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 
Abstract---This paper compared the efficiency of Simpson’s 1/3 

and 3/8 rules for the numerical solution of first order Volterra 
integro-differential equations. In developing the solution, collocation 
approximation method was adopted using the shifted Legendre 
polynomial as basis function. A block method approach is preferred 
to the predictor corrector method for being self-starting. 
Experimental results confirmed that the Simpson’s 3/8 rule is more 
efficient than the Simpson’s 1/3 rule. 

 
Keywords---Collocation shifted Legendre polynomials, 

Simpson’s rule and Volterra integro-differential equations.  

I. INTRODUCTION 

OST problems in the areas of mechanics, mathematical 
biology, physics and economics involve a combination 

of differential and integral equations otherwise called Integro 
Differential Equations (IDEs). Many branches of linear and 
nonlinear functional analysis involves IDEs most especially 
the Volterra type which are found to be useful in the theory of 
engineering, mechanics, physics, chemistry, astronomy, 
biology and economics (see [5]-[7], [12], [14], [16], [17], 
[19]). Unfortunately many of these problems cannot be solved 
analytically.  

Numerical solutions of Volterra IDEs of the discrete types 
have been extensively studied by many researchers. The 
numerical method for nonlinear Volterra IDEs was introduced 
in [15], [17]. The implicit Runge-Kutta methods of optimal 
order for Volterra IDEs were suggested in [10]. The mixed 
interpolation and collocation methods for first and second 
order Volterra IDEs with periodic solution were introduced in 
[11]. Approximate solution of high order linear Volterra-
Fredholm IDEs in terms of Taylor polynomials was 
considered in [8]. The numerical solution of the system of 
nonlinear Volterra IDEs with nonlinear differential part by the 
operational Tau method and error estimation was considered 
by [18]. Reference [1] developed approximate solution of 
second-order IDE of Volterra type in reproducing kernel 
Hilbert space (RKHS) method. The quadrature rules to find 
the numerical solutions of the initial value problems for 
Volterra IDEs of the second kind appeared in [9]. Reference 
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[4] devoted their time in the development of the Taylors 
expansion approach for nonlinear IDEs. The linear multistep 
method for Volterra IDEs was constructed by [2] and [13]. In 
this work, the continuous type is considered. 

II. DERIVATION OF THE METHOD 

Applying methods of solution for first order initial value 
problems of ordinary differential equation of the following 
form 

 

      '
0 0, ,y x f x y x y x y        (1) 

 
as discussed in [20] can be used to solve systems of equations 
arising from the discretization of first order initial value 
problems of the Volterra type of the following form 
 

        '
0 0, , ,y x f x y x z x y x y       (2) 

 
where 

    
0

, ,
x

x

z x K x t y t dt   

 
𝑦ሺ𝑥ሻ is an unknown function to be determined as in [20] by 
the shifted Legendre polynomial of the form; 
 

   
0

m

i i
i

y x c p 


                    (3) 

 
where 𝑐௜ ∈ ℝ, 𝑦𝜖𝐶ଵሺ𝑎, 𝑏ሻ and 𝜓 ൌ ሺ𝑥 െ 𝑥௡ሻ 

The first derivative of (3) is substituted into (2) to obtain a 
differential system of the form 

 

 ' '

0

m

i i
i

y c p 


          (4) 

 
Interpolating (3) at 𝑥௡ା௥, 𝑟 ൌ 0 and 𝑘 െ 1 and collocating 

(4) at 𝑥௡ା௥, 𝑟 ൌ 1, … , 𝑘 and after some substitutions and 
manipulations, we obtain the continuous scheme of the form; 

 

          
1

0 0

, ,
k k

j n j j n j n j n j
j j

y x x y h x f x y x z x 


   
 

    (5)                 

 
where 
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    0
0

, , , , 0
n

n j nj n j j
j

z x h w K x x y n j z


     (6) 

 
and the weights 𝑤௡௝depend on the choice of quadrature rule. 
In this work, the Simpson’s 1/3 and 3/8 rules shall be used in 
evaluating the integral part. Evaluating (5) at some grid points, 
leads to a discrete scheme.  

III. SPECIFICATION OF THE METHOD 

Consider a four step method, that is when 𝑘 ൌ 4  is 
substituted in (3), we get  
 

   
5

0
i i

i

y x c p 


  

 
Collocating (4) at 𝑥௡ା௥, 𝑟 ൌ 1,2, … ,4 and interpolating (3) 

at  𝑥௡ and  𝑥௡ାଷ, we obtain the continuous linear multistep 
method after some substitutions and manipulations of the 
form;  

 

     
1

2

0 0

k k

j n j j n j
j j

y x x y h x f 


 
 

         (7)        

 
where 

 

 

 

 

 

3 4 5
0 2 3 4 5

3 4 5
3 2 3 4 5

2 3 3 5
1 2 3 4

2 3 4 5
2 2 3 4

3

80 250 350 25 2
1

27 81 243 81 81
80 250 350 25 2

27 81 243 81 81
34 641 1063 83 7

8 108 324 108 108
8 23 31 2 1

3 18 108 9 36
14 247

9 10

x
h h h h h

x
h h h h h

x
h h h h

x
h h h h

x

    

    

     

     

 

     

    

     

     

  

 

2 3 4 5
2 3 4

2 3 4 5
4 2 3 4

497 49 5

8 324 108 108
1 13 67 2 1

9 54 324 27 108

h h h h

x
h h h h

   

     

 
 
 
 
 
 
 
 
 
 
 
 

   
 
       

 

 
Evaluating (7) and its first derivative at  𝑥௡ାସ,  𝑥௡ାଶ, 𝑥௡ାଵ 

and 𝑥௡ respectively with  𝜓 ൌ ሺ𝑥 െ 𝑥௡ሻ and substituting in 
(6), we obtain the following block discrete method; 
 

4 3 1 2 3 4

2 3 1 2 3 4

1 3 1 2 3 4

3

224 19 20 8 76 28

243 243 81 27 81 81

232 11 13 16 37 2

243 243 81 27 81 81

251 8 34 35 32 1

243 243 81 27 81 81

27

80

n n n n n n n

n n n n n n n

n n n n n n n

n n n

y y y hf hf hf hf

y y y hf hf hf hf

y y y hf hf hf hf

y y hf

     

     

     



     

     

     

  1 2 3 4

51 9 21 3

40 10 40 80n n n nhf hf hf hf   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

     

  (8) 

 

IV. ANALYSIS OF THE METHOD 

Order and Error Constant  

Expanding the block (8) in Taylor’s series and collecting 
like terms in powers ofℎ, we have; 

 

 0 1 2 3 4 5 0, 0, 0, 0,
T

C C C C C C       

 
and 

6

1 1 3 7
, , ,

1620 1620 160 405

T

C
     
 

 

 

The method has order  5,5,5,5
T

p   and error constant 

 

𝐶଺ ൌ െ
ଵ

ଵ଺ଶ଴
, െ

ଵ

ଵ଺ଶ଴
,

ଷ

ଵ଺଴
, െ

ଵ

ସ଴ହ
. 

Consistency  

Following [3], the block method is said to be consistent 
since  𝑝 ൌ 5 ൐ 1.Hence, the method is consistent. 

Zero Stability  

The block solution of (8) is said to be zero stable if the roots 
𝑧௥;  𝑟 ൌ 1, … , 𝑛 of the first characteristic polynomial 𝜌ුሺ𝑧ሻ, 
defined by 

 
𝑝ሺ𝑧ሻ ൌ 𝑑𝑒𝑡|𝑧𝑄 െ 𝑇| 

 
satisfies  |𝑧௥| ൑ 1and every root with |𝑧௥| ൌ 1 has multiplicity 
not exceeding the order of the differential equation in the limit 
as   ℎ → 0 

From the block solution of (1.7), we have 
 

𝑝ሺ𝑧ሻ ൌ 𝑑𝑒𝑡|𝑧𝑄 െ 𝑇| 
𝑧 ൌ ሺ0,0,0,1ሻ 

 
This shows that the block method is zero stable, since all 

roots with modulus one do not have multiplicity exceeding the 
order of the differential equation in the limit as   ℎ → 0. 

Convergence  

According [3], the method is convergent, since it is 
consistent and zero stable.       

V. NUMERICAL ILLUSTRATION 

In order to support our theoretical discussion of the 
proposed method; the computations, associated with the 
examples, are performed using MAPLE 18. Furthermore, the 
performance of the methods is tested on some numerical 
examples contained in the literature ranging from linear to 
nonlinear first order Volterra integro-differential equations 
(VIDEs). 

Examples 

The method was demonstrated using the following 
examples 
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(a)  

 

'

0

1

0 0,0 1

x

y y t dt

y x

 

  

  

The exact solution    siny x x  with results shown in 

Tables I and II. 

(b)      

 

'

0

1 2 1 2

0 1,0 1

x
t x ty x y x x e y t dt

y x

    

  

  

With exact solution   2xy x e   Tables III and IV show 

the results. 

(c)  

 

' 2 2

0

(1 2 ) 5 8

0 10.0,0 1

x
xy x x e y x ty t dt

y x

      

  

  

The exact solution is   10 xy x xe    and results are 

shown in Tables V and VI. 

TABLE I 
COMPARING RESULTS OBTAINED FOR STEP SIZE  ℎ ൌ 0.1 

𝑥 Exact Solution Result by  Simpson’s 
1/3 

Result by  Simpson’s 
3/8 

Absolute Error  by  
Simpson’s 1/3 

Absolute Error  by  
Simpson’s 3/8 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.099833416 
0.198669330 
0.295520206 
0.389418342 
0.479425538 
0.564642473 
0.644217687 
0.717356090 
0.783326909 
0.841470984 

0.1003003205 
0.1989905635 
0.2968489675 
0.3926808396 
0.4871615245 
0.5736036793 
0.6553532197 
0.7340234430 
0.8074782946 
0.8675629174 

0.1002356986 
0.1989737085 
0.2969643986 
0.3927336692 
0.4871709427 
0.5728604405 
0.6534519115 
0.7306365462 
0.8021183186 
0.8588828875 

0.00046690385 
0.0003212327 
0.0013287608 
0.0032624973 
0.0077359859 
0.0089612059 
0.0111355325  
0.0166673521 
0.0241513850 
0.0260919326 

0.00040228195 
0.0003043777 
0.0014441919 
0.0033153269 
0.0077454041 
0.0082179671 
0.0092342243 
0.0132804553 
0.0187914090 
0.0174119027 

 
TABLE II 

COMPARING RESULTS USING STEP SIZE  ℎ ൌ 0.01 
𝑥 Exact Solution Result by  Simpson’s 

1/3 
Result by  Simpson’s 

3/8 
Absolute Error  by  

Simpson’s 1/3 
Absolute Error  by  

Simpson’s 3/8 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.099833416 
0.198669330 
0.295520206 
0.389418342 
0.479425538 
0.564642473 
0.644217687 
0.717356090 
0.783326909 
0.841470984 

0.09986309733 
0.1987989523 
0.2958184292 
0.3899501457 
0.4802515722 
0.5658171315 
0.6457885666 
0.7193623248 
0.7857987802 
0.8444286060 

0.09984865043 
0.1986543557 
0.2953057539 
0.3887140323 
0.4778267362 
0.5616381278 
0.6392019729 
0.7096408640 
0.7721574111 
0.8260421081 

0.00002968068 
0.0001296215 
0.0002982225 
0.0005318034 
0.0008260336 
0.0011746581 
0.0015708794 
0.0020062339 
0.0024718706 
0.0029576212 

0.00001523378 
0.0000149751 
0.0002144528 
0.0007043100 
0.0015988024 
0.0030043456 
0.0050157143 
0.0077152269 
0.0111694985 
0.0154288767 

 
TABLE III 

COMPARING RESULTS OF EXAMPLE (B) OBTAINED WITH STEP SIZE    ℎ ൌ 0 . 1 
𝑥 Exact Solution Result by  Simpson’s 

1/3 
Result by  

Simpson’s 3/8 
Absolute Error  by  

Simpson’s 1/3 
Absolute Error  by  

Simpson’s 3/8 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.010050167 
1.040810774 
1.094174284 
1.173510871 
1.284025417 
1.433329415 
1.632316220 
1.896480879 
2.247907987 
2.718281828 

1.008344622 
1.039207888 
1.090462513 
1.165565212 
1.262892013  
1.410674256 
1.600308029 
1.842124958 
2.137938029 
2.597820716 

1.008167532 
1.039419918 
1.091534056 
1.168611045 
1.268763150 
1.424613033 
1.626000003 
1.885083735 
2.202315886 
2.709484149 

0.001705545 
0.001602886 
0.003711771 
0.007945659 
0.021133404 
0.022655159 
0.032008191 
0.054355921 
0.109969958 
0.120461112 

0.001882635 
0.001390856 
0.002640228 
0.004899826 
0.015262267 
0.008716382 
0.006316217 
0.011397144 
0.045592101 
0.008797679 

 
TABLE IV  

COMPARING RESULTS OF EXAMPLE (b) OBTAINED WITH    ℎ ൌ 0 . 01 
𝑥 Exact Solution Result by  Simpson’s 1/3 Result by  

Simpson’s 3/8 
Absolute Error  by  

Simpson’s 1/3 
Absolute Error  by  

Simpson’s 3/8 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

1.010050167 
1.040810774 
1.094174284 
1.173510871 
1.284025417 
1.433329415 
1.632316220 
1.896480879 
2.247907987 
2.718281828 

1.010010960 
1.040638070 
1.093744368 
1.172659813 
1.282530749 
1.430880700 
1.628470649 
1.890590331 
2.239009786 
2.704916403 

1.010052969 
1.041035206 
1.094539458 
1.175248980 
1.288772270 
1.443666502 
1.652145803 
1.931598071 
2.306888493 
2.813875703 

0.000039207 
0.000172704 
0.000429916 
0.000851058 
0.001494668 
0.002448715 
0.003845571 
0.005890548 
0.008898201 
0.013365425 

0.000002802 
0.000224432 
0.000365174 
0.001738109 
0.004746853 
0.010337087 
0.019829583 
0.035117192 
0.058980506 
0.095593875 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:13, No:5, 2019

139

 

 

TABLE V 
RESULTS OF EXAMPLE (C) OBTAINED WITH SIZE  ℎ ൌ 0. 1 

𝑥 Exact Solution Result by  Simpson’s 1/3 Result by  
Simpson’s 3/8 

Absolute Error  by  
Simpson’s 1/3 

Absolute Error  by  
Simpson’s 3/8 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

9.909516258 
9.836253849 
9.777754534 
9.731871982 
9.696734670 
9.670713018 
9.652390287 
9.640536829 
9.634087306 
9.632120559 

9.913760264 
9.838817708 
9.789749559 
9.761103357 
9.765684645 
9.745268230 
9.742611455 
9.777917620 
9.837248350 
9.838211245 

9.917745274 
9.842204649 
9.791584780 
9.761467493 
9.763019952 
9.728056527 
9.706664649 
9.723631156 
9.760106932 
9.721971039 

0.004244006 
0.002563859 
0.011995025 
0.029231375 
0.068949975 
0.074555212 
0.090221168 
0.137380791 
0.203161044 
0.206090686 

0.008229016 
0.005950800 
0.013830246 
0.029595511 
0.066285282 
0.057343509 
0.054274362 
0.083094327 
0.126019626 
0.089850480 

 
TABLE VI 

RESULTS OF EXAMPLE (C) OBTAINED WITH SIZE  ℎ ൌ 0. 01 

𝑥 Exact Solution Result by  Simpson’s 
1/3 

Result by  Simpson’s 
3/8 

Absolute Error  by  
Simpson’s 1/3 

Absolute Error  by  
Simpson’s 3/8 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

9.909516258 
9.836253849 
9.777754534 
9.731871982 
9.696734670 
9.670713018 
9.652390287 
9.640536829 
9.634087306 
9.632120559 

9.909802455 
9.837463876 
9.780455634 
9.736567069 
9.703862806 
9.680657899 
9.665470424 
9.657018317 
9.654165500 
9.655938603 

9.909661135 
9.836090653 
9.775703965 
9.725356410 
9.682294561 
9.644132171 
9.608803421 
9.574568313 
9.539961903 
9.503823165 

0.000286197 
0.001210027 
0.002701100 
0.004695087 
0.007128136 
0.009944881 
0.013080137 
0.016481488 
0.020078194 
0.023818044 

0.000144877 
0.000163196 
0.002050569 
0.006515572 
0.014440109 
0.026580847 
0.043586866 
0.065968516 
0.094125403 
0.128297394 

 

VI. CONCLUSION 

In this work, information about solving VIDEs using 
Simpson’s rules is presented. Collocation approximation 
method of the shifted Legendre polynomial as basis function 
was used to obtain the approximate solution for solving first 
order VIDEs. The approximate solution was obtained in block 
mode which have the advantage of being self-starting hence 
eliminating the use of predictor corrector method. Unlike the 
approach in predictor corrector method, all additional 
equations are obtained from the same continuous formulation 
which shows the beauty of the method. Experimental results 
confirmed that the Simpson’s 3/8 rule is efficient than 
Simpson’s 1/3 rule. 
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