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 
Abstract—Many modern synchronous generators in power 

systems are extremely weakly damped. The reasons are cost 
optimization of the machine building and introduction of the 
additional control equipment into power systems. Oscillations of the 
synchronous generators and related stability problems of the power 
systems are harmful and can lead to failures in operation and to 
damages. The only useful solution to increase damping of the 
unwanted oscillations represents the implementation of the power 
system stabilizers. Power system stabilizers generate the additional 
control signal which changes synchronous generator field excitation 
voltage. Modern power system stabilizers are integrated into static 
excitation systems of the synchronous generators. Available 
commercial power system stabilizers are based on linear control 
theory. Due to the nonlinear dynamics of the synchronous generator, 
current stabilizers do not assure optimal damping of the synchronous 
generator’s oscillations in the entire operating range. For that reason 
the use of the robust power system stabilizers which are convenient 
for the entire operating range is reasonable. There are numerous 
robust techniques applicable for the power system stabilizers. In this 
paper the use of sliding mode control for synchronous generator 
stability improvement is studied. On the basis of the sliding mode 
theory, the robust power system stabilizer was developed. The main 
advantages of the sliding mode controller are simple realization of the 
control algorithm, robustness to parameter variations and elimination 
of disturbances. The advantage of the proposed sliding mode 
controller against conventional linear controller was tested for 
damping of the synchronous generator oscillations in the entire 
operating range. Obtained results show the improved damping in the 
entire operating range of the synchronous generator and the increase 
of the power system stability. The proposed study contributes to the 
progress in the development of the advanced stabilizer, which will 
replace conventional linear stabilizers and improve damping of the 
synchronous generators 
 

Keywords—Control theory, power system stabilizer, robust 
control, sliding mode control, stability, synchronous generator.  

I. INTRODUCTION 

YNCHRONOUS generators (SG) produce most of the 
electricity. In the past decade, we have witnessed 

significant increase of stability problems of many SG [1]. 
There are two main reasons for that:  
- changes in construction of SG, which come from 

requirements of cost optimization for production and 
transport of the generators. As a consequence, a damping 
coefficient of rotor’s damping windings and a rotor’s 
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inertia moment are reduced; 
- introduction of additional control systems into power 

systems. The introduction is inevitable due to altered 
modes of operation of the power systems, e. g. operation 
of facilities at their peak performance, reaching of novel, 
strict requirements for transmission system operators, 
open transmission access, environmental constraints and 
increased competitiveness. The additional control systems 
improve operation in a particular operation regime. In 
some other operation conditions, the additional control 
systems could reduce damping and can lead to instability 
of the power system. 

Consequences of elevated stability problems are clearly 
observed in an increasing number of major power system 
blackouts in recent years. The examples include the India 
blackout of July 30th and 31th, 2012 (totaling 1 billion people 
affected), the Southern Brasil blackout of March 11th, 1999 
(97 millions of people affected), the Northeast USA-Canada 
blackout of August 14th, 2003 (55 millions of people affected) 
and the Italian blackout of September 28th, 2003 (55 millions 
of people affected) [2]. The key causing factors for the 
blackouts are numerous. 

In this article, we have limited ourselves on treatment of a 
problem of small signal stability [3]. The oscillations covered 
in this article are not the main reason for the blackouts. 
However, it is safe to say that the considered instability could 
be a causing co-factor for the blackout and also that the 
oscillations which do not cause the instability of the system 
are harmful. The oscillations increase mechanical loading and 
shorten an operational life span, increase losses and reduce 
peak performance in production and transmission. 

The only useful solution for damping of small signal 
oscillations of SG and prevention of instability represents 
usage of the additional damping control system. A core 
element of the system is a power system stabilizer (PSS). 
Based on the measurement of oscillatory variables, PSS 
generates the signal which changes field excitation voltage, 
hence increases damping of SG. Such the control system for 
the stabilization can be integrated into a static excitation 
system, which represents the most common method for the 
excitation of SG. A conventional variant of PSS is based on 
the linear control theory [4]. This PSS is simple to realize, but 
its application shows non-optimal damping throughout the 
entire operating range. The dynamics of the SG depends on 
the operation conditions. Therefore the conventional linear 
PSS stabilizer which is determined for the nominal operating 
point does not assure the optimal damping in the entire 
operating range.  
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In recent 45 years, we are witnessing intense development 
of control theories. Due to increased interests for improved 
solutions for stabilization of SG, almost all new control 
theories were tried to be utilized. The problem incorporates 
various specifics, such as limited access to measured 
quantities, availability of only one generator’s input for 
control, saturation of a control actuator, soft and hard non-
linearities in a control plant and highly strict requirements for 
safe operation of the control system. Due to these specifics, till 
date, none of the advanced control theories was able to replace 
the conventional linear concept of PSS, which is still in use in 
majority of commercial static excitation systems. Following 
wide actualization of the stability problems of the power 
systems, development of an improved stabilization system 
becomes highly intense in recent years. There is considerable 
cooperation between PSS producers, academic research 
institutions and power system facilities, which results into 
effective transfer of theories into prototype systems. It is 
challenging at the moment to predict which of the PSS 
concepts will prevail in the future. 

The theory of robust control represents an appropriate 
theoretical basis for ensuring optimum damping of a SG in the 
entire operating range. There are numerous techniques 
available for the implementation in PSS. One of an emerging 
area of robust methods is a sliding mode one. Its various 
applications were realized primarily due to its simplicity in 
design as well as its robustness property towards matched 
uncertainty. Due to its advantages and its relative novelty in 
industry, the implementation of the robust sliding mode 
control for PSS was selected for further exploration and 
elucidation within this article.  

II. MATHEMATICAL MODELS OF SG 

For simulation and analysis of SG and for design and 
synthesis of the PSS control system, an adequate mathematical 
model of SG is needed. The model has to accurately describe 
dynamics of oscillations. At the same time, the model has to 
be sufficiently simplified for design of a control system and 
transparent enough for an analysis. To study a small signal 
stability phenomenon, the model of SG connected to a power 
network is needed [5].  

Mathematical models of SG are based on dq0-
transformation and are described in details in literature [3], 
[6]. In this article, the flux linkage 7th order state-space model 
of the synchronous machine connected to an infinite bus 
through a transmission line with resistance and inductance is 
used. The model is non-linear with two inputs and seven state-
space variables. The model inputs are mechanical torque Tm(t) 
and field excitation voltage Efd(t), the model state-space 
variables are stator d-axis flux linkage λd(t), stator q-axis flux 
linkage λq(t), rotor excitation winding flux linkage λF(t), rotor 
d-axis damper winding flux linkage λD(t), rotor q-axis damper 
winding flux linkage λD(t), rotor speed ω(t) and rotor angle 
δ(t). In the article, testing turbo type SG with nominal power 
160 MVA was used for simulations and derivation of a 
simplified linearized model. This SG was widely used in 
literature. Detailed description of the model with data is 

extracted from [3].  
In this study, the described 7th order non-linear model of the 

synchronous machine connected to the infinite bus was used 
for all simulations. However, this model is neither transparent 
enough for a controlled plant analysis nor simple enough for 
control system design. Many simplified models are derived 
from this 7th order nonlinear model. For an analysis of the SG 
and for the PSS control system design, a simplified linearized 
3rd order model is still the most popular [7]. This model has 
two inputs and three state space variables. All variables in the 
linearized model are expressed in per unit and denote 
deviations (subscript Δ) from the equilibrium state. The model 
is written as follows: 
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where TmΔ(t) represents mechanical torque deviation (p.u.), 
PeΔ(t) is electrical power deviation (p.u.), ωΔ(t) is rotor speed 
deviation (rad s-1), δΔ(t) is rotor angle deviation (rad), Eq'Δ(t) is 
a voltage behind transient reactance (p.u.), EfdΔ(t) is field 
excitation voltage deviation (p.u.), VtΔ(t) is a terminal voltage 
(p.u.), H is an inertia constant (s), D is a damping coefficient 
representing total lumped damping effects from damper 
windings (p.u./p.u.), ωr is rated synchronous speed (rad s-1), 
Tdo' is a d-axis transient open circuit time constant (s), K1 
through K6 are linearization parameters.  

Using a benchmark SG [3], linearization parameters for the 
whole operating range were calculated. Values of the 
linearized parameters are changing significantly with a 
changing operating point. The range of values for the 
linearized parameters of the considered SG in the entire 
operating range is: 

 

1 2 3

4 5 6

K 0.3 ... 2.0 K 0.2 ...1.9 K 0.307

K 0.1... 2.0 K 0.15 ... 0.10 K 0.3 ... 0.7

  
   

(3) 
 
Inertia constant H, damping coefficient D representing total 

lumped damping effects from damper windings, rated 
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synchronous speed ωr, and d-axis transient open circuit time 
constant d0T  are: 

 
-1

r d0=2.37 s =2.0 pu 377 rad s =5.9 puH D T    (4) 
 
Effectiveness of the studied stabilizers was tested with 

simulations using the 7th order non-linear model in the entire 
operating range. In this article, only results of the two most 
distinctive operating points will be presented: 
- the nominal operating point in which a SG mostly 

operates is P = 1.0 p.u. and cos φ = 0.85, and 
- the operating point with low active power and high 

reactive power. This point represents the weakly damped 
real operating point and therefore the worst case for 
testing of the PSS, i. e. P = 0.2 p.u. and Q = 1.0 p.u. 

For the nominal operating point, P = 1.0 p.u. and 
cos φ = 0.85, the following linearization parameters of the 
simplified linearized model are calculated: 

 

1 2 3

4 5 6

K 1.448 K 1.317 K 0.307

K 1.805 K 0.029 K 0.526

  

  
       (5) 

 
The following eigenvalues belong to these parameters: 
 

1

2 3

λ 0.273

λ 0.350 j 10.727 λ 0.350 j 10.727

 

     
   (6) 

 
Damping of oscillatory eigenmodes is considerably reduced 

by decreasing of power factor cos φ. The following parameters 
of the simplified linearized model are calculated for operating 
point P = 0.2 p.u. and Q = 1.0 p.u: 

 

1 2 3

4 5 6

K 1.276 K 0.286 K 0.307

K 0.300 K 0.027 K 0.620

  

  
       (7) 

 
The following eigenvalues belong to these parameters: 
 

1

2

3

λ 0.540

λ 0.217 j 10.074

λ 0.217 j 10.074

 
  
  

             (8) 

 

 

Fig. 1 SG inputs: mechanical torque Tm and field excitation voltage 
Efd 

 

Fig. 2 Outputs of the 7th order non-linear model of the SG connected 
to the infinite bus: electrical power Pe, rotor angle δ, rotor speed ω 

and terminal voltage Vt for the nominal operating point without PSS 
 

Figs. 1 and 2 display inputs and outputs of the 7th order non-
linear model of SG by simulation in the vicinity of the 
nominal operating point.  

From Fig. 2, oscillatory behavior of SG can be recognized. 
A need for applications of PSS is visible.  

From the analysis of the effects of the different operating 
points on the linearization parameters of the simplified 
linearized model, dynamic characteristics of SG can be 
established. Variations in the dynamics of the SG are 
considerable. Therefore, implementation of a robust PSS is a 
logic solution to this problem. 

III. CONVENTIONAL LINEAR PSS 

A conventional linear PSS approach is based on utilization 
of the static excitation system. Through this system, the PSS is 
changing field excitation voltage of SG. As a consequence, an 
additional component of an electrical torque is generated. This 
torque must be in phase with rotor speed and thus increases 
damping of SG [4]. Fig. 3 presents a block diagram of the 
simplified linearized model of the SG with the 1th order model 
of the excitation system and PSS. Symbols on Fig. 3: kes and 
Tes are the excitation system gain (p.u.) and the time constant 
(s), respectively; Efd,ref is the reference for field excitation 
voltage Efd (the both in (p.u.)), while uPSS, yPSS and GPSS(s) are 
the PSS input, the output (the both in (p.u.)) and the transfer 
function, respectively. As in (1) and (2), subscript Δ denotes 
the deviation of the variables from the steady-state operating 
point and s is the Laplace complex variable. 
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Fig. 3 A block diagram of SG’s simplified linearized model with the excitation system model and PSS 
 

For PSS input uPSSΔ, the variables which contain 
information about oscillations must be used. These variables 
are electrical power, rotor angle, rotor speed, frequency, 
terminal voltage and acceleration torque. The electrical power 
is commonly selected as the input to the PSS. The output of 
the PSS is the control signal for the excitation system. A 
transfer function of conventional linear PSS is represented as: 

 

PSS 31
PSS PSS aaf

PSS 2 4

( ) T 1 TT 1
( ) k ( )

( ) T 1 T 1 T 1
w

w

y s s ss
G s G s

u s s s s

   
          

(9) 

 
where kPSS denotes the stabilizer gain (p.u.), T1, T2, T3, T4 are 
time constants of the stabilizers lead-lag compensators (s), Tw 
is the time constant of the high-pass (washout) filter (s) and 
Gaaf(s) is the transfer function of the low-pass (antialiasing) 
filter.  

Based on the block diagram in Fig. 3 and the transfer 
function in (9), the IEEE association established the IEEE 
standard for the PSS studies [8]. The standard enables 
unification of commercial applications of PSS. The standard 
sets out four basic types of PSS, which differ mainly in 
regards to an available input and a degree of a transfer 
function. Most of the commercial PSS are realized on the 
standardized proposals. 

For a synthesis of PSS, knowledge of a mathematical model 
of SG with an excitation system is required. A required model 
is calculated from a known data of SG or by means of 
identification. For considered SG, transfer function GPSS(s) of 
PSS with an electrical power input, for nominal operation 
point P = 1.0 p.u. and cos φ = 0.85 was calculated. The 
transfer function GPSS(s) was calculated by means of the root 
locus diagram. Transfer function of GPSS(s) is: 
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2 1 20
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0.2 1 20 1
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s s
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         (10) 

 
Behavior of the stabilized system on the same input 

perturbations as in Fig. 2 calculated with the 7th order non-

linear model is displayed in Fig. 4.  
 

 

Fig. 4 SG’s electrical power and rotor speed in nominal operating 
point P=1.0 p.u. and cosφ=0.85 with the conventional linear 

stabilizer, tuned for the nominal operating point 
 

The actuator saturation was included in the simulations. 
Hard type saturation of the PSS’s output with a limited value 
of ±35 % of a value of a nominal rotor excitation voltage was 
utilized. The set value represents a limitation in real excitation 
systems.  

Calculated PSS assures effective damping for the nominal 
operating point and stable operation across the entire operating 
range, though with a significantly decreased damping for some 
non-nominal operating points.  

Usage of systematic methods for tuning parameters of 
conventional PSS gives satisfactory results. The main 
disadvantages of these methods represent the requirement of 
the SG mathematical model and the time consuming tuning. 
Therefore, in practice, the systematic methods are rarely 
implemented. Hence, neither optimal damping in the nominal 
operating point nor stable operation in the entire operating 
range is secured. 

Due to not available mathematical model of SG, 
sophisticated and time consuming synthesis of the 
conventional linear PSS and its proven non-optimum damping 
in the entire operating range of SG, the robust control becomes 
meaningful techniques for the PSS implementation. 
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IV. ROBUST PSS 

Among many robust control approaches, the sliding mode 
control is the one of the most interesting. The main advantages 
of this control are insensitivity to parameter variations, 
rejection of disturbances, a decoupling design procedure and 
simple implementations by means of power converters [9].  

The fundamentals of the sliding mode control theory date 
back in the late 1950s years. Since that time, new research 
directions emerged due to the appearance of the new classes of 
control problems, new mathematical methods and new 
prospects of implementation [10], [11]. 

For the proposed PSS design, the modification of the sliding 
mode control based on the decoupling principle will be used. 
The mathematical model of the controlled plant must be 
transformed to the regular form: 

 

RF1 RF11 RF1 RF12 RF2( ) ( ) ( )t t t x A x A x          (11) 
 

RF2 RF21 RF1 RF22 RF2 RF2 p( ) ( ) ( ) ( )t t t t  x A x A x B u     (12) 

 
where ARFij (i,j=1,2) and BRF2 are constant matrices of relevant 
dimensions, RF1( ) n mt x  and RF2 ( ) mt x  are state-space 

vectors and p ( )tu  is controlled plant input vector. Matrix 

RF2B  must be nonsingular. 

For the PSS design being based on the simplified linearized 
model of SG, state-space vector in regular form RF ( )tx  where 

n = 3 and m = 1 could be selected as: 
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Sliding mode control for the implementation in PSS 

requires knowledge of all state-space variables of the SG’s 
regular form model. Measurements of electrical power, rotor 
speed and terminal voltage are feasible only at SG. For the 
sliding mode control, the state-space variables for the regular 
form model need to be calculated from the measured 
variables. To calculate regular form state-space variables 
firstly the variables δΔ(t) and qΔ ( )E t  can be calculated by 

inverting (2), such as: 
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Finally, state-space variables xRF1(t) and xRF2(t ) can be 

calculated with transformation 
 

r

1 r r 2 r

( ) 1 0 0 ( )

( ) 0 ω 0 ( )

( ) K ω K ( )

2 2 2
q

t t

t t

t D E t

H H H

 
 
  

 

 

 

 
    
          
           
 




    (16) 

 
In such a way, the state-space variables could be obtained 

without explicit differentiation. 
A sliding surface was selected such that the rotor’s angle 

deviation and rotor’s speed deviation converge exponentially 
to zero. For this aim, a linear equation of the sliding surface 
was selected: 

 

RF1 RF2( ) ( ) ( ), ( ) mt t t t  s Dx x s          (17) 
 

When the sliding mode appears on manifold ( )t s 0 , 

where RF2 RF1( ) ( )t t x Dx  the system behavior is governed by 

(n-m)th-order equation 
 

RF1 RF11 RF12 RF1( ) x A A D x             (18) 
 
To obtain the required dynamic properties of the control 

system, we assigned eigenvalues of a closed-loop system with 
a linear feedback. For controllable system described with (10) 
and (11) there exists matrix D, which ensures the desired 
eigenvalues of the system in (16).  

In the first stage of design of the sliding mode, we chose the 
desired eigenvalues of the system described with (16). From 
the desired eigenvalues we determine matrix D as the solution 
to the (n-m)th-order eigenvalue task. Matrix D determines the 
equation of discontinuous surfaces (15).  

The second stage of the design procedure represents the 
selection of the discontinuous control law, such that the 
sliding mode always arises at manifold ( )t s 0 , which is 

equivalent to stability of the origin in m-dimensional space 
( )ts . The dynamics on the ( )ts space is described by equation: 
 

   RF11 21 RF1 RF12 RF22 RF2

RF2 RF RF2 p

( ) ( ) ( )

( ) ( ) ( )
RFt t t

t t t

    

  

s DA A x DA A x

B u Ex B u


(19) 

 
An appropriate choice of the control law represents the 

discontinuous control described with 
 

1
p RF RF2( ) g ( ) sgn ( )t t t u x B s            (20) 

 

where RF ( )tx  is the sum of vector RF ( )tx  component moduli 

and g is the constant.  
The selected discontinuous control leads to: 
 

RF RF( ) ( ) g ( ) sgn ( )t t t t s Ex x s           (21) 

 

There exists such positive value of g that the functions ( )ts  
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and ( )ts  have different signs. It means that the sliding mode 

will occur on a discontinuity surface. The influence of 
discontinuity of the control signal is reduced with a varying 
amplitude of the control signal. 

For SG with the data [3], we selected desired eigenvalues 

1,2 2    for the system in (16). The following control law 

parameters were calculated: 
 

  1
RF24 4 0.06 350g   D B         (22) 

 
The robustness of the presented sliding mode controller was 

tested with the simulations of the 7th order non-linear model of 
the SG in the entire operating range numerically, as well as 
experimentally in the laboratory. During the operation in the 
entire operating range the simplified linearized model 
parameters vary between the limits described in (3). The 
sliding mode controller with the parameters (20) was stable 
and robust and displays the effective damping in all operating 
conditions. The theoretical analysis of the invariance of the 
proposed control system to the disturbances and the variation 
of the plant parameter are described in details in [9]. 

 

 

Fig. 5 Electrical power Pe and rotor speed ω in nominal operating 
point P = 1.0 p.u. and cos φ = 0.85 with robust PSS 

 

 

Fig. 6 Electrical power Pe and rotor speed ω in operating point 
P = 0.2 p.u. and Q = 1.0 p.u. with robust PSS 

 
In the article only results of the two most distinct operating 

points are presented: the nominal operating point and the 
worst case – the least damped operating point. Figs. 5 and 6 
show the responses of the 7th order non-linear model of 
considered 160 MVA SG in nominal operating point 

P = 1.0 p.u. and cos φ = 0.85 and in weakly damped operating 
point P = 0.2 p.u. and Q = 1.0 to the step changes of the 
mechanical torque and the field excitation voltage, as shown 
in Fig. 1. The same model of the actuator saturation as in 
Section III was included in the simulations. 

V. CONCLUSION 

Changes in construction of SG and tightened operating 
conditions of contemporary power systems require 
development of more capable PSS. Namely, conventional 
linear PSS do not fulfil the requirements. In this paper, the 
theoretical basis and the utilization of the sliding mode robust 
control for the implementation in PSS are presented. 

The comparison of the developed robust PSS with 
conventional linear PSS shows the distinct advantage of the 
modern concepts in all the ranges of the operation considered. 
In our evaluation, the robust control emerged as the most 
prospective concepts for the implementation in PSS.  

Due to the actuality and importance of the issues tackled, 
the development of more effective methods for the PSS design 
is inevitable. It is our estimation that intensity of research in 
this field will increase in the future. The research will lead to 
development of a vanquishing stabilizer, which will replace 
the to-date used conventional linear PSS. 

REFERENCES 
[1] International Energy Agency, (2014), “IEA Statistics and Balances”, 

available at: http://www.iea.org/statistics/ (accessed 1 June 2014). 
[2] Edvard, (2014),”Historical review of power system stability problems”, 

available at: http://electrical-engineering-portal.com/historical-review-
of-power-system-stability-problems (accessed 1 June 2014). 

[3] Anderson, P. M. and Fouad, A. A. (1977), Power system control and 
stability, The Iowa State University Press, Ames, Iowa. 

[4] Demello, F. P. and Concordia, C. (1969), “Concepts of synchronous 
machine stability as affected by excitation control“, IEEE Tran. Power 
Appar. Syst., vol. 88, no. 4 , pp. 316-29. 

[5] Machowsky, J. and Bialek, J. W. and Bumby, J. R. (2008), Power 
system dynamics, stability and control, John Wiley and Sons, Ltd., West 
Susex, United Kingdom. 

[6] Kundur, P. (1994), Power system stability and control, McGraw-Hill 
Inc. New York. 

[7] Heffron, W. G. and Phillips, R. A. (1952), “Effect of modern amplidyne 
voltage regulator on underexcited operation of large turbine generators“, 
AIEE Transactions, vol. 71, pp. 692-97. 

[8] IEEE Std. (2005), “IEEE Recommended practice for excitation system 
models for power system stability studies”, IEEE Std 421.5 – 2005, 
IEEE Power engineering society by Energy development and power 
generation committee, 21 April 2006. 

[9] Utkin, V. I. (1993), “Sliding mode control design principles and 
application to electric drives”, IEEE Transactions on industrial 
electronics, vol. 40, no. 1 , pp. 23-36. 

[10] Bartolini, G., Fridman, L., Pisano, A. and Usai, E. (2008), Modern 
sliding mode control theory, Springer Verlag, New York. 

[11] Šabanovic, A. (2011): “Variable structure systems with sliding modes in 
motion control – A survey”, IEEE Transactions on industrial 
informatics, vol. 7, no. 2 , pp. 212-223. 

 
 

0 5 10 15 20 25 30 35
0.9

0.95

1

1.05

1.1

t [s]

el
ec

tr
ic

al
 p

ow
er

 [
pu

]

0 5 10 15 20 25 30 35

0.999

0.9995

1

1.0005

1.001

t [s]

ro
to

r 
sp

ee
d 

[p
u]

0 5 10 15 20 25 30 35
0.1

0.15

0.2

0.25

t [s]

el
ec

tr
ic

al
 p

ow
er

 [
pu

]

0 5 10 15 20 25 30 35

0.999

0.9995

1

1.0005

1.001

t [s]

ro
to

r 
sp

ee
d 

[p
u]


