Mach number M1= 1.4, in the 
compression zone M2=1.220724175 and the M3 =1.569034156 
in expansion area. The estimated differences between model 
results and experience are, respectively, of order 0.07% in the 
1st region and 4% in the 2nd region. 

VI. CONCLUSION 

In this work, the two-dimensional isentropic and inviscid 
supersonic flow, and around a wedge has been modeled using 
the asymptotic analysis and characteristics method. Various 
parameters of our model (Mach number, deviation) were 
found in good agreement with the results of the theory. The 
results achieved demonstrate a very high accuracy: the errors   

in the proposed model are estimated at about 510 . These 
solutions allow us to estimate the flow parameters downstream 
the shock.  

The exploitation of the results of the experimental study, 
indicates that on the first zone of the dihedral airfoil is a 
compression area and the second is an expansion area. The 
estimated differences between model results and experience 
are, respectively, of order 0.07% in the 1st region and 4% in 
the 2nd region. The acquisition of Mach number values shows 
a good agreement. The Schlieren photographs of the shock 
waves were not satisfactory for quantitative comparisons with 
the theoretical shapes. However, definite qualitative 
agreement was observed.  

As it is evident from the comparison with the experimental 
data shows, our model is capable of predicting physically 
realistic distributions of Mach numbers on the airfoil. 
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