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Stability of Property (gm) under Perturbation and
Spectral Properties Type Weyl Theorems

M. H. M. Rashid

Abstract—A Banach space operator T obeys property (gm) if the
isolated points of the spectrum σ(T ) of T which are eigenvalues
are exactly those points λ of the spectrum for which T − λI is
a left Drazin invertible. In this article, we study the stability of
property (gm), for a bounded operator acting on a Banach space,
under perturbation by finite rank operators, by nilpotent operators,
by quasi-nilpotent operators, or more generally by algebraic operators
commuting with T .

Keywords—Weyl’s theorem, Weyl spectrum, polaroid operators,
property (gm), property (m).

I. INTRODUCTION

THROUGHOUT this paper let B(X ) denote the algebra of
bounded operators acting on an infinite complex Banach

space X . We use I to denote the identity operator on X , and

K(X ) to denote the ideal of all compact operators on X
and F(X ) to denote the ideal of all finite rank operators on

X . We shall denote the spectrum, the point spectrum and the

approximate point spectrum of T ∈ B(X ) by σ(T ), σp(T )
and σa(T ), respectively. Throughout this paper, the set of all

complex numbers and the complex conjugate of a complex

number λ will be denoted by C and λ, respectively. The

closure of a set S will be denoted by S and we shall henceforth

shorten T − λI to T − λ. If K is a subset of C, then isoK
denotes the set of all isolated points of K and accK denotes

the set of all points of accumulation of K. We use T ∗ to

denote the adjoint of T ∈ B(X ). For an arbitrary operator

T ∈ B(X ), ker(T ) denotes its kernel and �(T ) denotes its

range. We set α(T ) = dim ker(T ) and β(T ) = dim X/�(T ).
Let a := a(T ) be the ascent of an operator T ; i.e., the smallest

nonnegative integer p such that ker(T p) = ker(T p+1). If such

integer does not exist we put a(T ) = ∞. Analogously, let

d := d(T ) be the descent of an operator T ; i.e., the smallest

nonnegative integer q such that �(T q) = �(T q+1), and if such

integer does not exist we put d(T ) = ∞. It is well known

that if a(T ) and d(T ) are both finite then a(T ) = d(T ) [21,

Proposition 38.3]. Moreover, 0 < a(T−λI) = d(T−λI) < ∞
precisely when λ is a pole of the resolvent of T , see Heuser

[21, Proposition 50.2].

Following [20] we say that T ∈ B(X ) has the single-valued

extension property (SVEP) at point λ ∈ C if for every open

neighborhood Uλ of λ, the only analytic function f : Uλ −→
H which satisfies the equation (T−μ)f(μ) = 0 is the constant

function f ≡ 0. It is well-known that T ∈ B(X ) has SVEP at

every point of the resolvent ρ(T ) := C\σ(T ). Moreover, from
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the identity Theorem for analytic function it easily follows that

T ∈ B(X ) has SVEP at every point of the boundary ∂σ(T )
of the spectrum. In particular, T has SVEP at every isolated

point of σ(T ). In [22, Proposition 1.8], Laursen proved that

if T is of finite ascent, then T has SVEP.

Denote by

SF+(X ) := {T ∈ B(X ) : α(T ) < ∞ and�(T ) is closed}
the class of all upper semi-Fredholm operators, and by

SF−(X ) := {T ∈ B(X ) : β(T ) < ∞}
the class of all lower semi-Fredholm operators. The class

of all semi-Fredholm operators is defined by SF±(X ) :=
SF+(X )∪SF−(X ), while the class of all Fredholm operator is

defined by F(X ) := SF+(X )∩SF−(X ). For a semi-Fredholm

operator T we define the index, ind (T ), by ind (T ) = α(T )−
β(T ). The upper semi-Weyl operators are defined as the class

of Fredholm operators with index less than or equal to 0, while

the class of Weyl operators are defined as the class of Fredholm

operators of index 0. These classes of operators generate the

following spectra: the Weyl spectrum defined by

σw(T ) := {λ ∈ C : T − λ is not a Weyl operator},
the upper semi-Weyl spectrum defined by

σ
SF−

+
(T ) := {λ ∈ C : T − λ is not an upper semi-Weyl operator}.

Recall that an operator T ∈ B(X ) is said to be

Browder(resp. upper semi-Browder, lower semi-Browder) if

T is Fredholm and a(T ) = d(T ) < ∞ (resp. T is upper

semi-Fredholm and a(T ) < ∞, T is lower semi-Fredholm

and d(T ) < ∞). The Browder spectrum of T ∈ B(X ) is

defined by

σb(T ) := {λ ∈ C : T − λ is not a Browder operator},
the upper semi-Browder spectrum is defined by

σub(T ) := {λ ∈ C : T −λ is not an upper semi-Browder operator}.

Recall that an operator T ∈ B(X ) is a Drazin invertible
if and only if it has a finite ascent and descent. The Drazin
spectrum is given by

σD(T ) := {λ ∈ C : T − λ is not Drazin invertible}.
Let π(T ) := {λ ∈ C : a(T − λ) = d(T − λ) < ∞} be the

set of poles. Then π0(T ) := {λ ∈ π(T ) : α(T − λ) < ∞}
is the set of poles of finite rank. We observe that π(T ) =
σ(T ) \ σD(T ). An operator T ∈ B(X ) is called left Drazin
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invertible, T ∈ LD(X ), if a(T ) < ∞ and �(T a(T )+1) is

closed. The left Drazin spectrum is given by

σLD(T ) := {λ ∈ C : T − λ is not left Drazin invertible}.
Let πa(T ) := {λ ∈ σa(T ) : T −

λ is not a left Drazin invertible} be the set of left poles

of T . Then π0
a(T ) := {λ ∈ πa(T ) : α(T − λ) < ∞} is

the set of left poles of T of finite rank. We observe that

πa(T ) = σa(T ) \ σLD(T ). According also to [21], the space

�((T − λ)a(T−λ)+1) is closed for each λ ∈ π(T ). Hence we

have always π(T ) ⊂ πa(T ) and π0(T ) ⊂ π0
a(T ). We say

that a-Browders theorem holds for T ∈ B(X ), T ∈ aB, if

Δa(T ) = σa(T ) \ σSF−
+
(T ) = π0

a(T ).

Recall that T ∈ B(X ) is said to be a Riesz operator if

T − λ ∈ F(X ) for all λ ∈ C \ {0}. Evidently, quasi-nilpotent

operators and compact operators are Riesz operators.

Suppose that T ∈ B(X ) and R is a Riesz operator

commuting with T . Then it follows from [26, Theorem 1]

and [29, Proposition 5] that

σb(T ) = σb(T +R); (1)

σw(T ) = σw(T +R); (2)

σub(T ) = σub(T +R); (3)

σSF−
+
(T ) = σSF−

+
(T +R). (4)

Let E(T ) := {λ ∈ isoσ(T ) : α(T − λ) > 0} be the set of

all isolated eigenvalues of T and Ea(T ) := {λ ∈ isoσa(T ) :
α(T − λ) > 0} be the set of all eigenvalues of T that are

isolated in σa(T ). Then E0(T ) := {λ ∈ E(T ) : α(T − λ) <
∞} is the set of all isolated eigenvalues of T of finite

multiplicity and E0
a(T ) := {λ ∈ Ea(T ) : α(T − λ) < ∞}

is the set of all eigenvalues of T that are isolated in σa(T ) of

finite multiplicity. According to Coburn [19], Weyl’s theorem
holds for T if Δ(T ) = σ(T ) \ σw(T ) = E0(T ), and that

Browder’s theorem holds for T if Δ(T ) = π0(T ). According

to Rakočević [25], an operator T ∈ B(X) is said to satisfy

a-Weyl’s theorem if σa(T ) \ σSF−
+
(T ) = E0

a(T ). It is known

[25] that an operator satisfying a-Weyl’s theorem satisfies

Weyl’s theorem, but the converse does not hold in general.

For T ∈ B(X ) and a non negative integer n define T[n]

to be the restriction T to �(Tn) viewed as a map from

�(Tn) to �(Tn)(in particular T[0] = T ). If for some integer

n the range space �(Tn) is closed and T[n] is an upper (

resp., lower) semi-Fredholm operator, then T is called upper
( resp., lower) semi-B-Fredholm operator. In this case index

of T is defined as the index of semi-B-Fredholm operator

T[n]. A semi-B-Fredholm operator is an upper or lower

semi-Fredholm operator [12]. Moreover, if T[n] is a Fredholm

operator then T is called a B-Fredholm operator [11]. An

operator T is called a B-Weyl operator if it is a B-Fredholm

operator of index zero. The B-Weyl spectrum σBW (T ) is

defined by σBW (T ) = {λ ∈ C : T−λ is not B-Weyl operator

} [13].

Following [14], we say that generalized Weyl’s theorem
holds for T ∈ B(X ), T ∈ gW if Δg(T ) = σ(T ) \
σBW (T ) = E(T ) and that generalized Browder’s theorem
holds for T ∈ B(X ), T ∈ gB, if Δg(T ) = π(T ). It is proved

in [9, Theorem 2.1] that generalized Browder’s theorem is

equivalent to Browder’s theorem. In [15, Theorem 3.9], it is

shown that an operator satisfying generalized Weyl’s theorem

satisfies also Weyl’s theorem, but the converse does not hold in

general. Nonetheless and under the assumption E(T ) = π(T ),
it is proved in [16, Theorem 2.9] that generalized Weyl’s

theorem is equivalent to Weyl’s theorem.

Let SBF+(X ) be the class of all upper semi-B-Fredholm
operators,

SBF−
+ (X ) := {T ∈ SBF+(X ) : ind(T ) ≤ 0}.

The upper B-Weyl spectrum of T is defined by

σSBF−
+
(T ) := {λ ∈ C : T − λ /∈ SBF−

+ (X )}.
We say that generalized a-Weyl’s theorem holds for T ∈ B(X ),
T ∈ gaW , if Δg

a(T ) = σa(T ) \σSBF−
+
(T ) = Ea(T ) and that

T ∈ B(X ) obeys generalized a-Browders theorem, T ∈ gaB,

if Δg
a(T ) = πa(T ). It is proved in [9, Theorem 2.2] that

generalized a-Browder’s theorem is equivalent to a-Browder’s

theorem, and it is known from [15, Theorem 3.11] that an

operator satisfying generalized a-Weyl’s theorem satisfies

a-Weyl’s theorem, but the converse does not hold in general

and under the assumption Ea(T ) = πa(T ) it is proved in

[16, Theorem 2.10] that generalized a-Weyl’s theorem is

equivalent to a-Weyl’s theorem.

II. PROPERTY (gm) FOR BOUNDED LINEAR OPERATORS

Definition 1. Let T ∈ B(X ). We say that T obeys

(i) property (gw) if Δg
a(T ) = E(T ) [10].

(ii) property (gR) if σa(T ) \ σLD(T ) = E(T ) [6].

(iii) property (gt) if Δg
+(T ) = σ(T ) \ σSBF−

+
(T ) = E(T )

[27].

In [27, Theorem 2.6] the author proved that T obeys

property (gt) if and only if T obeys property (gw) and

σ(T ) = σa(T ).

Definition 2. ([28]) Let T ∈ B(X ). Then we say that T obeys

property (gm) if

σ(T ) \ σLD(T ) = E(T ).

Generalized Weyl’s theorem corresponds to the half of

property (gm), in the following sense:

Theorem 1. ([28]) If T ∈ B(X ) then the following assertions
are equivalent:

1) Property (gm) holds for T ;
2) T satisfies generalized Weyl’s theorem and σLD(T ) =

σBW (T ).

Theorem 2. Let T ∈ B(X ). Then the following assertions are
equivalent:

(i) Property (gt) holds for T ;
(ii) T satisfies property (gm) and σLD(T ) = σSBF−

+
(T ).

Proof: (i)=⇒(ii) As T has property (gt), we have T
satisfies generalized Browder’s theorem and so σLD(T ) =
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σSBF−
+
(T ). Therefore,

E(T ) = σ(T ) \ σSBF−
+
(T ) = σ(T ) \ σLD(T ).

That is, T satisfies property (gm).
(ii)=⇒(i) Suppose that T obeys property (m) and σLD(T ) =
σSBF−

+
(T ). Then

E(T ) = σ(T ) \ σLD(T ) = σ(T ) \ σSBF−
+
(T ).

That is, T obeys property (gt).

Remark 1. Let T ∈ B(X ). If T ∗ has the SVEP, then it is

known from [23, Page 35] that σ(T ) = σa(T ) and from

[3, Theorem 2.9] we have σSBF−
+
(T ) = σBW (T ) = σD(T ).

Hence Ea(T ) = E(T ), Δg(T ) = Δg
a(T ), Δ

g
+(T ) = Δg(T )

and σ(T ) \ σLD(T ) = Δg(T ).

Theorem 3. Let T ∈ B(X ). Then the following assertions are
equivalent:

(i) Property (gm) holds for T ;
(ii) T satisfies property (gR) and σ(T ) = σa(T ).

Proof: (i)=⇒(ii) Assume that T obeys property (gm).
It then follows from Theorem 1 that T satisfies generalized

Weyl’s theorem and σLD(T ) = σBW (T ) and hence T satisfies

generalized Browder’s theorem and π(T ) = E(T ). Therefore

πa(T ) = σa(T )\σLD(T ) ⊆ σ(T )\σLD(T ) = E(T ) = π(T ) ⊆ πa(T ).

So, E(T ) = πa(T ), i.e, T obeys property (gR) and σ(T ) =
σa(T ).
(ii)=⇒(i) Suppose that T satisfies property (gR) and σ(T ) =
σa(T ). Then

πa(T ) = E(T ) = σa(T ) \ σLD(T ) = σ(T ) \ σLD(T ).

That is, T obeys property (gm).
A bounded operator T ∈ B(X ) is said to be finitely isoloid

(respectively, finitely a-isoloid) if every isolated point of σ(T )
(respectively, every isolated point of σa(T )) is an eigenvalue

of T having finite multiplicity.

Theorem 4. Suppose that T ∈ B(X ) is a finitely a-isoloid
operator and suppose that there is an injective quasi-nilpotent
operator Q which commutes with T . Then T obeys property
(gm).

Proof: First we note that E(T ) = ∅. Indeed, suppose

that λ ∈ E(T ). Then λ is an isolated point of σ(T ) and hence

belong to σa(T ). Thus λ ∈ isoσa(T ), so that 0 < α(T−λ) <
∞, since T is finitely a-isoloid. But from [6, Lemma 3.6] we

also have α(T − λ) = 0, and this is impossible. Therefore,

E(T ) = ∅.
In order to show property (gm) holds for T , it suffices to

prove that σ(T )\σLD(T ) = ∅. Let λ ∈ σ(T )\σLD(T ). Then

λ ∈ σ(T ) and T − λ is left Drazin invertible. We distinguish

two cases. Firstly, if λ ∈ σa(T ). By [2, Theorem 2.7] λ is an

isolated point of σa(T ), and since T is finitely a-isoloid we

then have α(T −λ) < ∞. Again by [6, Lemma 3.6] we then

conclude that T − λ is injective. On the other hand, by [4,

Lemma 2.4], we have T −λ ∈ SF+(X ), so T −λ has closed

range and hence T − λ is bounded below, i.e., λ /∈ σa(T ),

a contradiction. If λ /∈ σa(T ), then λ /∈ πa(T ). Hence λ ∈
σLD(T ), a contradiction. Therefore, σ(T ) \σLD(T ) = ∅, and

consequently T satisfies property (gm).

III. PROPERTY (gm) UNDER PERTURBATIONS BY FINITE

RANK OPERATORS

We begin with the following lemmas in order to give the

proof of the main result in this section.

Lemma 1. ([24, Lemma 2.1]) Let T ∈ B(X ). If F is an
arbitrary finite rank operator on X , such that FT = TF,
then for all μ ∈ C:

μ ∈ accσ(T ) ⇐⇒ μ ∈ accσ(T + F ).

Remark 2. If T ∈ B(X ) is an isoloid and F is an arbitrary

finite rank operator on X , such that FT = TF, then it follows

from Lemma 1 that

E(T + F ) ∩ σ(T ) ⊂ E(T ).

Remark 3. We conclude from [17, Theorem 2.1] that if T ∈
B(X ) and F ∈ F(X ) such that TF = FT , then

σLD(T ) = σLD(T + F ). (5)

Recall that T ∈ B(X ) is isolated, provided that all isolated

points of σ(T ) are eigenvalues of T . T ∈ B(X ) is a-isolated

provided that all isolated points of σa(T ) are eigenvalues of

T. It is well-known that ∂σ(T ) ⊆ σa(T ), so all isolated points

of σ(T ) are also isolated points of σa(T ). Now it is obvious

that if T is a-isolated, then it is also isolated.

Theorem 5. Let T ∈ B(X ). Suppose that F is an arbitrary
finite rank operator and TF = FT. If T is isoloid and
property (gm) holds for T , then property (gm) holds for
T + F.

Proof: It is enough to prove that 0 ∈ σ(T+F )\σLD(T+
F ) if and only if 0 ∈ E(T + F ).

Firstly we prove that if 0 ∈ σ(T + F ) \ σLD(T + F ), then

T +F is left Drazin invertible and 0 < α(T +F ). We need to

prove that 0 ∈ isoσ(T + F ). It follows that T ∈ LD(X ), so

0 /∈ σLD(T ). It is possible that 0 /∈ σ(T ). In this case we get

from Lemma 1 that 0 /∈ accσ(T ) and hence 0 /∈ accσ(T+F ),
so 0 ∈ E(T + F ). The second possibility is that 0 ∈ σ(T ).
Since property (gm) holds for T , we get that 0 /∈ accσ(T )
and again 0 ∈ E(T + F ).

To prove the opposite implication, suppose that 0 ∈ E(T +
F ). Then 0 ∈ isoσ(T + F ) and 0 < α(T + F ). Hence 0 /∈
accσ(T ) and so it follows that 0 ≤ α(T ). Again we distinguish

two cases. Firstly, if 0 /∈ σ(T ), then T ∈ LD(X )(X ) and by

Remark 3 T + F ∈ LD(X ), 0 ∈ σ(T + F ) \ σLD(T + F ).
On the other hand, if 0 ∈ σ(T ) then 0 ∈ isoσ(T ). Since T
is isoloid, we get that 0 < α(T ) and 0 /∈ σLD(T ). Now, we

have T ∈ LD(X ), T + F ∈ LD(X ) and 0 ∈ σ(T + F ) \
σLD(T + F ).

Example 1. Let S : 	2(N) −→ 	2(N) be an injective

quasinilpotent operator which is not nilpotent. We define T
on the Banach space X = 	2(N) ⊕ 	2(N) by T = I ⊕ S.

Then σ(T ) = σa(T ) = {0, 1} and E(T ) = {1}. It follows
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that σBW (T ) = {0} and hence σSBF−
+
(T ) = σLD(T ) = {0}.

Hence σ(T ) \ σLD(T ) = E(T ) and T obeys property (gm).
We define the operator U on 	2(N) by U(x1, x2, · · · ) :=

(−x1, 0, 0, · · · ) and F = U ⊕ 0 on the Banach space X =
	2(N) ⊕ 	2(N). Then F is a finite rank operator commuting

with T . On the other hand, σ(T + F ) = σa(T + F ) = {0, 1}
and E(T + F ) = {0, 1}. As σLD(T + F ) = σLD(T ) = {0},
then σ(T +F ) \σLD(T +F ) = {1} �= E(T +F ) and T +F
does not satisfy property (gm).

Theorem 6. Let T ∈ B(X ) and let F be a finite rank operator
commuting with T . If T satisfies property (gm), then the
following properties are equivalent.

(i) T + F satisfies property (gm);
(ii) E(T ) = E(T + F ).

Proof: Assume that T + F satisfies property (gm), then

σ(T + F ) \ σLD(T + F ) = E(T + F ).

As σ(T+F ) = σ(T ) and σLD(T ) = σLD(T+F ) then σ(T )\
σLD(T ) = E(T + F ). Since T obeys property (gm), then

E(T ) = σ(T ) \σLD(T ). So, E(T ) = E(T +F ). Conversely,

assume that E(T + F ) = E(T ), then as T obeys property

(gm) we have

E(T+F ) = E(T ) = σ(T )\σLD(T ) = σ(T+F )\σLD(T+F )

and hence T + F obeys property (gm).

Lemma 2. ([30]) Let T ∈ B(X ) and let F ∈ B(X ) with
Fn ∈ F(X ) for some n ∈ N. If T commutes with F , then

σBW (T ) = σBW (T + F ). (6)

σD(T ) = σD(T + F ). (7)

σLD(T ) = σLD(T + F ). (8)

Theorem 7. Let T ∈ B(X ) be an isoloid and let F ∈ B(X )
with Fn ∈ F(X ) for some n ∈ N. If T commutes with F ,
then

E(T ) = E(T + F ).

Proof: Let λ ∈ E(T + F ). Then λ is an isolated point

of σ(T + F ), and since α(T + F − λ) > 0 we then have

λ ∈ σ(T +F ) = σ(T ). Therefore, it follows from Remark 2

that λ ∈ E(T ). By symmetry, we have the other inclusion.

Theorem 8. Let T ∈ B(X ) be an isoloid obeys property (gm)
and let F ∈ B(X ) with Fn ∈ F(X ) for some n ∈ N. If T
commutes with F , then T + F obeys property (gm).

Proof: As T obeys property (gm). Then

E(T ) = σ(T ) \ σLD(T )

= σ(T + F ) \ σLD(T + F ) (by Lemma 2)

= E(T + F ) (by Theorem 7).

Hence, T + F obeys property (gm).

IV. PROPERTY (gm) UNDER PERTURBATION BY

QUASI-NILPOTENT OPERATORS

First, observe that if Q is quasi-nilpotent and commutes

with T ∈ B(X ) then

σ(T ) = σ(T +Q) and σa(T ) = σa(T +Q). (9)

In particular both equalities holds for commuting nilpotent

operators.

Suppose that T ∈ B(X ) and that N ∈ B(X ) is a nilpotent

operator commuting with T . Then from the proof of [18,

Theorem 3.5], we have

α(T +N) > 0 ⇐⇒ α(T ) > 0. (10)

Hence by Equation (9), we have the following equation:

E(T +N) = E(T ). (11)

Lemma 3. Suppose that T ∈ B(X ) and that N ∈ B(X ) is a
nilpotent operator commuting with T . Then

σLD(T +N) = σLD(T ). (12)

Proof: It follows from [30, Corllary 3.8] that πa(T +
N) = πa(T ). Then

σLD(T +N) = σa(T +N) \ πa(T +N)

= σa(T ) \ πa(T +N) (by Equation 9)

= σa(T ) \ πa(T )

= σLD(T ).

So, the proof of the lemma is achieved.

Theorem 9. Suppose that T ∈ B(X ) has property (gm) and
that N ∈ B(X ) is a nilpotent operator commuting with T .
Then T +N has property (gm).

Proof: As T obeys property (gm), we have

E(T +N) = E(T ) (by Equation 11)

= σ(T ) \ σLD(T )
= σ(T + N) \ σLD(T + N) (by Equation (9)and Lemma 3

That is, T +N obeys property (gm).
The following example shows that property (gm) is not

stable under commuting quasi-nilpotent perturbations.

Example 2. Let Q : 	2(N) −→ 	2(N) be a quasi-nilpotent

operator defined by

Q(x1, x2, · · · ) :=
(x2

2
,
x3

3
, · · ·

)
for all (xn) ∈ x2

2
.

Then Q is quasi-nilpotent, σ(Q) = σLD(Q) = {0} and

E(T ) = {0}. Take T = 0. Clearly, T satisfies property (gm),
but T +Q = Q fails to satisfy property (gm).

A bounded operator T ∈ B(X ) is said to be polaroid if

every isolated point of σ(T ) is a pole of the resolvent of T
and that T ∈ B(X ) is said to be a-polaroid if every isolated

point of σa(T ) is a pole of the resolvent of T . It is known

that T is polaroid if and only if T ∗ is polaroid and evidently,

T a-polaroid =⇒ T polaroid, (13)
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while, in general, the converse does not hold.

Theorem 10. Let T ∈ B(X ) obeys property (gm). If T is
a-polaroid and finitely isoloid, Q is a quasi-nilpotent operator
which commutes with T , then T +Q obeys property (gm).

Proof: It follows from [6, Theorem 4.8] that T + Q is

a-polaroid and hence by [6, Theorem 3.2], we have T + Q
obeys property (gR). As T obeys property (gm), we have by

Theorem 3 that T satisfies property (gR) and σ(T ) = σa(T ).
Therefore,

E(T +Q) = σa(T +Q) \ σLD(T +Q)

= σa(T ) \ σLD(T +Q)

= σ(T ) \ σLD(T +Q)

= σ(T +Q) \ σLD(T +Q).

That is, T +Q obeys property (gm).

V. PROPERTY (gm) UNDER PERTURBATIONS BY

ALGEBRAIC OPERATORS

We shall consider algebraic perturbations of operators

satisfying property (gm).
A bounded linear operator T is said to be algebraic if

there exists a non-trivial polynomial h such that h(T ) = 0.
From the spectral mapping theorem it easily follows that the

spectrum of an algebraic operator is a finite set. A nilpotent

operator is a trivial example of an algebraic operator. Also

finite rank operators K are algebraic; more generally, if Kn

is a finite rank operator for some n ∈ N then K is algebraic.

Clearly, if T is algebraic then its dual T ∗ is algebraic, as well

as T ′ in the case of Hilbert space operators.

Let Hnc(T ) denotes the set of all complex-valued functions

f , defined and regular in some neighborhood of σ(T ), such

that f is not constant on the connected components of its

domain of definition.

Theorem 11. Suppose that T ∈ B(X ) and K ∈ B(X ) is an
algebraic operator which commutes with T .

(i) If T ∗ is hereditarily polaroid and has SVEP, then T +K
obeys property (gm).

(ii) If T is hereditarily polaroid and has SVEP, then T ∗+K∗

obeys property (gm).

Proof: (i) Obviously, K∗ is algebraic and commutes with

T ∗. Moreover, by [7, Theorem 2.15], we have T ∗ + K∗ is

polaroid, or equivalently, T + K is polaroid. Since T ∗ has

SVEP then by [5, Theorem 2.14], we have T ∗+K∗ has SVEP

. Therefore, T + K obeys property (gm) by [28, Theorem

3.4 (i)].

(ii) It follows from the proof of Theorem 2.15 of [7] that

T +K is polaroid and hence by duality T ∗ +K∗ is polaroid.

Since T has SVEP then it follows from [5, Theorem 2.14]

that T + K has SVEP. Therefore, T ∗ + K∗ obeys property

(m) by [28, Theorem 3.3 (ii)].

Theorem 12. Suppose that T ∈ B(X ) and K ∈ B(X ) is an
algebraic operator which commutes with T .

(i) If T ∗ is hereditarily polaroid and has SVEP, then f(T +
K) obeys property (gm) for all f ∈ Hnc(σ(T )).

(ii) If T is hereditarily polaroid and has SVEP, then f(T ∗+
K∗) obeys property (gm) for all f ∈ Hnc(σ(T )).

Proof: (i) We conclude from [7, Theorem 2.15] that T +
K is polaroid and hence by [8, Lemma 3.11], we have f(T +
K) is polaroid and from [5, Theorem 2.14] that T ∗+K∗ has

SVEP. The SVEP of T ∗+K∗ entails the SVEP for f(T ∗+K∗)
by [1, Theorem 2.40]. So, f(T +K) obeys property (m) by

[28, Theorem 3.4 (i)].

(ii) The proof of part (ii) is analogous.
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