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Single Valued Neutrosophic Hesitant Fuzzy Rough
Set and Its Application

K. M. Alsager, N. O. Alshehri

Abstract—In this paper, we proposed the notion of single valued
neutrosophic hesitant fuzzy rough set, by combining single valued
neutrosophic hesitant fuzzy set and rough set. The combination
of single valued neutrosophic hesitant fuzzy set and rough set
is a powerful tool for dealing with uncertainty, granularity and
incompleteness of knowledge in information systems. We presented
both definition and some basic properties of the proposed model.
Finally, we gave a general approach which is applied to a
decision making problem in disease diagnoses, and demonstrated the
effectiveness of the approach by a numerical example.

Keywords—Single valued neutrosophic hesitant set, single valued
neutrosophic hesitant relation, single valued neutrosophic hesitant
fuzzy rough set, decision making method.

I. INTRODUCTION

THE notion of rough set theory has been proposed by

Pawlak in 1982 [5] and the theory of fuzzy set proposed

by Zadeh in 1965 [13], they are generalizations of the classical

set theory. Rough set theory is a mathematical approach

concerning uncertainty that comes from noisy, inexact or

incomplete informations. In Zadeh’s fuzzy set theory and

the membership function play the important role, whereas in

Pawlak’s rough set theory and equivalence classes of a set are

the significant part for the upper and lower approximations of

the set.

As a generalization of fuzzy sets, intuitionistic fuzzy

set [1] and the concept of neutrosophic set (NS) were

introduced by Smarandache [6] in 1999. The concept

of neutrosophic set handles indeterminate data whereas

fuzzy set theory and intuitionistic fuzzy set theory failed

when the relation is indeterminate. Neutrosophic set is

described by three functions: true-membership function,

indeterminacy-membership function and falsity-membership

function that are connected independently. The neutrosophic

set theory has been very successful in several areas, such as

medical diagnosis, database, topology and decision making

problem [3], [12]. While the neutrosophic set is an important

tool for handing the indeterminate and inconsistent data, the

theory of rough set is a powerful mathematics tool to deal

with incompleteness.

Without a particular description, it is hard to use the NS

in real scientific and different domain. Therefore, researchers

presented the interval neutrosophic set (INS) [8], multi-valued
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neutrosophic set (MVNS) [4] and rough neutrosophic set

(RNS) [2].

Wang et al. [9] proposed single valued neutrosophic set

(SVNSs) by simplifying NSs. SVNSs can also be considered

as an extension of intuitionistic fuzzy sets, in which the three

membership functions are unrelated and their function values

belong to the unit closed interval.

As another generalization of fuzzy sets, the hesitant

fuzzy set (HF) was defined by Torra [7], which allows its

membership function to have a set of possible values. Hesitant

fuzzy set is also important concept used to deal with imperfect

information [10]. By combining the advantages of the SVNS

and HFS, Ye [12] introduced the notion of single valued

neutrosophic hesitant fuzzy set (SVNHFS) which allows its

membership function to have sets of possible values, which are

called truth, indeterminacy, and falsity membership hesitant

functions and discussed some properties of SVNHFS to solve

multiple attribute decision making problems. In addition,

many researchers have studied hesitant fuzzy decision making

problems by utilizing plenty of classical decision making tools.

Among them, since the rough set approach owns advantages in

attribute selection, we aim to deal with the situation by virtue

the rough set theory.

In this paper, we apply rough set model to decision

making involving single valued neutrosophic hesitant fuzzy

sets. Moreover, we also propose an illustrative example to

interpret the basic principal and method of the application of

the rough set model in single valued neutrosophic hesitant

fuzzy decision making.

Section II recalls some basic concepts of rough sets, single

valued neutrosophic hesitant fuzzy sets. In Section III, we

present rough set model based on SVNHF relation over two

universes and examine some properties of this model. In

Section IV, we establish a general approach to decision making

based on SVNHF rough set over two universes. Section IV

illustrates the principal steps of the proposed decision method

by a numerical example. Finally, in Section VI we conclude

the paper with a summary and outlook for further research.

II. PRELIMINARIES

In this section we recall some basic notions and properties

which will be used in this paper.

A. Pawlak Rough Sets

Let U be a non-empty finite universe, R be an equivalence

relation on U . We use U/R to denote the family of all

equivalence classes of R (or classifications of U ), and [x]R
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to denote an equivalence class of R containing the element

x ∈ U . The pair (U,R) is called an approximation space. For

any X ⊆ U , we can define the lower and upper approximations

of X [5] as:

R(X) = {x ∈ U : [x]R ⊆ X}
R(X) = {x ∈ U : [x]R ∩X �= φ}.

The pair (R(X), R(X)) is referred to as the rough set of

X . The rough set (R(X), R(X)) gives rise to a description

of X under the present knowledge, i.e., the classification

of U . Furthermore, the positive region, negative region, and

boundary region of X about the approximation space (U,R)
are defined as follows, respectively,

pos(X) = R(X) neg(X) =∼ R(X), bn(X) =
R(X)−R(X),

where ∼ X stands for complementation of the set X .

B. Single Valued Neutrosophic Hesitant Fuzzy Sets
Wang et al. [7] proposed the concept of single valued

neutrosophic sets defined as follows:

Definition 1 [9]. Let U be a space of points (objects),

with a generic element in U denoted by x. A SVNS

A in U is characterized by three membership functions,

truth membership function TA, an indeterminacy membership

function IA and falsity membership function FA where ∀x ∈
U , TA(x), IA(x), FA(x) ∈ [0, 1].

Ye [10] defined the concept of single valued neutrosophic

hesitant fuzzy sets (SVNHFS), which is an extension of

hesitant fuzzy set.

Definition 2 [12]. Let X be a non-empty fixed set, a SVNHFS

on X is expressed by:

N = {(x, t̃(x), ĩ(x), f̃(x)|x ∈ X)},
where t̃(x) = {γ|γ ∈ t̃(x)}, ĩ(x) = {δ|δ ∈ ĩ(x)},f̃(x) =
{η|η ∈ f̃(x)} are three sets with value in [0, 1], representing

truth, indeterminacy and falsity membership hesitant degrees

of the element x ∈ X , which satisfy limits: γ ∈ [0, 1], δ ∈
[0, 1],η ∈ [0, 1] and 0 ≤ sup γ + sup δ + sup η ≥ 3.

For any y ∈ U , several special SVNHF sets 1y, 1U − y and

1M are defined, respectively, as follows: For x ∈ U,M ⊆ U ,

t̃1y (x) =

{
1 for x = y
0 for x �= y

ĩ1y (x) =

{
0 for x = y
1 for x �= y

f̃1y (x) =

{
0 for x = y
1 for x �= y

t̃1U−y
(x) =

{
0 for x = y
1 for x �= y

ĩ1U−y
(x) ={

1 for x = y
0 for x �= y

f̃1U−y
(x) =

{
1 for x = y
0 for x �= y

t̃1M (x) =

{
1 for x ∈ M
0 for otherwise

ĩ1M (x) ={
0 for x ∈ M
1 for otherwise

f̃1M (x) =

{
0 for x ∈ M
1 for otherwise

Let U be a discrete universe of discourse,

A and B be two SVNHF sets on U denoted

as A = {(x, t̃A(x), ĩA(x), f̃A(x)|x ∈ U)}and

B = {(x, t̃A(x), ĩA(x), f̃A(x)|x ∈ U)}, respectively. It

should be noted that the number of values in different

SVNHF elements may be different and the values of SVNHF

element are usually given in a disorder. Suppose that �(t̃A(x)),
�(ĩA(x)) and �(f̃A(x)) stands for the number of values in

t̃A(x), t̃A(x) and t̃A(x), respectively.

Some basic operations of SVNHFEs are defined by Ye [10],

as

Definition 3 [12]. Let ñ1 = (t̃1, ĩ1, f̃1) and ñ2 = (t̃2, ĩ2, f̃2)
be two SVNHFEs, then:

1) ñ1 ∪ ñ2 = {t̃1 ∪ t̃2, t̃1 ∩ t̃2, t̃1 ∩ t̃2};
2) ñ1 ∩ ñ2 = {t̃1 ∩ t̃2, t̃1 ∪ t̃2, t̃1 ∪ t̃2};
3) ñ1⊕ ñ2 =

⋃
γ1∈t̃1,δ1∈ĩ1,η1∈f̃1γ2∈t̃2,δ2∈ĩ2,η2∈f̃2

{γ1+γ2−
γ1γ2, δ1δ2, η1η2}

4) ñ1⊗ñ2 =
⋃

γ1∈t̃1,δ1∈ĩ1,η1∈f̃1γ2∈t̃2,δ2∈ĩ2,η2∈f̃2
{γ1γ2, δ1+

δ2 − δ1δ2, η1 + η2 − η1η2}
5) Kñ1 =

⋃
γ1∈t̃1,δ1∈ĩ1,η1∈f̃1

{1− (1− γ1)
k, δk1 , η

k
1}

6) ñ1
k =

⋃
γ1∈t̃1,δ1∈ĩ1,η1∈f̃1

{γk
1 , 1 − (1 − δ1)

k, 1 − (1 −
η1)

k}

III. SINGLE VALUED NEUTROSOPHIC HESITANT FUZZY

ROUGH SETS

Yang et al. [9] proposed a hesitant fuzzy relation as:

Definition 4 [11]. Let U be a nonempty and finite universe. A

hesitant fuzzy relation R over U is a hesitant fuzzy subset such

that R ∈ HF (U × U) where R = {(x, y), hR(x, y)|(x, y) ∈
U ×U}Ḟor all (x, y) ∈ U ×U , hR(x, y) is a set of the values

in [0, 1], which is used to denote the possible membership

degrees of the relationships between x and y.

Inspired by the concept of the hesitant fuzzy relation, we

will further extend the hesitant fuzzy relation into SVNHF

environment, and introduce the concept of SVNHF relation

over two universes which is used to construct SVNHF rough

approximation operators. Firstly, we present the concept of a

SVNHF relation as:

Definition 5. Let U, V be two nonempty and finite universes.

A SVNHF subset R of the universe U × V is called

a SVNHF relation from U to V, namely, R is given by

R = {(x, y), t̃R(x, y), ĩR(x, y), f̃R(x, y)|(x, y) ∈ U × V }
where t̃R, ĩR, f̃R : U × V −→ [0, 1] are triple sets of

some values in [0, 1], denoting the possible truth-membership

hesitant degrees, indeterminacy-membership hesitant degrees,

and falsity-membership hesitant degrees of the relationships

between x and y, respectively, with the conditions: 0 ≤
γ, δ, η ≥ 1 and 0 ≤ γ+ + δ+ + η+ ≥ 3, where for all

(x, y) ∈ U × V ,γ ∈ t̃R(x, y), δ ∈ ĩR(x, y), η ∈ f̃R(x, y),
γ+ ∈ t̃+R(x, y) = ∪γ∈t̃R(x,y)max{γ}, δ+ ∈ ĩ+R(x, y) =

∪δ∈ĩR(x,y)max{δ}, η+ ∈ f̃+
R (x, y) = ∪η∈f̃R(x,y)max{η}.

Definition 6. The SVNHF relation R from U to V is said

to be serial if for each x ∈ U , there exists a y ∈ V such

that t̃R(x, y) = {1}andĩR(x, y) = f̃R(x, y) = 0, R is

said to be reflexive on U if t̃R(x, x) = {1}andĩR(x, x) =
f̃R(x, x) = 0 for all x ∈ U,R is referred to as a symmetric

SVNHF relation on U if t̃R(x, y) = t̃R(y, x), ĩR(x, y) =
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ĩR(y, x)andf̃R(x, y) = f̃R(y, x)forall4x, y ∈ U , R is said to

be transitive on U if
∨

y∈U{t̃R(x, y) ∧ t̃R(y, z)} ≤ t̃R(x, z),∧
y∈U {̃iR(x, y) ∨ ĩR(y, z)} ≤ ĩR(x, z) and

∧
y∈U{f̃R(x, y) ∨

f̃R(y, z)} ≤ f̃R(x, z) for all x, z ∈ U .

Alternatively, R is transitive if the following conditions are

satisfied:∨
y∈U{t̃σ(s)R (x, y) ∧ t̃

σ(s)
R (y, z)} ≤ t̃

σ(s)
R (x, z), 1 ≤ s ≤ k;∧

y∈U {̃iσ(t)R (x, y) ∨ ĩ
σ(t)
R (y, z)} ≤ ĩ

σ(t)
R (x, z), 1 ≤ t ≤ m ;∧

y∈U{f̃σ(v)
R (x, y) ∨ f̃

σ(v)
R (y, z)} ≤ f̃

σ(v)
R (x, z), 1 ≤ v ≤ n.

where t̃σ(s) denote the sth largest value in t̃, ĩσ(t) denote the

tth largest value in ĩ and f̃σ(v) denote the vth largest value

in f̃ , k = max{�(t̃R(x, y)), �(t̃R(y, z)), �(t̃R(x, z))},

m = max{�(̃iR(x, y)), �(̃iR(y, z)), �(̃iR(x, z))} and

n = max{�(f̃R(x, y)), �(f̃R(y, z)), �(f̃R(x, z))} Based

on the above SVNHF relation, lower and upper SVNHF

approximation operators are defined as:

Definition 7. Let U and V be two nonempty and finite

universes and R be SVNHF relation from U to V. The triple

(U,V,R) is called a SVNHF approximations space. For any

A ∈ SV NHF (V ) the lower and upper approximations of A

with respect to (U,V,R), denote by R(A) and R(A) are two

SVNHF sets of U and are, respectively, defined as:

R(A) = {x,< t̃R(x), ĩR(x), f̃R(x) > |x ∈ U}
R(A) = {x,< t̃R(x), ĩR(x), f̃R(x) > |x ∈ U}
where

t̃R(A)(x) =
∧

y∈V {f̃R(x, y) ∨ t̃A(y)},

ĩR(A)(x) =
∨

y∈V {ĩcR(x, y)∧ ĩA(y)} =
∨

y∈V {1− ĩR(x, y)∧
ĩA(y)},

f̃R(A)(x) =
∨

y∈V {t̃R(x, y) ∧ f̃A(y)},

t̃R(A)(x) =
∨

y∈V {t̃R(x, y) ∧ t̃A(y)},

ĩR(A)(x) =
∧

y∈V {̃iR(x, y) ∨ ĩA(y)},

f̃R(A)(x) =
∧

y∈V {f̃R(x, y) ∨ f̃A(y)},

The pair (R(A), R(A)) is called the SVNHF rough set of A

with respect to (U,V,R), and R(A), R(A) : SV NHF (V ) −→
SV NHF (U) are referred to as lower and upper SVNHF

rough approximation operators,respectively.

Clearly, the above definition implies equivalences of the

following form:

t̃R(A)(x) =
∧

y∈V f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
A (y)|1 ≤ s ≤

max{�(f̃R(x, y)), �(t̃A(y))},

ĩR(A)(x) =
∨

y∈V {1 − ĩ
σ(t)
R (x, y) ∧ ĩ

σ(t)
A (y)|1 ≤ t ≤

max{�(1− ĩR(x, y)), �(̃iA(y))}},

f̃R(A)(x) =
∨

y∈V {t̃σ(v)R (x, y) ∧ f̃
σ(v)
A (y)|1 ≤ v ≤

max{�(t̃R(x, y)), �(f̃A(y))}},

t̃R(A)(x) =
∨

y∈V {t̃σ(s)R (x, y) ∧ t̃
σ(s)
A (y)|1 ≤ s ≤

max{�(t̃R(x, y)), �(t̃A(y)},

ĩR(A)(x) =
∧

y∈V {̃iσ(t)R (x, y) ∨ ĩ
σ(t)
A (y)|1 ≤ t ≤

max{�(̃iR(x, y)), �(̃iA(y)},

f̃R(A)(x) =
∧

y∈V {f̃σ(v)
R (x, y) ∨ f̃

σ(v)
A (y)|1 ≤ v ≤

max{�(f̃R(x, y)), �(f̃A(y)}.

where the �(.) stands for the number of values in hesitant fuzzy

elements.

Definition 8. Let U be a nonempty and finite universe

of discourse. Denote k = max{�(t̃A(x), �(t̃B(x)}, m =
max{�(̃iA(x)), �(̃iB(x))} and n = max{�(f̃A(x), �(f̃B(x)}
∀A,B ∈ SV NHF (V ), A is said to be a SVNHF subset of

B, if t̃A(y) ≤ t̃B(y), ĩA(y) ≥ ĩB(y) and f̃A(y) ≥ f̃B(y) hold

for any x ∈ U ; such that

t̃A(y) ≤ t̃B(y), ĩA(y) ≥ ĩB(y) and f̃A(y) ≥ f̃B(y) ⇐⇒
t̃
σ(s)
A (y) ≤ t̃

σ(s)
B (y), ĩ

σ(t)
A (y) ≥ ĩ

σ(t)
B (y) and f̃

σ(v)
A (y) ≥

f̃
σ(v)
B (y) with 1 ≤ s ≤ k, 1 ≤ t ≤ m and 1 ≤ v ≤ n we

denote it by A ⊆ B.

Theorem 1. Let (U, V,R) be a single valued neutrosophic

hesitant fuzzy approximation space over two universes. Then

the lower and upper SVNHF rough approximation operators

induced from (U, V,R) satisfy the following properties for all

A,B ∈ SV NHF (V )

1) (SV NHFL1)R(Ac) = (R(A))c

2) (SV NHFU1)R(Ac) = (R(Ac))c

3) (SV NHFL2)A ⊆ B ⇒ R(A) ⊆ R(B)
4) (SV NHFU2)A ⊆ B ⇒ R(A) ⊆ R(B)
5) (SV NHFL3)R(A ∩B) = R(A) ∩R(B)
6) (SV NHFU3)R(A ∪B) = R(A) ∪R(B)
7) (SV NHFL4)R(V ) = U
8) (SV NHFU4)R(φ) = φ

Proof.
1) (SV NHFL1) For all x ∈ U , we have,

t̃R(Ac)(x) =
∧

y∈V {f̃R(x, y) ∨ t̃Ac(y)}
=

∧
y∈V {f̃R(x, y) ∨ f̃A(y)}

=
∧

y∈V { ˜fσ(v)
R(x, y) ∨ ˜fσ(v)

A(y)}
= f̃R(A)(x) = t̃(R(A))c(x)

ĩR(Ac)(x) =
∨

y∈V {1− ĩR(x, y) ∧ ĩAc(y)}=
∨

y∈V {1−
˜iσ(t)R(x, y) ∧ ˜iσ(t)Ac(y)}

= ĩ(R(A))c(x)

f̃R(Ac)(x) =
∨

y∈V {t̃R(x, y) ∧ f̃Ac(y)}
=

∨
y∈V {t̃R(x, y) ∧ t̃A(y)}

=
∨

y∈V { ˜tσ(s)R(x, y) ∧ ˜tσ(s)A(y)}
t̃R(A)(x) = f̃(R(A))c(x)

From above discussions, it follows that R(Ac) =
(R(A))c

2) (SV NHFL2) Since A ⊆ B then, by Definition 8, we

have

t̃
σ(s)
A (y) ≤ t̃

σ(s)
B (y), ĩ

σ(t)
A (y) ≥ ĩ

σ(t)
B (y) and

f̃
σ(v)
A (y) ≥ f̃

σ(v)
B (y) with 1 ≤ s ≤ k, 1 ≤ t ≤ m and

1 ≤ v ≤ n for all y ∈ U . So it follows that∧
y∈V f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
A (y) ≤ ∧

y∈V f̃
σ(s)
R (x, y) ∨

t̃
σ(s)
B (y)∨
y∈V {1−ĩ

σ(t)
R (x, y)∧ĩσ(t)A (y) ≥ ∨

y∈V {1−ĩ
σ(t)
R (x, y)∧

ĩ
σ(t)
B (y)∨
y∈V {t̃σ(v)R (x, y) ∧ f̃

σ(v)
A (y) ≥ ∨

y∈V {t̃σ(v)R (x, y) ∧
f̃
σ(v)
B (y)

hence, for each x ∈ U , we conclude that

t̃R(A)(x) ≤ t̃R(B)(x), ĩR(A)(x) ≥ ĩR(B)(x) and

f̃R(A)(x) ≥ f̃R(B)(x).
Consequently, R(A) ⊆ R(B)
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3) (SV NHFL3) For all x ∈ U , we have

t̃R(A∩B)(x) =
∧

y∈V {f̃R(x, y) ∨ t̃A∩B(y)}
=

∧
y∈V {f̃R(x, y) ∨ (t̃A(y) ∧ t̃B(y))}

=
∧

y∈V {f̃σ(s)
R (x, y) ∨ (t̃

σ(s)
A (y) ∧ t̃

σ(s)
B (y))}, s =

1, 2, ...., k{∧
y∈V (f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
A (y))

}
∧{∧

y∈V (f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
B (y))

}
, s = 1, 2, ...., k

= t̃R(A)(x) ∩ t̃R(B)(x) = t̃R(A∩B)(x)

ĩR(A∩B)(x) =
∨

y∈V {1 − ĩR(x, y) ∧ ĩA∩B(y)}
=

∨
y∈V {1− ĩR(x, y) ∧ (̃iA(y) ∨ ĩB(y))}

=
∨

y∈V {1 − ĩ
σ(t)
R (x, y) ∧ (̃i

σ(t)
A (y) ∨ ĩ

σ(t)
B (y))}, t =

1, 2, ....,m{∨
y∈V (1− ĩ

σ(t)
R (x, y) ∧ t̃

σ(t)
A (y))

}
∨{∨

y∈V (t̃
σ(t)
Rc (x, y) ∨ t̃

σ(t)
B (y))

}
, t = 1, 2, ....,m

= ĩR(A)(x) ∨ ĩR(B)(x) = ĩR(A∩B)(x)

f̃R(A∩B)(x) =
∨

y∈V {t̃R(x, y) ∧ f̃A∩B(y)}
=

∨
y∈V {t̃R(x, y) ∧ (f̃A(y) ∨ f̃B(y))}

=
∨

y∈V {t̃σ(v)R (x, y) ∧ (f̃
σ(v)
A (y) ∨ t̃f

σ(v)

B (y))}, v =
1, 2, ...., n{∨

y∈V (t̃
σ(v)
R (x, y) ∧ f̃

σ(v)
A (y))

}
∨{∨

y∈V (t̃
σ(v)
R (x, y) ∨ f̃

σ(v)
B (y))

}
, v = 1, 2, ...., n

= f̃R(A)(x) ∨ f̃R(B)(x) = f̃R(A∩B)(x)

Where k = max{�(t̃R(x, y)), �(t̃A(y)), �(t̃B(x, z))},

m = max{�(1 − ĩR(x, y)), �(̃iA(y)), �(̃iB(y))} and

n = max{�(f̃R(x, y)), �(f̃A(y)), �(f̃B(y))}
Hence, it follows that (SV NHFL4) holds.

4) (SV NHFL4) It is easy to prove.

Theorem 2. Let U, V be two nonempty and finite universes.

Suppose that R1 and R2 are two SVNHF relations from U to

V, if R1 ⊆ R2 then the following holds:

1) R1(A) ⊇ R2(A), ∀A ∈ SV NHF (V )
2) R1(A) ⊆ R2(A), ∀A ∈ SV NHF (V )

Proof.
1) Since R1 ⊆ R2, then for any (x, y) ∈ U × V , we have

t̃
σ(s)
R1

(x, y) ≤ t̃
σ(s)
R2

(x, y), ĩ
σ(t)
R1

(x, y) ≥ ĩ
σ(t)
R2

(x, y) and

f̃
σ(v)
R1

(x, y) ≥ f̃
σ(v)
R2

(x, y) with 1 ≤ s ≤ k, 1 ≤ t ≤ m
and 1 ≤ v ≤ n for all y ∈ U
t̃R1(A)(x) =

∧
y∈V {f̃R1(x, y) ∨ t̃A(y)}

=
∧

y∈V {f̃σ(s)
R1

(x, y) ∨ t̃
σ(s)
A (y)|s = 1, 2, ...., k}

≥ ∧
y∈V {f̃σ(s)

R2
(x, y) ∨ t̃

σ(s)
A (y)|s = 1, 2, ...., k} =

t̃R2(A)(x)

ĩR1(A)(x) =
∨

y∈V {1 − ĩR1
(x, y) ∧ ĩA(y)|t =

1, 2, ....,m} =
∨

y∈V {1 − ĩ
σ(t)
R1

(x, y) ∧ ĩ
σ(t)
A (y)|t =

1, 2, ....,m} ≤ ∨
y∈V {1 − ĩ

σ(t)
R2

(x, y) ∧ ĩ
σ(t)
A (y)|t =

1, 2, ....,m} = ĩR2(A)(x)

f̃R1(A)(x) =
∨

y∈V {t̃R1
(x, y) ∧ f̃A(y)|v = 1, 2, ...., n}

=
∨

y∈V {t̃σ(v)R1
(x, y) ∧ f̃

σ(v)
A (y)|v = 1, 2, ...., n}

≤ ∨
y∈V {t̃σ(t)R2

(x, y) ∧ f̃
σ(t)
A (y)|v = 1, 2, ...., n} =

f̃R2(A)(x)
Hence, it follows that R1(A) ⊇ R2(A) holds.

2) It follows immediately from the above result (1).

Theorem 3. Let (U, V,R1) and (U, V,R2) be two

single valued neutrosophic hesitant fuzzy approximation

space over two universes and R = R1 ∪ R2 then for any

A ∈ SV NHF (V )

1) R(A) = R1(A) ∪R2(A)
2) R(A) = R1(A) ∩R2(A)

Proof.
1) ∀x ∈ U , we have

t̃R(A)(x) =
∨

y∈V {t̃R(x, y) ∧ t̃A(y)},

t̃R(A)(x) =
∨

y∈V {t̃R1∪R2
(x, y) ∧ t̃A(y)},

t̃R(A)(x) =
∨

y∈V {(t̃R1(x, y) ∨ t̃R2(x, y)) ∧ t̃A(y)},

(
∨

y∈V (t̃
σ(s)
R1

(x, y) ∧ t̃
σ(s)
A (y))) ∨ (

∨
y∈V (t̃

σ(s)
R2

(x, y) ∧
t̃
σ(s)
A (y)))|s = 1, 2, ...., k}
= t̃R1(A)(x) ∨ t̃R2(A)(x)

= t̃R1∪R2(A)(x)

ĩR(A)(x) =
∧

y∈V {1− ĩR(x, y) ∨ ĩA(y)},

ĩR(A)(x) =
∧

y∈V {̃iRc
1∪Rc

2
(x, y) ∨ ĩA(y)},

ĩR(A)(x) =
∧

y∈V {(̃iRc
1
(x, y) ∧ t̃Rc

2
(x, y)) ∨ ĩA(y)},

(
∧

y∈V (̃i
σ(t)
Rc

1
(x, y) ∨ ĩ

σ(t)
A (y))) ∧ (

∧
y∈V (̃i

σ(t)
Rc

2
(x, y) ∨

ĩ
σ(t)
A (y)))|t = 1, 2, ...., k}
= ĩR1(A)(x) ∧ ĩR2(A)(x)

= ĩR1∪R2(A)(x)

f̃R(A)(x) =
∧

y∈V {t̃R(x, y) ∨ f̃A(y)},

f̃R(A)(x) =
∧

y∈V {t̃R1∪R2(x, y) ∨ f̃A(y)},

f̃R(A)(x) =
∧

y∈V {(t̃R1
(x, y) ∧ t̃R2

(x, y)) ∨ f̃A(y)},

((
∧

y∈V (t̃
σ(v)
R1

(x, y) ∨ f̃
σ(v)
A (y))) ∧ (

∧
y∈V (t̃

σ(v)
R2

(x, y) ∨
f̃
σ(v)
A (y)))|v = 1, 2, ...., k})
= f̃R1(A)(x) ∧ f̃R2(A)(x)

= f̃R1∪R2(A)(x)
2) It follows immediately from the above conclusion.

Definition 9. Let G1 = (U, V,R1) and G2(U,W,R2) be

two SVNHF approximation spaces over two universes. The

composition of SVNHF relations R1 and R1 is a SVNHF

relation from U to W, denoted by R = R ◦R, and is defined

as follows: for all (x, z) ∈ U × V
R = {(x, y), t̃R(x, z), ĩR(x, z), f̃R(x, z)|(x, z) ∈ U × V },

where

t̃R(x, z) = ∨{t̃R1
(x, y) ∧ t̃R2

(y, z)} = t̃
σ(s)
R (x, z) =

∨{t̃σ(s)R1
(x, y) ∧ t̃

σ(s)
R2

(y, z)|s = 1, 2, ....k}
ĩR(x, z) = ∧{̃iR1

(x, y) ∨ t̃R2
(y, z)} = ĩ

σ(t)
R (x, z) =

∧{̃iσ(i)R1
(x, y) ∨ ĩ

σ(t)
R2

(y, z)|t = 1, 2, ....m}
f̃R(x, z) = ∧{f̃R1(x, y) ∨ f̃R2

(y, z)} = f̃
σ(v)
R (x, z) =
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∧{f̃σ(v)
R1

(x, y) ∨ f̃
σ(v)
R2

(y, z)|v = 1, 2, ....n}, for all (x, y) ∈
U × V and (y, z) ∈ V ×W .

The SVNHF approximation space G = (U, V,R) is referred

to as the composition of G1 = (U, V,R1) and G2(U,W,R2),
denoted by G = G1 ◦G2.

Theorem 4. Let G1 = (U, V,R1) and G2(U,W,R2) be

two SVNHF approximation spaces over two universes, and

G = G1 ◦ G2 be the composition of G1 and G2. Then, for

any A ∈ SV NHF (W ),

1) R(A) = (R1 ◦R2)(A) = R1(R2(A)),
2) R(A) = (R1 ◦R2)(A) = R1(R2(A)).

Proof.
1) ∀x ∈ U , we have

t̃R1(R2(A))(x) =
∨

y∈V {t̃R1
(x, y) ∧ t̃R2(A)(y)}

=
∨

y∈V {t̃R1
(x, y) ∧ (

∨
z∈w{t̃R2

(y, z) ∧ t̃A(z)})}
=

∨
y∈V

∨
z∈w(t̃

σ(s)
R1

(x, y) ∧ t̃
σ(s)
R2

(y, z) ∧ t̃
σ(s)
A (z)|s =

1, 2, ....k =
∨

z∈w[
∨

y∈V (t̃
σ(s)
R1

(x, y) ∧ t̃
σ(s)
R2

(y, z))] ∧
t̃
σ(s)
A (z)|s = 1, 2, ....k =

∨
z∈w(t̃

σ(s)
R (x, z) ∧

t̃
σ(s)
A (z))|s = 1, 2, ....k = t̃R(A)(x)

ĩR1(R2(A))(x) =
∧

y∈V {̃iR1
(x, y) ∨ ĩR2(A)(y)} =∧

y∈V {̃iR1
(x, y) ∨ (

∧
z∈w{̃iR2

(y, z) ∨ ĩA(z)})} =∧
y∈V

∧
z∈w (̃i

σ(t)
R1

(x, y) ∨ ĩ
σ(t)
R2

(y, z) ∨ ĩ
σ(t)
A (z)|t =

1, 2, ....m =
∧

z∈w[
∧

y∈V (̃i
σ(t)
R1

(x, y) ∨ ĩ
σ(t)
R2

(y, z))] ∨
ĩ
σ(t)
A (z)|t = 1, 2, ....m =

∧
z∈w (̃i

σ(t)
R (x, z) ∨

ĩ
σ(t)
A (z))|t = 1, 2, ....k = ĩR(A)(x)

f̃R1(R2(A))(x) =
∧

y∈V {f̃R1
(x, y) ∨ f̃R2(A)(y)}

=
∧

y∈V {f̃R1(x, y) ∨ (
∧

z∈w{f̃R2(y, z) ∨ f̃A(z)})}
=

∧
y∈V

∧
z∈w(f̃

σ(v)
R1

(x, y)∨ f̃
σ(v)
R2

(y, z)∨ f̃
σ(v)
A (z)|v =

1, 2, ....n =
∧

z∈w[
∧

y∈V (f̃
σ(v)
R1

(x, y) ∨ f̃
σ(v)
R2

(y, z))] ∨
f̃
σ(v)
A (z)|v = 1, 2, ....n =

∧
z∈w(f̃

σ(v)
R (x, z) ∨

f̃
σ(v)
A (z))|v = 1, 2, ....k = f̃R(A)(x)

2) It follows immediately from the above result.

Theorem 5. Let R be a SVNHF relation from U to V.

Suppose that 1y ,1U − y and 1M are three special SVNHF

sets; then ∀x ∈ U, (x, y) ∈ U × V,M ⊆ U , we have

1) t̃R(1M )(x) =
∧

y �=M f̃R(x, y), ĩR(1M )(x) =∨
y �=M ĩcR(x, y)

and f̃R(1M )(x) =
∨

y �=M (t̃R(x, y)

2) t̃R(1M )(x) =
∨

y∈M t̃R(x, y), ĩR(1M )(x) =∧
y∈M ĩR(x, y) and f̃R(1M )(x) =

∧
y∈M f̃R(x, y)

3) t̃R(1U−{y})(x) = f̃R(x, y), ĩR(1U−{y})(x) = ĩcR(x, y)

and f̃R(1U−{y})(x) = t̃R(x, y)

4) t̃R(1y)
(x) = t̃R(x, y), ĩR(1y)

(x) = ĩR(x, y)

and f̃R(1y)
(x) = f̃R(x, y)

Proof.

1) For all x ∈ U , we have

t̃R(1M )(x) =
∧

y∈V {f̃R(x, y) ∨ f̃1M (y)}
= {1} ∧

(∧
y �=M f̃R(x, y)

)
=

∧
y �=M f̃R(x, y)

ĩR(1M )(x) =
∨

y∈V {ĩcR(x, y) ∧ ĩ1M (y)}
= {0} ∨

(∨
y �=M ĩcR(x, y)

)
=

∨
y �=M ĩcR(x, y)

f̃R(1M )(x) =
∨

y∈V {t̃R(x, y) ∧ f̃1M (y)}
= {0} ∨

(∨
y �=M t̃R(x, y)

)
=

∨
y �=M t̃R(x, y)

2) It follows immediately from (1)

3) For all x ∈ U , we have

t̃R(1U−{y}(x) =
∧

z∈V {f̃R(x, z) ∨ f̃1U−{y}(z)}
= f̃R(x, y) ∧ {1}
= f̃R(x, y)
ĩR(1U−{y}(x) =

∨
z∈V {ĩcR(x, z) ∧ ĩ1U−{y}(z)}

= ĩcR(x, y) ∨ {0}
= ĩcR(x, y)
f̃R(1U−{y}(x) =

∨
z∈V {t̃R(x, z) ∧ f̃1U−{y}(z)}

= t̃R(x, y) ∨ {0}
= t̃R(x, y).

4) It follows immediately from (3)

Theorem 6. Let R be a SVNHF relation from U to V.

Suppose that R and R are the lower and upper SVNHF rough

approximation operators given in definition, then R is serial

iff one of the following properties hold:

1) (SV NHFL1)R(φ) = φ
2) (SV NHFU1)R(V ) = U
3) (SV NHFLU1)R(A) ⊆ R(A), ∀A ∈ SV NHF (U)

Proof.
1) It is easy to prove.

2) First we prove that R is serial ⇐⇒ (SV NHFU1)
suppose that R is serial. For any x ∈ U , there

exists a z ∈ V such that t̃R(x, z) = 1 and

ĩR(x, z) = f̃R(x, z) = 0,

t̃R(V )(x) = {∨y∈V (t̃
σ(s)
R (x, y) ∧ t̃

σ(s)
V (y))|s =

1, 2, ....k},

= {∨y∈V (t̃
σ(s)
R (x, y) ∧ 1)|s = 1, 2, ....k},

= {t̃σ(s)R (x, z) ∨
(∨

y �=z t̃
σ(s)
R (x, y)

)
|s = 1, 2, ....k},

= 1 = t̃U (x)

, ĩR(V )(x) = {∧y∈V (̃i
σ(t)
R (x, y) ∨ ĩ

σ(t)
V (y))|t =

1, 2, ....m},

= {∧y∈V (̃i
σ(t)
R (x, y) ∨ 0)|t = 1, 2, ....m},

= {̃iσ(t)R (x, z) ∧
(∧

y �=z ĩ
σ(t)
R (x, y)

)
|t = 1, 2, ....m},

= 0 = ĩU (x)
and

f̃R(V )(x) = {∧y∈V (f̃
σ(v)
R (x, y) ∨ f̃

σ(v)
V (y))|v =

1, 2, ....n},
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= {∧y∈V (f̃
σ(v)
R (x, y) ∨ 0)|v = 1, 2, ....m},

= {f̃σ(v)
R (x, z) ∧

(∧
y �=z f̃

σ(v)
R (x, y)

)
|v = 1, 2, ....n},

= 0 = f̃U (x)
Thus, we conclude that R(V ) = U . Conversely, if

(SV NHFU1) holds, then ∀x ∈ U , t̃R(V )(x) = 1

and ĩR(V )(x) = f̃R(V )(x) = 0. If R is not serial,

then ∀y ∈ V , ∃x ∈ U such that t̃R(x, y) �= 1 and

ĩR(x, y) = f̃R(x, y) �= 0, then we have t̃R(x, y) ∩
t̃V (y) = t̃R(x, y) �= 1, ĩR(x, y) ∪ ĩV (y) = ĩR(x, y) �= 0
and f̃R(x, y) ∪ f̃V (y) = f̃R(x, y) �= 0. That is,

t̃R(V )(x) �= 1 and ĩR(V )(x) = f̃R(V )(x) = 0
which contradict the assumption.

3) Second we prove that R is serial ⇐⇒ (SV NHFLU1).
Suppose that R is serial. For any x ∈ U , there

exists a z ∈ V such that t̃R(x, z) = 1 and

ĩR(x, z) = f̃R(x, z) = 0, by definition we have

t̃R(A)(x) = {∧y∈V (f̃R(x, y) ∨ t̃A(y))}
= {∧y∈V (f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
A (y))|s = 1, 2, ....k},

= {(f̃σ(s)
R (x, z) ∨ t̃

σ(s)
A (z) ∧(∧

y �=z(f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
A (y)

)
|s = 1, 2, ....k},

= {f̃σ(s)
A (z) ∧

(∧
y �=z(f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
A (y)

)
|s =

1, 2, ....k},

≤ {t̃σ(s)A (z)|s = 1, 2, ....k} = t̃A(z)
, ĩR(A)(x) = {∨y∈V (ĩ

c
R(x, y) ∧ ĩA(y))}

= {∨y∈V (ĩ
c
σ(t)

R (x, y) ∧ ĩ
σ(t)
A (y))|t = 1, 2, ....m},

= {(ĩcσ(t)R (x, z) ∧ ĩ
σ(t)
A (z) ∨(∨

y �=z(ĩ
c
σ(t)

R (x, y) ∧ ĩ
σ(t)
A (y)

)
|t = 1, 2, ....m},

= {̃iσ(t)A (z) ∨
(∨

y �=z (̃i
σ(t)
R (x, y) ∧ ĩ

σ(t)
A (y)

)
|t =

1, 2, ....m},

≥ {̃iσ(t)A (z)|t = 1, 2, ....m} = ĩA(z)
and

f̃R(A)(x) = {∨y∈V (t̃R(x, y) ∧ f̃A(y))}
= {∨y∈V (t̃

σ(v)
R (x, y) ∧ f̃

σ(v)
A (y))|v = 1, 2, ....n},

= {(t̃σ(v)R (x, z) ∧ f̃
σ(v)
A (z) ∨(∨

y �=z(t̃
σ(v)
R (x, y) ∧ f̃

σ(v)
A (y)

)
|v = 1, 2, ....n},

= {f̃σ(t)
A (z) ∨

(∨
y �=z(t̃

σ(v)
R (x, y) ∧ f̃

σ(v)
A (y)

)
|v =

1, 2, ....n},

≥ {f̃σ(v)
A (z)|v = 1, 2, ....m} = f̃A(z)

On the other hand, we have

t̃R(A)(x) = {∨y∈V (t̃R(x, y) ∧ t̃A(y))}
= {∨y∈V (t̃

σ(s)
R (x, y) ∧ t̃

σ(s)
A (y))|s = 1, 2, ....k},

= {(t̃σ(s)R (x, z) ∧ t̃
σ(s)
A (z) ∨(∨

y �=z(t̃
σ(s)
R (x, y) ∧ t̃

σ(s)
A (y)

)
|s = 1, 2, ....k},

= {t̃σ(s)A (z) ∨
(∨

y �=z(t̃
σ(s)
R (x, y) ∧ t̃

σ(s)
A (y)

)
|s =

1, 2, ....k},

≥ {t̃σ(s)A (z)|s = 1, 2, ....k} = t̃A(z),
ĩR(A)(x) = {∧y∈V (̃iR(x, y) ∨ ĩA(y))}
= {∧y∈V (̃i

σ(t)
R (x, y) ∨ ĩ

σ(t)
A (y))|t = 1, 2, ....m},

= {(̃iσ(t)R (x, z) ∨ ĩ
σ(t)
A (z) ∧(∧

y �=z (̃i
σ(t)
R (x, y) ∨ ĩ

σ(t)
A (y)

)
|t = 1, 2, ....m},

= {̃iσ(t)A (z) ∧
(∧

y �=z (̃i
σ(t)
R (x, y) ∨ ĩ

σ(t)
A (y)

)
|t =

1, 2, ....m},

≤ {̃iσ(t)A (z)|t = 1, 2, ....m} = ĩA(z)

and

f̃R(A)(x) = {∧y∈V (f̃R(x, y) ∨ f̃A(y))}
= {∧y∈V (f̃

σ(v)
R (x, y) ∨ f̃

σ(v)
A (y))|v = 1, 2, ....n},

= {(f̃σ(v)
R (x, z) ∨ f̃

σ(v)
A (z) ∧(∧

y �=z(f̃
σ(v)
R (x, y) ∨ f̃

σ(v)
A (y)

)
|v = 1, 2, ....n},

= {f̃σ(v)
A (z) ∧

(∧
y �=z(f̃

σ(v)
R (x, y) ∨ f̃

σ(v)
A (y)

)
|v =

1, 2, ....n},

≤ {f̃σ(v)
A (z)|v = 1, 2, ....n} = f̃A(z)

From the above discussions, we can conclude that

t̃R(A)(x) ≤ t̃R(A)(x), ĩR(A)(x) ≥ ĩR(A)(x) and

f̃R(A)(x) ≥ f̃R(A)(x) which means that R(A) ⊆ R(A).

Conversely, if (SV NHFLU1) holds, then ∀x ∈ U , we

have t̃
σ(s)
R(A)(x) ≤ t̃

σ(s)

R(A)
(x), ĩ

σ(t)
R(A)(x) ≥ ĩ

σ(t)

R(A)
(x) and

f̃
σ(v)
R(A)(x) ≥ f̃

σ(v)

R(A)
(x). Thus it follows that t̃

σ(s)
R(φ)(x) ≤

t̃
σ(s)

R(φ)
(x), ĩ

σ(t)
R(φ)(x) ≥ ĩ

σ(t)

R(φ)
(x) and f̃

σ(v)
R(φ)(x) ≥

f̃
σ(v)

R(φ)
(x). On the other hand, we have

t̃R(φ)(x) =
∧

y∈V (f̃R(x, y) = {∧y∈V (f̃
σ(s)
R (x, y)|s =

1, 2, ..., k} and t̃R(φ)(x) = 0. Meanwhile, ĩR(φ)(x) =∨
y∈V (ĩ

c
R(x, y) = {∨y∈V (ĩ

c
σ(t)

R (x, y)|t = 1, 2, ...,m}
and ĩR(φ)(x) = 1. and f̃R(φ)(x) =

∨
y∈V (t̃R(x, y) =

{∨y∈V (t̃
σ(v)
R (x, y)|v = 1, 2, ..., n} and f̃R(φ)(x) = 1.

Therefore, for any x ∈ U there exists a y ∈ V such that

t̃
σ(s)
R (x, y) = 1 and ĩ

σ(t)
R (x, y) = f̃

σ(v)
R (x, y) = 0 which

implies that t̃R(x, y) = 1 and ĩR(x, y) = f̃R(x, y) = 0
so R is serial.

Theorem 7. Let R be a SVNHF relation on U. For all

A ∈ SV NHF (U), then

1) R is reflexive ⇐⇒ (SV NHFL1)R(A) ⊆ A,

⇐⇒ (SV NHFL1)A ⊆ R(A)
2) R is symmetric ⇐⇒ (SV NHFL2)t̃R(1U−x)(y) =
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t̃R(1U−y)(x), ĩR(1U−x)(y) = ĩR(1U−y)(x),f̃R(1U−x)(y) =

f̃R(1U−y)(x).

⇐⇒ (SV NHFU2)t̃R(1x)
(y) = t̃R(1y)

(x),̃iR(1x)
(y) =

ĩR(1y)
(x),f̃R(1x)

(y) = f̃R(1y)
(x).

3) R is transitive ⇐⇒ (SV NHFL3)R(A) ⊆ R(R(A)),
⇐⇒ (SV NHFU3)R(R(A)) ⊆ R(A).

Proof.
1) Due to the duality of SVNHF rough approximation

operators, it is only to prove that R is reflexive R(A) ⊆
A.

If R is reflexive, for all x ∈ U then t̃R(x, x) = 1
and ĩR(x, x) = f̃R(x, x) = 0, we have

t̃R(A)(x) = {∧y∈U (f̃R(x, y) ∨ t̃A(y))}
= {∧y∈U (f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
A (y))|s = 1, 2, ....k},

= {(f̃σ(s)
R (x, x) ∨ t̃

σ(s)
A (x) ∧(∧

y �=x(f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
A (y)

)
|s = 1, 2, ....k},

= {t̃σ(s)A (x) ∧
(∧

y �=x(f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
A (y)

)
|s =

1, 2, ....k},

≤ {t̃σ(s)A (x)|s = 1, 2, ....k} = t̃A(x),

ĩR(A)(x) = {∨y∈U (ĩ
c
R(x, y) ∧ ĩA(y))}

= {∨y∈U (ĩ
c
σ(t)

R (x, y) ∧ ĩ
σ(t)
A (y))|t = 1, 2, ....m},

= {(ĩcσ(t)R (x, x) ∧ ĩ
σ(t)
A (x) ∨(∨

y �=x(ĩ
c
σ(t)

R (x, y) ∧ ĩ
σ(t)
A (y)

)
|t = 1, 2, ....m},

= {̃iσ(t)A (x) ∨
(∨

y �=x(̃i
σ(t)
R (x, y) ∧ ĩ

σ(t)
A (y)

)
|t =

1, 2, ....m},

≥ {̃iσ(t)A (x)|t = 1, 2, ....m} = ĩA(x)
and

f̃R(A)(x) = {∨y∈U (t̃R(x, y) ∧ f̃A(y))}
= {∨y∈U (t̃

σ(v)
R (x, y) ∧ f̃

σ(v)
A (y))|v = 1, 2, ....n},

= {(t̃σ(v)R (x, x) ∧ f̃
σ(v)
A (x) ∨(∨

y �=x(t̃
σ(v)
R (x, y) ∧ f̃

σ(v)
A (y)

)
|v = 1, 2, ....n},

= {f̃σ(t)
A (x) ∨

(∨
y �=x(t̃

σ(v)
R (x, y) ∧ f̃

σ(v)
A (y)

)
|v =

1, 2, ....n},

≥ {f̃σ(v)
A (x)|v = 1, 2, ....m} = f̃A(x).

From the above discussions, we conclude that

R(A) ⊆ A. Conversely, if (SVNHFL1) holds, for any

x ∈ U then t̃
σ(s)
R(A)(x) ≤ t̃

σ(s)
A (x), ĩ

σ(t)
R(A)(x) ≥ ĩ

σ(t)
A (x)

and f̃
σ(v)
R(A)(x) ≥ f̃

σ(v)
A (x). So take A = 1U−x we have,

t̃
σ(s)
R(1U−x)

(x) ≤ t̃
σ(s)
1U−x

(x) = 0, ĩ
σ(t)
R(1U−x)

(x) ≥
ĩ
σ(t)
1U−x

(x) = 1 and f̃
σ(v)
R(1U−x)

(x) ≥ f̃
σ(v)
1U−x

(x) = 1.

From which we conclude that t̃R(1U−x)(x) = {0} and

ĩR(1U−x)(x) = f̃R(1U−x)(x) = {1}. On the other hand,

we have

t̃R(1U−x)(x) = {∧y∈V (f̃R(x, y) ∨ t̃1U−x
(y))}

= {∧y∈V (f̃
σ(s)
R (x, y) ∨ t̃

σ(s)
1U−x

(y))|s = 1, 2, ....k},

= {(f̃σ(s)
R (x, x) ∨ t̃

σ(s)
1U−x

(x) ∧(∧
y �=x(f̃

σ(s)
R (x, y) ∨ t̃

σ(s)
1U−x

(y)
)
|s = 1, 2, ....k},

= {f̃σ(s)
R (x, x) ∧

(∧
y �=x(f̃

σ(s)
R (x, y) ∨ 1)

)
|s =

1, 2, ....k},

= {f̃σ(s)
R (x, x))|s = 1, 2, ....k} = f̃R(x, x)

ĩR(1U−x)(x) = {∨y∈V (ĩ
c
R(x, y) ∧ ĩ1U−x

(y))}
= {∨y∈V (ĩ

c
σ(t)

R (x, y) ∧ ĩ
σ(t)
1U−x

(y))|t = 1, 2, ....m},

= {(ĩcσ(t)R (x, x) ∧ ĩ
σ(t)
1U−x

(x) ∨(∨
y �=x(ĩ

c
σ(t)

R (x, y) ∧ ĩ
σ(t)
1U−x

(y)
)
|t = 1, 2, ....m},

= {(ĩcσ(t)R (x, x) ∨
(∨

y �=x(ĩ
c
σ(t)

R (x, y) ∧ 0)
)
|t =

1, 2, ....m},

= {ĩcσ(t)R (x, x)|t = 1, 2, ....m} = ĩcR(x, x)

f̃R(1U−x)(x) = {∨y∈V (t̃R(x, y) ∧ f̃1U−x
(y))}

= {∨y∈V (t̃
σ(v)
R (x, y) ∧ f̃

σ(v)
1U−x

(y))|v = 1, 2, ....n},

= {(t̃σ(v)R (x, x) ∧ f̃
σ(v)
1U−x

(x) ∨(∨
y �=x(t̃

σ(v)
R (x, y) ∧ f̃

σ(v)
1U−x

(y)
)
|v = 1, 2, ....n},

= {(t̃σ(v)R (x, x) ∨
(∨

y �=x(t̃
σ(v)
R (x, y) ∧ 0)

)
|v =

1, 2, ....n},

= {t̃σ(v)R (x, x)|v = 1, 2, ....m} = t̃R(x, x).

Thus it follows that t̃R(x, y) = {1} and

ĩR(x, y) = f̃R(x, y) = {0}.

Hence, R is reflexive.

2) It follows immediately from Theorem 5.

3) Because of the the duality of SVNHF rough

approximation operators, it is only to prove that

R is transitive then (SVNHFL3) holds.

If R is transitive, then t̃
σ(s)
R (x, y) ∧ t̃

σ(s)
R (y, z) ≤

t̃
σ(s)
R (x, z), ĩ

σ(t)
R (x, y) ∨ ĩ

σ(t)
R (y, z) ≤ ĩ

σ(t)
R (x, z) and

f̃
σ(v)
R (x, y) ∨ f̃

σ(v)
R (y, z) ≤ f̃

σ(v)
R (x, z), we have

t̃R(R(A))(x) =
∧

y∈U (f̃R(x, y) ∨ t̃R(A)(y))

=
∧

y∈U (f̃
σ(s)
R (x, y) ∨(∧

z∈U f̃
σ(s)
R (y, z) ∨ t̃

σ(s)
(A) (z)

)
|s = 1, 2, ....k

=
∧

y∈U

∧
z∈U (f̃

σ(s)
R (x, y) ∨ f̃

σ(s)
R (y, z) ∨ t̃

σ(s)
(A) (z)|s =

1, 2, ....k

≥
{∧

z∈U (f̃
σ(s)
R (x, z) ∨ t̃

σ(s)
(A) (z)|s = 1, 2, ....k

}
= t̃R(A)(x) ,

ĩR(R(A))(x) =
∨

y∈U (ĩ
c
R(x, y) ∧ ĩR(A)(y))
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=
∨

y∈U ((1− ĩR(x, y)) ∧ ĩR(A)(y))

=
∨

y∈U ((1 − ĩ
σ(t)
R (x, y)) ∧(∨

z∈U (1− ĩ
σ(t)
R (y, z)) ∧ ĩ

σ(t)
(A) (z)

)
|t = 1, 2, ....m

=
∨

y∈U

∨
z∈U ((1 − ĩ

σ(t)
R (x, y)) ∧ (1 − ĩ

σ(s)
R (y, z)) ∧

ĩ
σ(t)
(A) (z)|t = 1, 2, ....m

=
∨

z∈U

([
1−∧

y∈U (̃i
σ(t)
R (x, y) ∧ ĩ

σ(t)
R (y, z))

])
∧

ĩ
σ(t)
(A) (z)|t = 1, 2, ....m

≤ ∨
z∈U ((1− ĩ

σ(t)
R (x, z)) ∧ ĩ

σ(t)
(A) (z)|t = 1, 2, ....m

=
∨

z∈U (ĩ
c
σ(t)

R (x, z) ∧ ĩ
σ(t)
(A) (z)|t = 1, 2, ....m

= ĩR(A)(x)
and

f̃R(R(A))(x) =
∨

y∈U (t̃R(x, y) ∧ f̃R(A)(y))

=
{∨

y∈U (t̃
σ(v)
R (x, y) ∧

(∨
z∈U t̃

σ(v)
R (y, z) ∧ f̃

σ(v)
(A) (z)

)
|v = 1, 2, ....n

}
=

∨
y∈U

∨
z∈U (t̃

σ(v)
R (x, y) ∧ t̃

σ(v)
R (y, z) ∧ ĩ

σ(t)
(A) (z)|v =

1, 2, ....n

≤
{∨

z∈U (t̃
σ(v)
R (x, z) ∧ f̃

σ(v)
(A) (z)|v = 1, 2, ....n

}
= f̃R(A)(x)

Hence, we conclude that (SVNHFL3) holds. Conversely,

for all A ∈ SV NHF (U)t̃R(R(A))(x) ≥ t̃R(A)(x),

ĩR(R(A))(x) ≤ ĩR(A)(x)f̃R(R(A))(x) ≤ f̃R(A)(x)
,then t̃R(R(1U−{y}))(x) ≥ t̃R(1U−{y})(x),

ĩR(R(1U−{y}))(x) ≤ ĩR(1U−{y})(x)f̃R(R(1U−{y}))(x) ≤
f̃R(1U−{y})(x)
On the other hand, we see that

t̃R(R(1U−{y}))(x) =
∧

z∈U{(f̃R(x, z) ∨ t̃R(1U−{y})(z))}
=

∧
z∈U{(f̃R(x, z) ∨ t̃R(z, y))}

,

ĩR(R(1U−{y}))(x) =
∨

z∈U{(ĩcR(x, z) ∧ ĩR(1U−{y})(z))}
=

∨
z∈U{(ĩcR(x, z) ∧ ĩcR(z, y))}

and

f̃R(R(1U−{y}))(x) =
∨

z∈U{(t̃R(x, z) ∧ f̃R(1U−{y})(z))}
=

∨
z∈U{(t̃R(x, z) ∧ f̃R(z, y))}

Note that ĩR(1U−{y})(x) = f̃R(x, y), ĩR(1U−{y})(x) =

ĩcR(x, y) and f̃R(1U−{y})(x) = t̃R(x, y).

Hence, we conclude that
∨

z∈U{t̃σ(s)R (x, z) ∧
t̃
σ(s)
R (z, y)} ≤ t̃

σ(s)
R (x, y)∧

z∈U {̃iσ(t)R (x, z) ∨ ĩ
σ(t)
R (z, y)} ≥ ĩ

σ(t)
R (x, y),∧

z∈U{f̃σ(v)
R (x, z) ∨ f̃

σ(v)
R (z, y)} ≥ f̃

σ(v)
R (x, y).

By the definition of transitivity, we conclude that R is

transitive.

IV. THE APPLICATION OF SINGLE VALUED

NEUTROSOPHIC HESITANT FUZZY ROUGH SET MODEL IN

MEDICAL DIAGNOSEIS

Rough set theory was developed by Pawlak [5] as a

mathematical approach to handle imprecision, vagueness, and

uncertainty. It has a wide application in many practical

problems, especially the use of rough sets in decision making.

The concept of single-valued neutrosophic hesitant fuzzy

which is a generalization of the fuzzy set first introduced by

Jun Ye [12] into the decision-making problems.

In [3] the definition of score function of SVNHF elements was

introduced as follows:

Definition 10 [3]. Let n =< t̃, ĩ, f̃ > be a SVNHFE, then the

score function can be fined as:

S(n) = 1
3{ 1

lt

∑
γ+ 1

li

∑
(1− δ)+ 1

lf

∑
(1− η)}, where lt, li

and lf are the numbers of vales of t̃, ĩ and f̃ , respectively in

n.

By Definition 3, we can define the sum of R and R as

follows:

Definition 11. Let R and R be two SVNHFS

in U , we define the sum of R and R as

R ⊕ R = {< yj , t̃R(yj) ⊕ t̃R(yj), ĩR(yj) ⊕
ĩR(yj), f̃R(yj) ⊕ f̃R(yj) : yi ∈ V } = {[t̃R(yj) + t̃R(yj) −
t̃R(yj)t̃R(yj), ĩR(yj )̃iR(yj), f̃R(yj)f̃R(yj)]}.

In this section, we will apply SVNHF rough set model on

two universes to medical diagnosis problems. Suppose that

the universe U = {x1, x2, ........, xm} denotes a disease set.

Let R ∈ SV NHFR(U × V ) be an SVNHF relation from

U to V. For any (xi, yi) ∈ U × V , t̃R(xj , yi) represents

the true membership degree of the relationships between the

symptom xi(xi ∈ U) and the disease yi(yi ∈ V ), ĩR(xj , yi)
represents the true membership degree of the relationships

between the symptom xi(xi ∈ U) and the disease yi(yi ∈ V )
and f̃R(xj , yi) represents the true membership degree of the

relationships between the symptom xi(xi ∈ U) and the disease

yi(yi ∈ V ), which are evaluated by several doctors in advance.

In clinical practice, a patient can see different doctors and my

get different diagnoses. To decrease the risk of misdiagnosis,

we should carefully consider all the doctors’ comments. In

that case, for any a patient set A who has some symptoms in

universe U, patient set A is an SVNHF set on symptom set

U. That is, A = {< xi, t̃A(xi), ĩA(xi), f̃A(xi) > |xi ∈ U},

now the problem is that a decision maker needs to make

a reasonable decision about how to judge what kind of the

disease yi patient A is suffering from.

In the following, we present an approach to the decision

making for this kind of problem by using the SVNHF rough

set theory over two universes.

Algorithm

Step 1. by Definition 7, we calculate the lower and upper

approximations R(A) and R(A)ofA.
Step 2. from Definition 11, we can obtain R⊕R
Step 3. on the basis of Definition 10, the score function of

SVNHF elements are obtained by us.

Denote

λj = s(R⊕R) = s(t̃R(yj)⊕t̃R(yj), ĩR(yj)⊕ĩR(yj), f̃R(yj)⊕
f̃R)

Step 4. the optimal decision is to select y� if

λ� = maxλj , j = 1, 2, ....V
we conclude that patient A is suffering from the disease y�.
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TABLE I
SYMPTOMS CHARACTERISTIC FOR THE CONSIDERD DIAGNOSES

R y1 y2
x1 {(0.6,0.2,0.1),(0.2,0.1,0.3),(0.2,0.6,0.1)} { (0.2,0.3),(0.1,0.3),(0.4)}
x2 { (0.5,0.2),(0.2,0.1),(0.4,0.3) } {(0.6),(0.2,0.4),(0.4) }
x3 { (0.4,0.2,0.5),(0.1),(0.3,0.4) } {(0.5,0.1),(0.2,0.1,0.4),(0.2,0.1,0.6) }
x4 { (0.3,0.4,0.5),(0.1,0.5),(0.3,0.2) } {(0.5,0.7),(0.2,0.3),(0.8,0.4) }
x5 { (0.1,0.1,0.3),(0.4,0.6,0.2),(0.8,0.3,0.1) } { (0.4,0.1,0.3),(0.6,0.5),(0.5,0.1,0.2) }

TABLE II
SYMPTOMS CHARACTERISTIC FOR THE CONSIDERED DIAGNOSES

R y3 y4
x1 {(0.1,0.7),(0.5,0.2), (0.3,0.2)} {(0.2,0.7,0.1),(0.1,0.6),(0.2)}
x2 { (0.2,0.6),(0.1,0.6),(0.3,0.1,0.5) } {(0.3,0.1,0.4),(0.4,0.2,0.4),(0.8,.2,0.1)}
x3 { (0.2,0.8),(0.1,0.9),(0.5,0.6) } { (0.8,0.3,0.1),(0.4,0.1,0.3),(0.6,0.4)}
x4 { (0.2,0.3,0.6),(0.1,0.2),(0.4,0.2) } { (0.5,0.4,0.3),(0.4),(0.8,0.1) }
x5 {(0.9,0.1,0.4),(0.1),(0.4,0.3) } {(0.1,0.2),(0.1,0.5,03),(0.1,0.4)}

V. A NUMERICAL EXAMPLE

In this section, we will apply the decision approach

proposed in Section IV to a medical diagnose problem.

Let U = {x1, x2, x3, x4, x5} be five symptoms in clinic,

where xi stands for ” Headache,” ”Nausea”, ”stomach

pain”, ”Vomiting”, ”temperature”, and the universe V =
{y1, y2, y3, y4} be four diseases, where yj stand for ”

Hepatitis,” ”peptic ulcer”, ”malaria”, ”typhoid”, respectively.

Let R be SVNHF relation from U to V . Where R is a medical

knowledge statistic data of the relationship of the symptom

xi(xi ∈ U) and the disease yj(yj ∈ V ). The statistic data

are given in Tables I and II. In this example, we assume

that A represent a patient, and the symptoms of patient A

are described by SVNHF set on the universe U. Let

A = {(x1, (0.2, 0.3), (0.2, 0.1, 0.4), (0.1)),
(x2, (0.1, 0.4), (0.5), (0.1, 0.6)),
(x3, (0.1, 0.3, 0.8), (0.2, 0.5), (0.6, 0.2)),
((x4, (0.2, 0.1, 0.4), (0.1, 0.5, 0.1), (0.4, 0.3))}

For example A(x2), doctors cannot present the precise the

memberships degree of how pain the stomach of patient A is,

but they have certain hesitancy in providing the memberships

degrees of how pain the stomach of patient A is. In what

follows, we give the decision making process by using the

four steps given in Section VI in details.
First, by definition, we calculate the lower and upper

approximations R(A) and R(A) of A. as follows

R(A) = {(y1, {0.2, 0.2, 0.1} , {0.5, 0.5, 0.6} , {0.4, 0.3, 0.3}),
(y2, {0.2, 0.2, 0.2} , {0.5, 0.5, 0.5} , {0.5, 0.6, 0.6}),
(y3, {0.3, 0.2, 0.3} , {0.5, 0.6, 0.6} , {0.2, 0.6, 0.6}),
(y4, {0.2, 0.1, 0.3} , {0.5, 0.5, 0.6} , {0.6, 0.3, 0.4})}

R(A) = {(y1, {0.2, 0.2, 0.5} , {0.1, 0.1, 0.4} , {0.2, 0.3, 0.1}),
(y2, {0.3, 0.4, 0.4} , {0.2, 0.3, 0.3} , {0.4, 0.2, 0.4}),
(y3, {0.3, 0.4, 0.8} , {0.1, 0.2, 0.2} , {0.3, 0.2, 0.2}),
(y4, {0.2, 0.3, 0.4} , {0.2, 0.2, 0.4} , {0.2, 0.2, 0.2})}

Then, we have

R(A)⊕R(A) = {(y1, {0.3, 0.3, 0.5} , {0.05, 0.05, 0.2} ,
{0.08, 0.09, 0.03}), (y2, {0.4, 0.5, 0.5} , {0.1, 0.1, 0.1} ,
{0.2, 0.1, 0.2}), (y3, {0.5, 0.5, 0.9} , {0.05, 0.1, 0.1} ,

{0.06, 0.1, 0.1}), (y4, {0.4, 0.4, 0.6} , {0.1, 0.1, 0.2} ,
{0.1, 0.06, 0.08})}

By definition, we obtain the score functions of SVNHF

R(A) +R(A) as follows:

S((R(A)⊕R(A))(y1)) = 0.73
S((R(A)⊕R(A))(y2)) = 0.72
S((R(A)⊕R(A))(y3)) = 0.81
S((R(A)⊕R(A))(y4)) = 0.74

It is clear that the maximum score function is λ3 = .81.

Hence, the optimal decision is to select y3. That is, we can

conclude that patient A is suffering from the disease malaria

y3.

VI. CONCLUSION

In this paper, we have presented the concept single valued

neutrosophic hesitant fuzzy rough sets which is a combination

of three powerful topics: neutrosophic, hesitant and rough sets.

We defined SVNHF rough approximation operators in term

of SVNHF relations. Properties of upper and lower SVNHF

rough approximation operators are also investigated. Finally,

we develop a general framework for dealing with uncertainty

decision-making by using the SVNHF rough sets over two

universes. A medical diagnosis problem is also shown to

indicate the principle steps of the decision methodology. In

the future, we will mainly focus on investigating uncertain

measures and knowledge reductions of the SVNHF rough sets.
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