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Abstract—The distribution of velocities of particles in plasma is 
a well understood discipline of plasma physics. Boltzmann’s law and 
the Maxwell-Boltzmann distribution describe the distribution of 
velocity of a particle in plasma as a function of mass and 
temperature. Particles with the same mass tend to have the same 
velocity. By expressing the same law in terms of energy alone, the 
author obtains a distribution independent of mass. In summary, for 
particles in plasma, the energies tend to equalize, independent of the 
masses of the individual particles. For high-energy plasma, the 
original law predicts velocities greater than the speed of light. If one 
uses Einstein’s formula for energy (E=mc2), then a relativistic 
correction is not required. 

 
Keywords—Cosmology, EMP, Euclidean, plasma physics, 

relativity.  

I. INTRODUCTION 

HE Maxwell-Boltzmann distribution function describes 
the distribution of velocity of a particle in plasma as a 

function of mass and temperature (see [1]-[3]). This paper 
expresses the same law in terms of energy alone, independent 
of mass.  

For particles with smaller mass, the Maxwell-Boltzmann 
distribution predicts that the velocities will be much higher 
than for particles with lower mass. The velocity increase is 
inversely proportional to the inverse of the square root of the 
mass decrease. For electrons, a factor of 42.85 times faster 
than a proton (see Fig. 1). This effect causes the 
electromagnetic pulse (EMP) associated with nuclear blasts.  

When an atomic bomb is detonated, the electrons separate 
from the protons, producing enormous electromagnetic fields, 
sufficient to knock out electric power and damage electronic 
equipment.  

When the Maxwell-Boltzmann distribution is expressed in 
terms of energy, mass disappears from the resulting 
probability density functions and cumulative distribution 
functions.  

II. RESULTS 

Expressed in the energy domain, the probability density 
function of energy, E, for particles in plasma becomes  
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where E is kinetic energy, v is velocity, k is Boltzmann’s 
constant, m is mass, and T is temperature. 

The corresponding cumulative distribution function is  
 

kT

E

E e
kT

E

kT

E
erfEF





4

)()(                                         (2) 

 
where erf is the normal (Gaussian) error function,  
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This same formulation applies to all of the species of the 

plasma, independent of a particle’s mass. It therefore provides 
a unification for the Maxwell-Boltzmann distribution. 

III. ANALYSIS 

According to definition, the cumulative distribution 
function of a random variable, X is defined in terms of 
probability (see [4], [5]) 
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where P(event) is the probability of an event.  
Expressed verbally, for a real number x, the cumulative 

distribution function FX(x) is the probability that the random 
variable, X, is less than x. 

The probability density function is the derivative of the 
cumulative distribution function (see [4], [5]) 
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Turning our attention to the Boltzmann distribution [1], the 

probability density function of any of the species of the gas is 
given by  
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where v is velocity, k is Boltzmann’s constant, m is mass, and 
T is temperature. 

This classical formulation of the Maxwell-Boltzmann 
distribution yields a different probability density function for 
each of the species of the plasma, according to mass.  

From the same reference, cumulative distribution function 
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is computed 
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where P(event) is the probability of an event, and erf () is the 

normal error function. 
The above function provides a finite probability that the 

velocity will exceed the speed of light, c. This cannot be 
realized in the physical universe. For extremely energetic 
plasmas, this probability becomes significant, and this 
classical formulation for the Maxwell-Boltzmann distribution 
is useless. To resolve this issue, the Maxwell-Boltzmann 
distribution can be expressed in terms of energy instead of 
velocity. 

 

 

Fig. 1 Relative Velocities of Particles in Plasma 
 

Before Einstein (in Boltzmann’s era), kinetic energy was 
always computed  
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Solving for velocity, 
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Substituting into (7), 
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Simplifying, 
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where k is Boltzmann’s constant, E is kinetic energy, and T is 
temperature. 

Astonishingly, the values containing mass all cancel. This is 
clearly a more unified and robust approach for characterizing 
gas or plasma. It says that the kinetic energy, E, is essentially 
mass independent.  

Reiterating, this equation applies to all particles of the gas 
or plasma, independent of a particle’s mass. The distribution 
of energy is therefore strictly a function of temperature. 

Moving on, the probability density function is the derivative 
of the cumulative distribution function [4].  
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where erf(x) is the normal distribution error function.   

Performing the differentiation,  
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The first two terms cancel, leaving 
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This concludes the derivation of the density and distribution 

functions as a function of energy and temperature.  
A further examination of (11) will reveal that energy 

increases in direct proportion to temperature. Let  
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then the distribution of Ψ is dimensionless. 
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For any particular temperature, the value of Ψ increases 

monotonously with values of E. Therefore 
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From the definition of cumulative distribution functions, it 
follows that 
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Using this representation for simulations, energy can be 

generated using a single distribution function. 

IV. RELATIVISTIC CONSIDERATIONS 

If Boltzmann had expressed his law in terms of energy 
instead of mass and velocity, relativistic correction would not 
be required. Keep in mind that Boltzmann died just after 
Einstein published his first paper on relativity. In Boltzmann’s 
era, kinetic energy was computed using the classical 
Newtonian formula,  
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Einstein concluded that mass increases with energy.   
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where ET is total energy.   
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where ET is total energy, E is kinetic energy, m is mass, and m0 
is rest mass.  

Solving for kinetic energy, 
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Mass increases with velocity, 
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where m0 is rest mass, and v is velocity. 

Solving for energy as a function of velocity, 
 

2
0

2

2

0 )

1

( cm

c

v

m
E 




                                                         (24) 

 
The term m0 can be factored out from the right side. 
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This formula agrees with the classical Newtonian formula 

to within 0.1% for velocities less than 106 meters per second.  
Unfortunately, the above equation is not computationally 

useful. For smaller values of velocity, it involves computing 
the difference between two numbers which are very close to 1. 
The precision of the computation is compromised.  

To obtain good computational results for kinetic energy 
requires expressing the above equation as a Taylor-series 
expansion [6]. 
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This series converges very rapidly. The first term is 

recognizable as the classical formula for kinetic energy, 
m0v

2/2. For each term, the next term decreases by a factor of  
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For velocities less than 10% of the speed light, the first term 

is less than 1%. For velocities less than 1% of the speed of 
light, it is less than 0.01%.  

To solve for velocity as a function of energy, first divide 
both sides of (25) by m0c

2. 
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Adding 1 to both sides, 
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Squaring and inverting both sides, 
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Solving for v/c squared, 
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The formula on the right is always less than 1; therefore, the 

ratio on the left must also be less than 1. In conclusion, the 
resulting velocity will always be less than the speed of light. 
The conundrum with Maxwell-Boltzmann distribution is 
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therefore repaired. 

V. CONCLUSION 

These results have implications for cosmology, particularly 
near the time of creation. Interacting particles will tend to have 
the same energy. 

Plasma is a state of matter where electrons have too much 
energy to stay confined to atoms. Unless the geometry early 
universe is confined to a small finite volume, electrons in the 
early universe would simply dissipate into empty space. The 
remaining positively charged protons and helium nuclei repel 
each other, and would therefore follow soon after. An 
unconfined universe would have no atoms. No stars. No 
galaxies. This will occur unless the plasma is confined inside a 
finite volume. This concludes that the size of the universe 
must be finite, and therefore non-Euclidean. Solving this 
problem is, of course, a subject for a different paper. 

ACKNOWLEDGMENT 

The author thanks Col. Robert D. Bliss (Retired), M.S. for 
his considerable help in editing this paper and preparing it for 
publication. Robert Bliss is a former editor of the Air Force 
Software Journal. 

REFERENCES  
[1] M. Moisan, J. Pelletier, Physics of Collisional Plasmas. 2006 Springer 

Dondrecht: Heidelberg New York London. p 387. Full text available free 
online. 

[2] University Physics – With Modern Physics (12th Edition), H. D. Young, 
R. A. Freedman (Original edition), Addison-Wesley (Pearson 
International), 1st Edition: 1949, 12th Edition: 2008, ISBN 978-0-321-
50130-1. Full text available free online. 

[3] Maxwell, J. C. (1860 A): Illustrations of the dynamical theory of gases. 
Part I. On the motions and collisions of perfectly elastic spheres. The 
London, Edinburgh, and Dublin Philosophical Magazine and Journal of 
Science, 4th Series, vol.19, pp.19-32. Full text available free online. 

[4] M. Abramowitz and I. Stegun, Irena A. Handbook of mathematical 
functions with formulas, graphs, and mathematical tables. 1964, U.S. 
Department of Commerce, National Bureau of Standards, p. 927. Full 
text available free online. 

[5] Zwillinger, Daniel; Kokoska, Stephen (2010). CRC Standard Probability 
and Statistics Tables and Formulae, 2010. CRC Press. p. 49. ISBN 978-
1-58488-059-2. Full text available free online. 

[6] R. Weast, M. Astle, W Beyer. CRC Handbook of Chemistry and Physics 
1922. Chemical Rubber Publishing Co. p A-85. Full text available free 
online. 


