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Modelling Hydrological Time Series Using Wakeby
Distribution
Ilaria Lucrezia Amerise

Abstract—The statistical modelling of precipitation data for a
given portion of territory is fundamental for the monitoring of
climatic conditions and for Hydrogeological Management Plans
(HMP). This modelling is rendered particularly complex by the
changes taking place in the frequency and intensity of precipitation,
presumably to be attributed to the global climate change. This paper
applies the Wakeby distribution (with 5 parameters) as a theoretical
reference model. The number and the quality of the parameters
indicate that this distribution may be the appropriate choice for
the interpolations of the hydrological variables and, moreover, the
Wakeby is particularly suitable for describing phenomena producing
heavy tails. The proposed estimation methods for determining the
value of the Wakeby parameters are the same as those used for
density functions with heavy tails. The commonly used procedure
is the classic method of moments weighed with probabilities
(probability weighted moments, PWM) although this has often shown
difficulty of convergence, or rather, convergence to a configuration
of inappropriate parameters. In this paper, we analyze the problem of
the likelihood estimation of a random variable expressed through its
quantile function. The method of maximum likelihood, in this case,
is more demanding than in the situations of more usual estimation.
The reasons for this lie, in the sampling and asymptotic properties of
the estimators of maximum likelihood which improve the estimates
obtained with indications of their variability and, therefore, their
accuracy and reliability. These features are highly appreciated in
contexts where poor decisions, attributable to an inefficient or
incomplete information base, can cause serious damages.

Keywords—Generalized extreme values (GEV), likelihood
estimation, precipitation data, Wakeby distribution.

I. INTRODUCTION

THE traditional procedure that industry researchers use to

estimate the order of maximum rainfall size for various

recurrence intervals follows the usual method for adapting

the most classical models of statistical distributions. The

most relevant features are the marked asymmetry, with the

values above the median exhibiting a greater weight than

those below, and a lengthening towards large values. Positive

asymmetry can derive from the presence of a ”brake” that

becomes activated at a rather low level. Examples of this

can be found in an income distribution where reaching a

certain level is relatively simple, but greatly exceeding this

level is more difficult, or cases of an infectious disease if we

consider its progress against the number of days since the

outbreak of the epidemic. The source of positive asymmetry

in the observations of different phenomena could be due to

the simultaneous presence of different situations with respect

to relevant variables whose distributions - taken separately

- would be symmetrical, but generate asymmetry in their
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aggregation. The imbalances concerning the different behavior

in the tails are highly relevant, particularly with regard tail

thickness and the presence of remote values. An extreme case

of positive asymmetry is the ”L” curve which is typical of

events subject to rarefaction as the number of manifestations

is considered. The structure of the paper is as follows. In the

next section, we review the properties of the quantile function,

which has the merit of representing the behavior of many

hydrological variables. Section III analyzes the distribution

parameter estimated by Maximum likelihood estimate (MLE).

An application to real data is presented in Section IV. The

final section summarizes the paper contributions and includes

concluding remarks and indicates possible directions for future

research.

II. THE QUANTILE FUNCTION

Although they had been known of for many decades, mainly

thanks to Italian statistics, [8] introduced several keys to

reading the data which, had not yet been framed within a single

and consistent project: the estimation of a quantile function

(also known as a graduation function) and the quantile density

function or sparsity function. According to [8], a quantile

production of statistics and analysis of data in a quantile way

means placing at the center, not the probabilities or the relative

frequencies, but the values of the random variables or the

observed modalities.

The quantile function (also known as a tick function)

expresses the value of the variable for which the probability

p gives the likehood of making an observation that is less or

equal to that value and, at the same time, a probability (1− p)
of finding a higher value.

Q (p) = F−1 (p) = inf {x |F (x) ≥ p} per 0 ≤ p ≤ 1 (1)

where p = F (.) it is the distribution function. Note that the

quantile function is symmetrical, if and only if,

Q (p) = −Q (1− p) 0 < p < 1. (2)

Quantile estimation is the primary objective of the of

hydrological frequencies analysis (See [4]. Among the many

models of statistical distributions known in this context,

analytical expressions based on quantiles have gained a

role of primary importance due to their specific ability to

describe the presence of unusual values (outliers). The Wakeby

quantile function, known by the acronym WAK, has the

merit of logical-intuitive representing the behavior of many
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hydrological variables over time, [3].

X (p, λ) = λ1 +
λ2

λ4

(
1− qλ4

)− λ3

λ5

(
1− q−λ5

)
;

0 ≤ p ≤ 1; q = 1− p (3)

Note that there are other ways in which the Wakeby is

given parameters (for example, see [10]). In the version

analysed here, the parameters λ2, λ3 with λ2 + λ3 > 0
are mainly linear, but not exclusively linked to the scale of

the variable Xp and each expresses the weight with which

the exponentiated component contributes to the formation

of value. Finally, λ4, λ5 are shape parameters that govern

the asymmetry, kurtosis and tails of the density function.

As detected by [9], the Wakeby values have a finite and

fixed lower threshold equal to λ1 + (λ2/λ4) which is usually

constrained to be positive. Note that when λ4 < 0 or λ5 > 0
the exponentiated components of the WAK are based on the

return time 1/ (1− p) which expresses, a rounded-up value ,

the number of observations that need to be made to obtain the

first value exceeding that of Xp. The lower limit is given by

λ1 in the case where λ3 > 0 and λ5 ≥ 0. The upper limit

is λ1 + (λ2/λ4) + (λ3/λ5) if λ5 < 0 or if λ3 = 0. From

another point of view, the WAK model can be obtained from

the superposition of three additive components

X (p, λ) = c1 + c2 (1− p)
λ4 + c3

(
1

1− p

)λ5

(4)

Each component may be traced back to a specific aspect

of Xp, which would, thus, result in a mixture of distinct and

separate factors. The former acts as a reference level to which

the phenomenon would arise in the absence of forces that push

it in one direction rather than another. The second is related

to the probability that a value above the threshold value is

obtained and finally, the third, to the return time. The density

function of the WAK, useful for estimation and for graphic

representations, can be constructed implicitly starting from the

quantile function

1
dX(p,λ)

dp

= h [X(p;λ)] =
1

λ2
qλ4−1 + λ3q

−(λ5+1) (5)

The parametric regions within which (5) can effectively

consider a density function (i.e. positive and with possible

asymptotes on the abscissa axis) are the following

R1 :λ2 + λ3>0, λ2, λ3 ≥ 0

R2 :λ2>λ3, λ4−1>0, λ5+1<0, λ4<λ5<1, λ4>λ5>1

R3 :λ2<λ3, λ4−1<0, λ5+1>0, λ5<λ4<1, λ5>λ4>1

(6)

III. MAXIMUM LIKELIHOOD ESTIMATE (MLE)

The distribution parameter can be conventionally estimated

from the available sample data by the method of moments

(MOM), maximum likelihood estimator (MLE), probability

weighted moments (PWM), or L-moment estimator (LME).

Previous studies show that parameter estimates from small

samples computed by using the PWM method are less

complicated and yet sometimes more accurate than the

MLE method, [6]. Consider a series of observations

{X1, X2, · · · , Xn} to be represented with a Wakeby

distribution. The likelihood function (change of sign) is given

by

S(λ)=−
∑

Ln [h(pi,λ)]=
∑

Ln
[
λ2q

λ4−1
i +λ3q

−(λ5+1)
i

]
;

qi = 1− pi (7)

where pi is the solution of the nonlinear equation

X(i) = λ1 +
λ2

λ4

(
1− qλ4

i

)
− λ3

λ5

(
1− q−λ5

i

)
(8)

Here X(i) is the observed value occupying the i-th position

in the ascending ranking of the X observations set. It is

clear that each evaluation of 7) requires the solution of n
nonlinear equations of type 8 compared to pi which makes the

MLE estimation procedure very laborious, but, as will be seen

not impractical due to current computing resources. It should

be noted that the threshold parameter λ1 does not explicitly

appear in the density function, but has an obvious role in

the solution of 8. The S (λ) criterion could be minimized

with respect to λ by using the so-called “ scoring method ”,

which is usual for rough iterative likelihood estimates based

on the use of the gradient and the Hessian of 7 Of course, we

could take out the threshold parameter λ1 and proceed to the

minimization of 7 with respect to the remaining parameters:

(λ2, λ3, λ4, λ5), and only after would we reach an estimate for

λ1 solving the simple equation: λ1−(λ2+λ3) = Xmin In the

same way we could differentiate the two-step stim procedure:

for example by setting the linear parameters λ1, λ2, λ3 and

using some non-linear methods to search for the optimum only

with respect to just the two form parameters λ4, λ5. After, if

the shape parameters are set, we could use the regression line

are for the linear parameters and so on until the convergence

of the two phases to a single value of the vector λ. See, in

this regard, [7]. However, we would prefer to set aside these

variants and proceed to direct optimization of the likelihood

function.

The availability of qualified and efficient computing

resources for each user level leads us to adopt an optimization

method that avoids the use of first and second derivatives

which, due to implicit definitions, would be particularly

complex to implement. Among the many possible strategies

we prefer the controlled random search method [1], which

limits itself to assessing the likelihood function in a

5-dimensional hypercube, progressively replacing better values

with existing ones. In general, the extremes between which

parameter estimates lie depend on the data being analyzed.

The constraints on the parameters have been taken into

consideration in each case and the inadmissible configuration

is discarded. It is very important to stress that the likelihood

function associated with the WAK might have more than one

solution (local minima). This is not be surprising if we take

into account the high number of parameters present in the

model which ensures a considerable degree of flexibility. This,

however, is due to the possibility of there being a number of

multiple solutions which should not be considered a critical

issue; indeed, they could be useful for a better understanding
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Fig. 1 Wakeby graduation curves

Fig. 2 Wakeby graduation curves
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TABLE I
NUMBER OF CASES IN TIME SERIES

Municipality Start Year End Year 1 h 3 h 6 h 12 h 24 h
Bisaccia 1959 2008 38 38 39 39 39
Cosenza 1923 2010 61 61 60 61 63
Decollatura 1929 2004 57 55 54 55 54
Domanico 1939 2006 54 54 54 54 54
Lacedonia 1932 2009 41 40 41 40 42
Rocchetta scalo 1947 2008 45 47 46 45 46
Rocchetta 1961 2009 43 43 42 43 44
Rogliano 1961 2009 53 52 51 51 53
Santagata 1930 2008 45 45 44 45 45

of the relationship between the data and the form of the

distribution that represents them.

IV. APPLICATIONS

In order to simplify the representation models and to

reduce the enormous mass of information, the world-wide

organization of the WMO (world metereological organization)

suggests the use of thirty year rainfall data. Collections for

shorter periods (10-20 years) can be used if the data are treated

as cross-sections time series. See [5].

A. Data

Our research refers to the annual time series of hourly

averages for a total of 10 weather stations. The length of the

time series for the stations differ because they were open for

different years and because of interruptions due to specific

causes. The range of the values of the time series and the

number of observations are shown in Table I.

Only some of the time series are for periods of 30

years, canonically requested to start the interpolation. It

should be noted that the time series we have analyzed were

subjected to to an efficient system missing values imputation

of proposed by [2]. The software, known as the “ Amelia

” package [5], was entirely developed in the R environment,

a set of commonly used and free statistical packages which

allows simply, rapid application of many multivariate analysis

techniques in various disciplines.

B. Results

The figures show the graph for the logarithm of the

estimated quantile function of the Wakeby model. For each

monitoring station (indicated by the name of the city), the

trends for the subdivisions at 1, 3, 6, 12 and 24 hours are

presented in the same graph. Attention should be given to

the higher curve because it is associated with higher average

rainfall levels. The sigmoid appearance which highlights the

unimodality of the distribution or the centralization of values

around a representative value, is also important. The similar,

or even superimposed, shape of the hourly charts indicate little

differentiation during the day.

V. CONCLUSION

Statistical frequency distributions are recurrent for the

representation of phenomena dominated by a dimensional

variable. However, as a consequence of this, the time

dimension of the phenomenon is abandoned, ie the information

that the values are observations made over time and, therefore,

constitute time series, is set aside. The ergodic theorem allows

to overcome, at least in part, this perplexity, but it remains a

background reserve. We believe that the joint use of models of

representation, combined with the analysis of the time series

can help to establish the existence (or absence) of a trend of

some kind in the water cycle.
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