
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

287

1

Abstract—Ontologies and various semantic repositories became
a convenient approach for implementing model-driven architectures
of distributed systems on the Web. SPARQL is the standard query
language for querying such. However, although SPARQL is well-
established standard for querying semantic repositories in RDF and
OWL format and there are commonly used APIs which supports it,
like Jena for Java, its parallel option is not incorporated in them. This
article presents a complete framework consisting of an object algebra
for parallel RDF and an index-based implementation of the parallel
query engine capable of dealing with the distributed RDF ontologies
which share common vocabulary. It has been implemented in Java,
and for validation of the algorithms has been applied to the problem
of organizing virtual exhibitions on the Web.

Keywords—Distributed ontologies, parallel querying, semantic
indexing, shared vocabulary, SPARQL.

I. INTRODUCTION

HE conventional approach for developing Web
applications uses a combination of ad-hoc techniques

which utilize various methods, technologies and tools tailored
specifically for the World-Wide Web. This approach is prone
of many drawbacks due to the lack of unification, the struggle
with the complexity and the crippling limitations, and it is not
an accident that the recent DevOps movement heavily relies
on the use of more agile methodologies for development to
cope with the problem. Model-driven approaches, on the other
hand, rely on the direct use of models on different levels of
abstraction. The ontological engineering as universal modeling
technique, equally suitable for the Web as well as for other
media, is a promising alternative.

The ontologies serve two different purposes in software
development. On one hand, they help conceptualizing the
solutions by providing rich modeling capabilities, strictly
based on formal logics and thus, they help avoiding logical
errors in the design. On the other hand, the ontologies provide
a firm basis for implementing intelligent solutions which
incorporate elements of AI. Because of this, we can conclude
that the use of ontologies in the design and implementation of
model-driven architectures of software system is of key

Sharjeel Aslam was a PhD student at the School of Computing and Digital

Media of London Metropolitan University. He is currently with the University
of Northumbria, UK (e-mail: sharjeel.aslam@northumbria.ac.uk).

Vassil Vassilev is a Reader in AI and Cyber Security. He is currently Head
of the Cyber Security Research Centre of London Metropolitan University,
UK (corresponding author; phone +447762794887, e-mail
v.vassilev@londonmet.ac.uk).

Karim Ouazzane is a Professor in Knowledge Transfer. He is currently
with the School of Computing and Digital Media of London Metropolitan
University, UK (e-mail: k.ouazzane@londonmet.ac.uk).

importance. RDF as the lingua franca of the Semantic Web is
of special importance for achieving quality, universality and
productivity. For the purpose of building semantically rich
distributed information systems using model-driven
architecture, it is necessary to have a suitable query language
for querying the ontological repositories. Although there are
several candidates – SPARQL, SERQL, RDQL and RQL,
SPARQL is suggested by the World Wide Web Consortium
(W3C) as a standard language for querying RDF repositories.
It has all the elements which are essential for querying RDF
data sets, including distributed ontologies [10]. Unfortunately,
most of the existing APIs which support SPARQL, such as
Java Jena library, for example, do not provide support for
querying distributed ontologies. This is obviously due to the
complications related to the need for concurrency
management. Additional complexity comes from the need to
maintain multiple vocabularies. This is a serious restriction on
the possibility to use ontological approach, since the
distribution is often an essential requirement in developing
enterprise applications.

Our research is focused on a restricted version of distributed
ontologies with shared vocabulary. Unlike the general case of
distribution in such ontologies, there is no need to maintain
multiple vocabularies and, as a result, the concurrency is
reduced to an enumerated number of patterns for which the
concurrency management can be achieved easily on a case-by-
case basis. The core idea is to reduce the concurrency issue to
the concurrency of a simple RDF triple as the only semantic
representation within the ontology. Thanks to this, the
concurrency management can be guaranteed by utilizing the
semantic equivalence of the dependencies of the three
components of the RDF tuples in the local ontologies, which
are always in the format <Subject, Predicate, Object>. This
article introduces a complete framework for utilizing
distributed ontologies in the process of developing intelligent
distributed applications on the Web. It also illustrates the
application of the framework for organizing online virtual
exhibitions using information extracted from multiple
participating museums. Although the validation of the
framework is tailored to the Web, its use is not limited to that
media and can be easily adopted in a more general case of
model-driven architectures (MDA).

II. CURRENT STATE OF RESEARCH

Distributed ontologies occur in multiple cases where the
modelled resources are physically distributed across multiple
locations. The typical solution which database systems use for
dealing with the physical distribution is based on some sort of

Sharjeel Aslam, Vassil Vassilev, Karim Ouazzane

Parallel Querying of Distributed Ontologies with
Shared Vocabulary

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

288

replication. However, such a purely syntactic mechanism
cannot be used in distributed ontologies due to their rich
semantics, which require more sophisticated mechanisms for
synchronization of the operation and the data across multiple
locations. In this section, we will review some applications of
the ontological approach, specifically focusing on the effect of
the distribution.

Regardless the particular area of application, the first
problem of distributed ontologies which needs to be resolved
is the parallel search [1]. Ding's for example introduced a
semantic flash search engine, which is reported to deliver the
top 50 retrieved results from the Google search [2]. But most
intelligent semantic search engines do not perform very well
when precision and low recall are needed. The recognition of
the intension behind the search plays also an important part
and some end-user search engines have incorporated user
sentiment analysis as part of the solution to improve the
precision and reduce the recall rate [3]. However, this solution
is not applicable to the parallel search of distributed
ontologies, since it may eliminate important local findings and
thus, to reduce the precision.

Another problem related to the distributed search is the
necessity to maintain explicit representation of the different
meanings of the search terms in different ontologies and to
support contextual mapping of these meanings, known as
semantic disambiguation. This might be critical in intelligent
applications since the limited terminological knowledge may
lead to formulation of wrong queries [5]. Typically resolving
the semantic ambiguity of the search terms requires a
thesaurus such as WordNet, but only a few search engines
present as an option terminological search with multiple
meanings [4]. Some researchers prefer to use numerical
ranking of the context of use, but although more
computationally efficient, this method may cause serious
errors when the Semantic Web applications require definite
meaning based on pure logic and merely linguistic information
[6].

The distribute systems with ontological models also
experience integration problems. They occur within the layer
responsible for merging the local ontologies into an integrated
global ontology [7]. In principle, two alternative methods can
be used to merge the ontologies:
1. Combining the ontologies into a solitary global ontology.
2. Keeping the local ontologies isolated from each other and

maintaining of communication protocol.
In both cases, the ontologies must be brought into a sharing

contract which explicitly specifies the shared resources.
The evolving environment coupled with the absence of

information about possible upgrades of the ontologies makes
the results of the queries less trustworthy due to the inter-
dependencies between the predicates [8]. As a consequence,
this may lead to partial or full disintegration of the systems.

The evolution of the ontologies can affect server
performance as well due to the different workload it takes to
find the response to queries. The query optimization needs to
produce more robust execution plans because cardinality
gauges change too rapidly [9]. At the same time, early

scheduling may turn out to be extremely perplexing.
The mapping of the terms used within different ontologies

is an important mechanism for maintaining the global
consistency and integrity so it needs special attention. In most
of the cases this is addressed by the use of the so-called
“semantic bridge”. The RDFT system [10] delineates a little
tool to portray the various mappings amongst the RDF
repositories. The key concept in this approach is the bridging,
which is described using a separate “semantic bridge
ontology”. Beyond RDF, this concept is further exploited in
the other languages of the semantic languages “cake” – OWL
[11] and KIF [12].

Some of the above problems can be avoided if limiting to
distributed ontology with shared vocabulary. In such a case,
the terminology used within different ontologies is
automatically synchronized with the other ontologies and any
changes or extensions of one ontology do not lead to problems
in the other.

III. PROPOSED FRAMEWORK FOR QUERYING DISTRIBUTED

ONTOLOGIES WITH SHARED VOCABULARY

SPARQL is to RDF ontologies what SQL is to the relational
databases but on a higher level of abstraction. The result of the
execution of the SPARQL query is an RDF graph consisting
of all triplets which match the stated condition in the query.
They can be used for producing reports directly out of the
repository to perform semantic disambiguation using the
semantic dependencies between different terms or as a
knowledge representation for intelligent applications.

Fig. 1 Framework for Concurrent Query Processing in Distributed
RDF Ontologies with Shared Vocabulary

Conceptual architecture of our framework is shown on Fig.

1. The ontology is distributed amongst a number of physically
dispersed repositories RDF-1, RDF-2 … RDF-N, while the
Central Repository contains the shared vocabulary and the
supporting information which allows to reformulate the
original SPARQL queries as independent subqueries which

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

289

can be executed against the local repositories. The three
principle components of the framework are the Query
Analyzer, responsible for finding semantic equivalent
subquery in each of the repositories, the RDF Triple
Retriever, which performs SPARQL query processing against
each separate repository, and the Query Evaluator, which
performs aggregation of the results of the subquery execution
into semantically equivalent global response to the original
SPARQL query.

In the subsequent sections of this article, we will present
systematically the methods and the algorithms used by the
Query Analyzer and the Query Evaluator during runtime
execution of the global SPARQL queries, as well as the
supporting mechanisms of the Central Repository working
offline as an advanced preparation of the shared vocabulary
for common use in real time.

IV. VIRTUAL EXHIBITIONS SCENARIO

In order to validate the proposed framework, we have
developed a dedicated scenario for organizing of virtual
exhibitions using information from several museums. Each of
the participating museums in the above scenario represents the
information about its own exhibition funds in a local RDF
repository built using a common vocabulary of terms. The
virtual exhibition is organized around a set of queries in
SPARQL format which are inherently concurrent and require
parallel execution and synchronization. An RDF schema of the
vocabulary is shown on Fig. 2.

The above vocabulary contains three main categories of
information:
 Museum exhibits with classification of the items;
 Craftsmanship with classification of the art forms;
 Place of origin with geographic location; and,
 People and their role in relation to the exhibits (artists,

curators, critics, etc.).

Fig. 2 RDF Schema of the shared vocabulary

In total, the shared vocabulary contains 30 classes. Albeit
being small, it is entirely sufficient for the purpose of testing.
There are numerous cases of potential concurrency which
appear in the distributed ontology:
 Identical classes with different descriptions in different

repositories;
 Identical classes with different relations in different

repositories;
 Identical classes with different inheritance in different

repositories;

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

290

 Superclass in one repository, sub-classes in other
repositories;

 Different classification of individual objects in different
repositories, etc.; and,

 Different relations of individual objects in different
repositories, etc.

An excerpt of the RDF repository which contains the above
model is as follows:

<Place is‐a Region>
<Place has City>
<Country has City)
<Museum hasAddress Address>
<Address is‐a City>
<Museum hasManagement Management>
<Management manage Exhibition>
<Exhibition contains Artifacts>
<Artifacts hasMaterial Material>
<Artifacts represented‐By Craft>
<OilPainting is‐a Craft>
<Watercolour is‐a Craft>
<Wood is‐a Craft>
<Painting is‐a Artifacts>
<HandWrittenDocuments is‐a Artifacts>
<HandWrittenDocuments represented‐through Wood>
<Painting hasPic Picture>
<HandWrittenDocuments hasPic Picture>
<Artifacts has Artist>
<Artist is‐a Founder>
<Founder is‐a Person>
<Painter is‐a Artist>
<Writer is‐a Artist>
<Artist hasSpouse Spouse>
<Artist hasFather Father>
<Artist hasMother Mother>

<Father is‐a Parents>
<Mother is‐a Parents>
<Parents is‐a Man>
<Parents is‐a Women>
<Man is‐a Gender>
<Women is‐a Gender>
<Person hasGender Gender>
<Person hasBelief Belief>
<Person hasNationality Nationality>
<Person hasPlaceOfBirth Place>

V. RDF ALGEBRA

The RDF algebra is a formal semantic model for
interpretation of the syntactic operations in RDF exactly as the
relational algebra is a formal model for interpreting the SQL
operations. As such, it includes the well-known relational
algebra operations (selection, projection, join) plus the
additional operations which correspond to non-relational
syntactic expressions (aggregation, generalization and
specialization). It will be used for interpretation of the
SPARQL queries and is a main vehicle for implementing the
parallel query engine.

A. Projection

𝝅 𝑺?
𝑶?

𝒔𝒐𝒖𝒓𝒄𝒆

𝝅 denotes the operation which takes two parameters S and

O and applies to the set denoted as source. In RDF ontologies,
the source (the schema) consists of triplets with three
elements: Subject, Predicate and Object. Projection 𝝅
therefore will extract information about the subjects and the
objects of the triplets in the schema.

𝝅 ?𝒘𝒓𝒊𝒕𝒆𝒓 ?𝑺

?𝑯𝑫 𝑫𝒐𝒄 ?𝑶
𝑺𝒄𝒉𝒆𝒎𝒂

W = Writer
wr = writes

D1 = Document 1
D2 = Document 2
D3 = Document 3

Fig. 3 A list of resources about writer and handwritten documents

B. Selection

𝝈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒔𝒐𝒖𝒓𝒄𝒆

𝝈 denotes an operation which filters the triplets in the source
schema by selecting only the ones which meet the parametric

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

291

condition. The condition itself can be represented as a
combination of arithmetic, comparison and Boolean
operations meaningful for the schema.

C. Join

𝜋 ? ,? 𝝈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒔𝒐𝒖𝒓𝒄𝒆
⋈

𝜋 ? ,? 𝝈 𝒄𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏 𝒔𝒐𝒖𝒓𝒄𝒆

⋈ denotes the join. It combines triplets from a single or
multiple source schemes according to the requested query. The
variables ?X represent subject and ?Y represent object.
Selection operator 𝝈, will be used to filter the joined schemes
using the specified conditions, while the projection operation
𝜋 allows to constructs the joins using the selection of subjects,
objects and predicates from the joined schemes.

D. Generalization

Generalization is the process of extracting common
characteristics from one or more classes and combining them
into characteristics of a more general class, their superclass.
Generalization operator, 𝑮𝒆𝒏 will be used to find the parent
super-class of a given ?class within the source schema. But
since both the subject and the object in RDF are classes which
can have super-classes or subclasses, the operation must be
transitive. Therefore, it can be used to get the entire hierarchy
of classes and subclasses up to a specific level.

E. Specialization

Specialization is the reverse operation of generalization,
i.e., it finds the subclasses of an existing class within the same
schema.

𝑺𝒑𝒆𝒄 𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔 ?𝒄𝒍𝒂𝒔𝒔 ,𝒏 𝒍𝒆𝒗𝒆𝒍 𝑺𝒄𝒉𝒆𝒎𝒂

VI. DISTRIBUTED SPARQL QUERY PROCESSING

The query processing in our framework combines offline
preparation by indexing of the shared vocabulary with real-
time manipulations of the original query in four steps –
translation of the original query, splitting of the original query
into sub-queries, local execution and global aggregation.

A. Vocabulary Indexing

The vocabulary indexing plays an important role in the
implementation of the parallel query processing engine for
distributed ontologies with shared vocabulary. It facilitates the
process of translation of the global SPARQL queries into local
sub-queries by providing semantic correspondences between
the elements of the triplets. At the same time, it allows to
implement the search algorithms in a more efficient manner.

The indexing procedure is executed against the shared
vocabulary offline. It is based on the assumption that the
vocabulary is identical in all ontologies and is performed
incrementally as the ontologies are loaded. The index is
represented internally as a table with the following index keys:
 Data sources
 Subject roles
 Predications
 Object roles
 Generalizations
 Specializations
 Filtering conditions

An example of full indexing is shown in Table I. These
indices play different roles. The first key, for example, is used
by the algorithm for translating the original query into
subqueries, while the next three keys are used to speed up the
search by navigation, and the last two keys are used for
substitutions of semantically equivalent classes.

𝜎 𝑆𝑐ℎ𝑒𝑚𝑎

P1 = Painting 1
P2 = Painting 2
P3 = Painting 3

OP = Oil Painting
rp = Represented-By

Fig. 4 All paintings of Oil Painting

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

292

𝜋 ? ,? ,? 𝝈 𝒄𝒓𝒂𝒇𝒕 𝒘𝒂𝒕𝒆𝒓𝒄𝒐𝒍𝒐𝒖𝒓 𝑺𝒄𝒉𝒆𝒎𝒂 𝑨

⋈
𝜋 ? ,? ,? 𝝈 𝑩.𝒄𝒓𝒂𝒇𝒕 𝑨.𝒄𝒓𝒂𝒇𝒕 𝑺𝒄𝒉𝒆𝒎𝒂 𝑩

C = Craft
OP = Oil Painting

WC = Water Colour
Wood = Wood

HRD =Hand written Documents
rpb = Represented By

Fig. 5 All paintings of painters where the craft used is watercolor

𝑮𝒆𝒏 𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔 ?𝒑𝒂𝒊𝒏𝒕𝒊𝒏𝒈 𝟏, 𝑺𝒄𝒉𝒆𝒎𝒂

M = Museum
A =Artefact
F = Founder
P = Painter
W = Writer

Paint = Painting
Doc = Documents
OP = Oil Painting

WC = Water Colour
Wood = Wood

C = Craft

Fig. 6 Hierarchy of painting at level 1

The algorithm for indexing of the vocabulary is a simple

loop which registers the relevant information associated with
each new RDF triplet. It is executed by a dedicated utility
written in Java. It uses extensively, the Jena API for traversing
the vocabulary. The index table itself is maintained by the
Central Repository.

TABLE I

INDEXING OF THE MUSEUM ONTOLOGY

Subj Pred Spec Gen Cond DS

?place hasCity Craft
Address

Place
Painter Oilpainting

Ds1
Ds2

?painter draws
Ds1
Ds2

?country hasCity
Ds1
Ds2

?museum hasAddress
Ds1
Ds2

?museum hasArtefacts
Ds1
Ds2

?artist hasCountry
Ds1
Ds2

B. Query Translation

The translation step is necessary to prepare the split of the
general query. It converts the SPARQL queries into semantic
operations. As an example, let us consider the following
SPARQL query:

PREFIX m:<http://allahm.museum.org/museum#>
SELECT ?museum, ?exhibition, ?management
WHERE {
 m:?museum rdf:hasManagement m:?management
 m:?management rdf:manages m:?exhibition
 }

Our algorithm translates this query into the algebraic

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

293

expression,

π ?museum, ?exhibition, ?management

 ⨝
 𝝈
 m:?museum rdf:hasManagement m:?management
 m:?management rdf:manages m:?exhibition

which can be used for splitting the query into independent
subqueries.

C. Subquery Extraction

After the translation step, the general SPARQL query which
may contain concurrency is converted into a set of
semantically equivalent subqueries, which can be executed
against the separate ontologies independently. This is done by
accounting the semantic indices of the common vocabulary.
The general algorithm for splitting the original query is shown
in the appendix. For example, the query for finding the
address of the museums which translates into the algebraic
expression:

π ?museum, ?place, ?city, ?address

 ⨝
 𝝈
 𝑺𝒑𝒆𝒄 𝒓𝒅𝒇𝒔:𝒄𝒍𝒂𝒔𝒔 ?𝒄𝒊𝒕𝒚 𝟏,

m:?place rdf:hasCity m:?city,

 m:?museum rdf:hasAddress m:?address,
 m:?museum ''science"
 3

using the indices is split into two separate subqueries which
are to be executed against the two data sources independently,
as shown in Table II.

TABLE II

SPLITTING THE QUERY INTO SUBQUERIES

Subject Predicate Object Spec Gen Cond

?place rdf:hasCity ?city City

?museum rdf:hasAddress ?address science

D. Response Aggregation

The general algorithms for executing the local subqueries
and for aggregating the global response are shown in the
Appendix. The execution is straightforward and is based on
the SPARQL interpreter of the Jena API. The generated local
results are further aggregated by combining the separate RDF
triplets to produce the final response to the global query.

VII. CONCLUSION

This article presents a complete framework for executing
concurrent queries against distributed RDF ontology: an RDF
algebra for formal description of the SPARQL queries, a
system architecture for software implementation and a set of
algorithms for the main software components. The framework

has been implemented in Java using the popular API for RDF
and SPARQL, Jena. It has been tested successfully using a
working scenario for organizing virtual exhibitions from
museum repositories where it shows excellent performance.

Our approach is based on the assumption that the local RDF
repositories of the distributed ontology share a common
vocabulary. While it looks restrictive at first glance, this
assumption is quite natural and does not create any practical
difficulty. It allows to avoid the problem of clashes due to
different naming standards and the need for additional
mapping of the names and types between different
repositories.

Our current implementation makes extensive use of the
semantic indexing. It is a separate step during which the
common vocabulary is indexed incrementally as the individual
repositories of the distributed ontology are loaded. This step is
executed entirely offline during the preparatory stage of
organizing the virtual exhibition. Thanks to the hashed data
structure used to represent the index cash in the case of adding
more repositories, it is necessary to re-index the vocabulary
only against the new repositories, while the repositories which
have been indexed previously do not need re-indexing.

One restriction of our current implementation is the
limitation of the taxonomic relations to degree 1 only, i.e.
currently we look only for super-classes and subclasses
without accounting the transitivity. In our immediate plans is a
possible extension which will account the transitivity of the
taxonomic relations. This will require only recursive
amendments of the algorithms for search without changing the
rest of the framework.

Another potential for further development is the query
optimization. It can be based on the extensive development of
the optimization techniques developed for the relational
databases.

APPENDIX

Algorithm 1: Translating SPARQL query into algebraic expression
Create function transformToAlgebricForm
 which receive queryString and model
 Create Query of given sparql query string
 using create method of QueryFactory.
 Create the pattern element of created Query
 Create Op object to compile the query
 Optimize the Algebra expression
 Initialize variable varMap as HashMap
 Create object of NodeTransform with varMap
 Call transform method to get query into algebraic form
End function

Algorithm 2: Converting a SPARQL query into subqueries
Create function generateSubQry
 which receive Linked Hash Map of triplePath
 and set of Strings containing required model names
 Declare variable parentModels as a set of Model
 and assign keySet of ModelMap
 Declare variable modelTripleMap
 with key Model and value LinkedHashSet of TriplePath
 Declare variable triplesForModel as
LinkedHashSet<TriplePath>
 Begin for loop
 get the key of entry into tripleName

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:5, 2019

294

 get the value of entry into set of String
 if modelSet contains modelname
 add triplename to triplesForModel
 End if
 save the model and triplesForModel to map modelTripleMap
 End for loop
End function

Algorithm 3: Executing SPARQL subquery locally
Create function runqueryonModel
 which takes modelTripleMap and modelCollection as input
 Declare parentModel
 Declare variable Map<String, String>subQueryDetails
 Begin for loop for each model existingModel in
parentModel
 get model name of existingModel and prefix of
existingModel
 execute the query using queryExecution engine
 to receive the resultset of executed query
 if ResultSet has next element
 add modelname and query to subQryDetails
 split the modelname and store it into array fname
 create file with “subquery” appended to fname
 End if
 End for loop
End function

Algorithm 4: Aggregating the local results
Create function runQueryonModels(List<Model>
modelCollection,
 String queryFinal)
 get substring of query with index of select and last
index
 Declare Function
ReadableIndex.createReadableIndex(FileFilter)
 Declare variable Map<String, String>subQryDetails and
 initialize Map<String,String> subQryDetails = new
HashMap<>();
 Begin for loop for each model existingModel in
parentModel
 get model name of existingModel
 get the prefix of ExistingModel
 execute the query using queryExecution engine
 get the resultset of executed query
 if ResultSet has next element
 add modelname and query to subQryDetails
 split the modelname and store it into array fname
 create file with “subquery” appended to fname
 create fileoutputstream of above mentioned file
 write result to file using ResultSetFormatter
 End if
 close fileoutputstream and queryEngine
 End loop.
 get Map<String,String> subQryDetails – list of
subqueries
 combine subqueries with string append operation
 get the list of models
 iterate over models and execute query using queryEngine
 create fileWriter and write query results to csv file
End function

REFERENCES
[1] G. Gardarin, H. Kou, K. Zetourni et al. SEWISE: An Ontology-based

Web Information Search Engine
(http://subs.emis.de/LNI/Proceedings/Proceedings29/GI-Proceedings.29-
9.pdf).

[2] D. Ding, J. Yang, Q. Li, L. Wang, and W. Liu, "Towards a flash search
engine based on expressive semantics," in Proceedings of WWW Alt.'04
New York, 2004, pp. 472-473.

[3] C. Lee, Alan Liu, "Toward Intention Aware Semantic Web Service
Systems," scc, vol. 1, pp.69-76, 2005 IEEE International Conference on

Services Computing (SCC'05) Vol-1, 2005.
[4] M. Tumer, A. Shah, and Y. Bitirim, ‘An Empirical Evaluation on

Semantic Search Performance of Keyword-Based and Semantic Search
Engines: Google, Yahoo, Msn and Hakia’, in Fourth International
Conference on Internet Monitoring and Protection, 2009. ICIMP ’09,
2009, pp. 51 –55.

[5] Z. Gefu and H. Zhao-hui, ‘Design of a Semantic Search Engine System
for Apparel’, in 2010 International Conference on E-Business and E-
Government (ICEE), 2010, pp. 1414 –1417.

[6] Z. ZhiHao, H. JiPing, D. Ting, and W. Yu, ‘Semantic Web Service
Similarity Ranking Proposal Based on Semantic Space Vector Model’,
in 2012 Second International Conference on Intelligent System Design
and Engineering Application (ISDEA), 2012, pp. 917 –920.

[7] H. S. Pinto, A. G´omez-P´erez, and J. P. Martins. Some issues on
ontology integration. In Proceedings of the Workshop on Ontologies and
Problem Solving Methods (IJCAI-99), 1999.

[8] Bruijn, J. d. (2010). RIF RDF and OWL Compatibility. Retrieved from
W3C Recommendation: http://www.w3.org/TR/2010/REC-rif-rdf-owl-
20100622/.

[9] Y. Kalfoglou and M. Schorlemmer. Ontology mapping: the state of the
art. The Knowledge Engineering Review, 18(1):1–31, 2006.

[10] B. Omelayenko. RDFT: A Mapping Meta-Ontology for Business
Integration. In Proceedings of the Workshop on Knowledge
Transformation for the Semantic for the Semantic Web at the 15th
European Conference on Artificial Intelligence (KTSW2002), pages 77–
84, Lyon, France, 23 July 2002.

[11] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H.
Stuckenschmidt. C-OWL: Contextualizing ontologies. In D. Fensel, K.
Sycara, and J. Mylopoulos, editors, Lecture Notes in Computer Science,
volume 2870, pages 164–179. Springer, June 2003.

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. A framework for
ontology integration. In Proc. of the First Semantic Web Working
Symposium, pages 303–316, 2007.

