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Abstract—Recently, low-dose computed tomography (CT) has 
become highly desirable due to increasing attention to the potential 
risks of excessive radiation. For low-dose CT imaging, ensuring 
image quality while reducing radiation dose is a major challenge. To 
facilitate low-dose CT imaging, we propose an improved statistical 
iterative reconstruction scheme based on the Penalized Weighted 
Least Squares (PWLS) standard combined with total variation (TV) 
minimization and sparse dictionary learning (DL) to improve 
reconstruction performance. We call this method "PWLS-TV-DL". In 
order to evaluate the PWLS-TV-DL method, we performed 
experiments on digital phantoms and physical phantoms, 
respectively. The experimental results show that our method is in 
image quality and calculation. The efficiency is superior to other 
methods, which confirms the potential of its low-dose CT imaging.  
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I. INTRODUCTION 

ODAY, X-ray CT provides clear information on the 
attenuation of X-rays in different tissues of the human 

body on a millimeter scale, thus providing rich information on 
human organ organization for the diagnosis and prevention of 
clinicians. CT has become one of the indispensable tools in the 
field of radiology diagnosis [1]. However, with the popularity 
of CT tomography in clinical diagnosis, the problem of 
radiation dose in CT scans has attracted more and more 
attention. This is because the dose of radiation in CT is 
accumulated for life, repeated CT scans significantly increase 
the probability of carcinogenesis. To reduce the radiation dose 
in CT examinations, various techniques have been extensively 
investigated. Among them, statistical iterative reconstruction 
(SIR) methods by modeling the measurement statistics and 
imaging geometry can significantly reduce radiation dose while 
maintaining image quality in various CT applications 
compared with the filtered back-projection (FBP) 
reconstruction algorithm [2].  

In this paper, we have improved a low-dose CT statistical 
iterative reconstruction method. Our goal is to reconstruct a 
sufficiently fine image from a low-dose projection, reconstruct 
the intermediate image using TV minimization under the 
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PWLS standard [3], and then use post-processing with sparse 
coding DL to remove residual noise and produce Clinically 
acceptable CT images. For simplicity, the present method is 
termed ‘PWLS-TV-DL’. The novelty of the PWLS-TV-DL is 
that, process through DL the reconstruct image could yield 
visually pleasant images with more continuous boundaries and 
less artifacts in smooth regions compared with the PWLS-TV. 
Qualitative and quantitative evaluations were carried out on the 
digital phantoms in terms of accuracy and resolution 
properties.  

II. METHODS 

A. PWLS Criteria for CT Image Reconstruction 

The PWLS approach for iterative reconstruction of X-ray 
CT images has been studied by Herman and Sauer and 
Bouman [4]. On the basis of the noise properties of CT 
projection data, the PWLS criterion for CT image 
reconstruction can be rewritten as follows: 

 
𝜇∗ arg min 𝑥 𝐻𝜇 Σ 𝑥 𝐻𝜇 𝛽𝑅 𝜇     (1) 
               

where x represents the obtained sinogram data, x 
= x , x , . . . , x  ,μ is the vector of attenuation coefficients to 
be reconstructed, i.e., μ = μ , μ , . . . , μ  , where T denotes 
the matrix transpose. The operator H represents the system 
matrix with the size of M × N. The element of H is the length 
of the intersection of projection ray i with pixel j.Σ is a 
diagonal matrix with the ith element of 𝜎  which is the 
variance of sinogram data 𝑥 . R(𝜇) represents a prior term, and 
β is a hyper-parameter for controlling the strength of prior term 
as a penalty. The goal for CT image reconstruction is to 
estimate the attenuation coefficients m from the measurement y 
with H. 

Based on our previous works, in this study, the variance of 
σ  is determined by the following mean-variance relationship: 

 

σ exp 𝑥 exp 𝑥 𝜎 1.25          (2) 

 
where I  denotes the incident x-ray intensity, 𝑥  is the mean 
of the sinogram data at bin 𝑖  and 𝜎  is the background 
electronic noise variance.  

B. TV Minimization 

The TV was first proposed by Rudin in the image denoising 
model [5], which is used to measure image characteristics up to 
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a certain order of differentiation. Mathematically, the original 
TV of an image u can be defined as follows: 

 
TV 𝑥 |∇𝑥|

 
𝑑𝑥                  (3) 

                                   
where Ω is a bounded domain, and ∇𝑥 is the gradient of 
image 𝑥 . Another definition of the TV can be written as 
follows:  
 

TV 𝑥 sup 𝑥 𝑑𝑖𝑣 𝑣 𝑑𝑥|
 

𝑣 ∈ 𝐶 Ω, ℝ , ||𝑣|| 1} (4) 
 

where div represents the divergence operator, v denotes the 
dual variable of the exact TV definition, and ℝ  denotes the 
d-dimensional real space. TV, as an edge-preserving penalty, 
could promote the performance of iterative CT image 
reconstruction from noisy or sparse-view projection 
measurements. 

C. DL-Based Image Reconstruction 

The DL method has the advantage of adaptability, so that the 
dictionary can be approximated to the maximum initial signal. 
An efficient dictionary should also be characterized by 
multi-scale, geometric invariance and redundancy. An adaptive 
dictionary with the above advantages is beneficial for sparse 
representation of the signal, because the richer the features of 
the dictionary, the closer it is to the signal to be processed, the 
more likely it is to approximate the signal with fewer atoms. 

The main purpose of the K-SVD algorithm is to train a 
suitable dictionary based on the training image samples so that 
the training sample images can be sparsely represented by the 
dictionary. To do this, you can construct an objective function: 

 
min , ||X 𝐷 A||  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∀𝑖, ||𝑎 || 𝑇        (5) 

 
where X is the matrix of training samples, 𝐷  is the dictionary 
to be sought, and A is the sparse coefficient matrix in which Y 
is represented by 𝐷 .  || ∙ ||  represents the square of the 
Frobenius norm, defined as the sum of the squares of each 
atom in the matrix. 

When the sparse coefficient calculation is completed, the 
K-SVD algorithm begins to update the dictionary to further 
reduce the error. The update of the dictionary is updated one by 
one for each atom. 

In summary, the CT reconstruction problem can be stated as: 
 

min , ||𝑥|| ∑ ||𝐷 𝑎 𝑅 𝑥||
 

 
 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝑎 ||

𝜌 ∀𝑗, 𝑥 0, ||𝑀𝑥 𝑦|| 𝜀               (6) 
 

where ||𝑥||  is the TV norm of an image x, ||𝑎 ||  is the 𝑙  
norm of 𝑎 , 𝜌 is the threshold of sparsity, M is a system 
matrix describing the forward projection, y is a measured 
dataset and 𝜀  is a small positive value representing the error 
threshold. 

D. PWLS–TV–DL Algorithm 

In this section, we will detail the implementation details of 
the PWLS-TV-DL algorithm. 

The PWLS-TV-DL algorithm consists of PWLS 
reconstruction, TV minimization and DL.PWLS works as the 
reconstruction algorithm, both TV minimization and DL work 
as regularization terms. PWLS with TV minimization can 
reconstruct high quality CT images by sparse view 
measurement, but the real structure and image noise cannot be 
distinguished, causing some structures to be lost or distorted, 
and block artifacts are generated in the reconstructed image. 
Integrating TV and DL into the same frame to achieve a 
sparser representation of the signal, the introduction of 
adaptively learned dictionary alleviates the artifacts caused by 
the piecewise constant assumption and allows accurate 
restoration of images with complex structures.  

The size of the gradient in TV minimization can be 
approximated as  

 

τ , 𝑥 , 𝑥 , 𝑥 , 𝑥 ,      (7) 
 

The image TV can be defined as ||𝑥|| =Σ Σ 𝜏 , . The 
steepest descent direction is then defined by 

 

∇𝑥𝑖,𝑗
||𝑥||𝑇𝑉

𝜕||𝑥||𝑇𝑉

𝜕𝑥𝑖,𝑗

𝑥𝑖,𝑗 𝑥𝑖 1,𝑗 𝑥𝑖,𝑗 𝑥𝑖,𝑗 1

𝜏𝑖,𝑗 𝜀

𝑥𝑖 1,𝑗 𝑥𝑖,𝑗

𝜏𝑖 1,𝑗 𝜀

𝑥𝑖,𝑗 1 𝑥𝑖,𝑗

𝜏𝑖,𝑗 1 𝜀
                   (8) 

 
where ε is a positive number in the denominator. And TV 
minimization can be stated as follows: 
 

𝑥𝑘 𝑥𝑘 1 𝛽 ∙ ∆𝑥 ∙
∇||𝑥𝑘 1||𝑇𝑉

||∇||𝑥𝑘 1||𝑇𝑉||
                (9) 

 
where β is the length of each gradient-descent step and q is the 
iteration index. 

The DL process includes atom matching and image 
updating. In the atom matching, we need to find the sparse 
representation (SR) of each patch in the target image by the 
orthogonal matching pursuit (OMP) algorithm. Because our 
dictionary is relatively large, searching the entire dictionary is 
impractical. However, we can get it in two steps. 
(a) Initial dictionary 𝐷 ; 
(b) Use the OMP algorithm to find a local 𝑤  that minimizes 

the local reconstruction error 
 

min ||𝑅 𝑥 𝐷 𝑤 ||  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝑤 || 𝜌      (10) 
 

The OMP algorithm stops when ||𝑅 𝑥 𝐷 𝑤 || 𝜀  or 
the maximum iteration number for OMP is reached, where 𝜀  
is a small positive value. 

In the image updating part, the 𝑤  in terms of the dictionary 

𝐷  is used for updating an image patch 𝑥 𝐷 𝑤 , and then 
the updated image patches are recorded in a matrix. They are 
not written back to the target image until all image patches 
have been updated and recorded. Finally, the image x can be 
updated as 

𝑥 ∑ 𝑅 𝑅 ∑ 𝑅 𝑥             (11) 
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The workflow for the PWLS–TV–DL algorithm is 
summarized in Table I. 

 
TABLE I 

WORKFLOW FOR PWLS-TV–DL ALGORITHM 

Input: 𝑥  - measured projections. 
Output: x - reconstructed image. 
Parameters: √𝑛 √𝑛 - patch size, β - length of each gradient-descent 
step, k - iteration index, K - the maximum iteration number for main loop. 
Initialization: Set x to 0. 
Main loop for k = 1,2...K:  
1. Reconstruct an image by PWLS algorithm 

𝜇∗ arg min 𝑥 𝐻𝜇 Σ 𝑥 𝐻𝜇 𝛽𝑅 𝜇  

2. TV-minimization loop 
2.1. Initialization: ∆𝑥 ||𝑥 𝑥 ||; 
2.2. TV gradient descent, for k=1,2...K 

𝑥 𝑥 𝛽 ∙ ∆𝑥 ∙
∇|| ||

||∇|| || ||
; 

3. For each patch 𝑅 𝑥  in the image, 
(a) find the set 𝐷  of S nearest atoms in 𝐷 ; 
(b) compute the weights using OMP so that 

||𝑅 𝑥 𝐷 𝑤 || <𝜀 , 
or the maximum iteration number for OMP is reached; 
(c) estimate the image patch 𝑥  as 

𝑥 𝐷 𝑤 ; 
4. Update the image simultaneously: 

𝑥 = ∑ 𝑅 𝑅 ∑ 𝑅 𝑥 ; 
Repeat beginning with Step 1 until the stopping criteria are satisfied. 

III. EXPERIMENTS AND RESULTS 

A. Experimental Setup 

To evaluate the performance of the PWLS-TV-DL method 
in CT image reconstruction, we conducted experiments on the 
digital XCAT phantom. 

B. Digital XCAT Phantom 

Fig. 1 shows a slice of the XCAT phantom. We chose a 
geometry that was representative of a monoenergetic fan-beam 
CT scanner setup with a circular orbit to acquire 1160 
projection views over 2π. The number of channels per view 
was 672. The distance from the detector arrays to the x-ray 
source was 1040 mm, and the distance from the rotation center 
to the x-ray source was 570 mm. The reconstructed images 
were composed of 512 × 512 square pixels. Each projection 
datum along an x-ray through the sectional image was 
calculated based on the known densities and intersection areas 
of the ray with the geometric shapes of the objects in the 
sectional image. 

Similar to the previous studies (Wang et al., 2006) [6], we 
first simulated the noise-free sonogram data 𝑦 then generated 
the noisy transmission measurement I according to the 
statistical model of the pre-logarithm projection data, that is, 

 
𝑦 Poisson 𝑏 exp 𝑦 Normal 0, 𝜎      (12) 

 
where 𝑏  is the incident x-ray intensity and 𝜎  is the 
background electronic noise variance. In the simulation, 𝑏  
and 𝜎  were set to 1.0×10  and 10.0 for low-dose scan 
simulation. Finally, the noisy sinogram data y were calculated 
by performing the logarithm transformation on the 
transmission data 𝑦 . For the digital XCAT phantom 

experiment, the sparse-view projections were generated by 
under-sampling the 1,160 views of normal-dose simulation to 
only 360 views evenly over 2π. 
 

 

Fig. 1 Digital phantoms used in the studies: a slice of digital XCAT 
phantom 

C. Performance Evaluation on Digital Phantom 

In the digital phantom study, the original phantom data were 
directly used as the ground-truth image. As mentioned before, 
low-dose CT can be implemented by lowering tube current or 
reducing projection views. To have a more comprehensive 
study, we tested our method in both a low-current case and a 
few-view case.  

 

 

Fig. 2 Imaging results of different methods on digital XCAT: (a) 
PWLS; (b) PWLS-DL; (c) PWLS-TV; (d) PWLS-TV-DL 

 
In the low-current case, CT scan dose was set to 

𝑏 =1.0×10  photons per ray and 360 views over 360° were 
simulated. The imaging results of different methods are shown 
in Fig. 2. It can be seen that the PWLS result in Fig. 2 (a) 
contains heavy noise in the whole reconstructed region. Even 
worse, some small structures are almost covered by noise, 
which will cause misdiagnosis in the clinic. Fig. 2 (b) shows 
the image reconstructed by PWLS-DL, which is better than 
PWLS, but it is still covered by some noise. As shown in Fig. 2 
(c), the image becomes much cleaner after being denoised by 
TV, but the edges in the image are seriously blurred compared 
to that in the true image in Fig. 1. In contrast, it is easy to see in 
Fig. 2 (d), the image reconstructed by PWLS-TV-DL, which 
effectively suppresses noise and artifacts.  

The quantitative assessment was carried out by calculating 
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PSNR, SSIM, and RMSE between the true image and 
reconstructed images. Table II lists the performance 
comparison of different methods. The following columns of 
Table II demonstrate that whether we consider PSNR, SSIM, 
or RMSE, the method of PWLS-TV-DL obtains a good result. 

 
TABLE II 

NUMERIC RESULTS ON XCAT 

Method PWLS PWLS-DL PWLS-TV PWLS-TV-DL 

PSNR 23.892 25.731 33.112 44.854 

SSIM 0.936 0.948 0.977 0.991 

RMSE 9.704 6.835 4.171 1.576 

 
The profile images and residual images were compared in 

Figs. 3 and 4, respectively. The profiles located at the pixel 
positions x from 350 to 410 and y = 350. It is not difficult to 
find that the PWLS-TV-DL curve is closer to the Phantom 
curve. The results show that the PWLS-TV-DL method can 
help achieve image quality superior to that of the other 
comparison methods. 

 

 

Fig. 3 The profile images: (a) Phantom in black; (c) PWLS-TV in 
blue; (d) PWLS-TV-DL in green 

 

 

Fig. 4 Residual images of the reconstructed results based on the 
PWLS method, the PWLS-DL method, the PWLS-TV method, and 

the PWLS-TV-DL method with 200 iterations for the simulation 
XCAT data. All images are displayed in the same window 

IV. DISCUSSION AND CONCLUSION 

In this paper, based on the PWLS standard, we propose a 
new low-dose CT reconstruction solution by combining TV 
minimization and sparse DL. The intermediate image is 
reconstructed using TV minimization and then post-processed 
using DL to remove residual noise and produce a clinically 
acceptable CT image. It can be seen from simulation 
experiments that compared with reconstruction methods such 
as PWLS, PWLS-DL and PWLS-TV, this method can improve 
the quality of reconstructed images and produce smaller RMSE 
and larger PSNR and SSIM values. However, the main 
shortcoming of the PWLS-TV-DL algorithm is that the update 
of the matrix in DL increases the computational burden and 
requires a long running time. To solve this problem, a fast 
computer and dedicated hardware are needed. We believe that 
in the future, most iterative-based image reconstructions 
including the PWLS-TV-DL algorithm can be widely used in 
medical clinics.  
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