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Well-Balanced Discontinuous Galerkin Scheme on

Unstructured Triangular Grids
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Abstract—Urban flooding resulting from a sudden release of
water due to dam-break or excessive rainfall is a serious threatening
environment hazard, which causes loss of human life and large
economic losses. Anticipating floods before they occur could
minimize human and economic losses through the implementation
of appropriate protection, provision, and rescue plans. This work
reports on the numerical modelling of flash flood propagation
in urban areas after an excessive rainfall event or dam-break.
A two-dimensional (2D) depth-averaged shallow water model is
used with a refined unstructured grid of triangles for representing
the urban area topography. The 2D shallow water equations are
solved using a second-order well-balanced discontinuous Galerkin
scheme. Theoretical test case and three flood events are described
to demonstrate the potential benefits of the scheme: (i) wetting and
drying in a parabolic basin (ii) flash flood over a physical model of
the urbanized Toce River valley in Italy; (iii) wave propagation on
the Reyran river valley in consequence of the Malpasset dam-break
in 1959 (France); and (iv) dam-break flood in October 1982 at the
town of Sumacarcel (Spain). The capability of the scheme is also
verified against alternative models. Computational results compare
well with recorded data and show that the scheme is at least as
efficient as comparable second-order finite volume schemes, with
notable efficiency speedup due to parallelization.

Keywords—Flood modeling, dam-break, shallow water equations,
Discontinuous Galerkin scheme, MUSCL scheme.

I. INTRODUCTION

THE shallow-water equations (SWEs) present a core

foundation for a wide range of applications, including

flood prediction [1], dam-break floods [2], [3], coastal floods

[4], urban floods [5]-[7], ocean tsunami hazards [8], and

hurricane induced storm surges [9], among many others.

These applications may involve numerical calculation of

very complex flow hydrodynamics such as shock-type flow

discontinuities, transcritical flows, wetting and drying over

irregular topography. A robust numerical scheme is required

in order to produce accurate and stable numerical solutions

for these applications.

Most popularly, the Godunov approach has emerged in the

Finite Volume (FV) framework, which stores and evolves

locally averaged flow data (i.e. depth and velocities) over

a mesh element [10]-[13]. Its success owes to approximate

Riemann solvers [14], which authentically incorporate water
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jumps and transitions into the discrete numerical formulation.

First-order FV models have been favored and improved

for practical applications due to their simplicity, conceptual

soundness and locality. The latter property offers convenience

to further exploit efficiency speed up algorithms, e.g., local

time stepping [15] and adaptive mesh refinement [16] and

parallelization [17], aside from the extra theoretical/numerical

developments made to properly incorporate source terms and

wet/dry fronts [18]-[21].

Second-order Godunov-type flood models have also been

devised; most commonly, by means of the MUSCL spatial

reconstructions added to the standard FV framework [22]-[26]

or the use of the local Discontinuous Galerkin (DG)

method [27]-[37], which further exploits properties of the

finite element method [38]. The MUSCL approach achieves

linear polynomial estimates by further involving non-local

piecewise-constant data. This non-locality dictates (extrinsic)

widening of the calculation stencil, and may therefore have

knock on effects on parallel scalability, among other concerns

[21], [39]. The (DG) approach is conceptually similar to the

original Godunov FV formulation, but enables to get local

linear polynomial estimates via a fully conservative translation

to the SWEs on the local element level [40], [41]. It has

therefore become a powerful alternative for solving the SWE

with high parallel scalability, in addition to offering other

advantages such as the construction of high-order schemes on

adaptive and/or hybrid meshes [42], [35]. Its major drawback

in comparison with MUSCL approach, on a given mesh, is

the larger number of degrees of freedom, which consequently

entails greater computational costs (estimated to be at least 5

times more expensive [7]. The MUSCL and DG approaches

have been mostly coupled with an explicit (local) Runge-Kutta

(RK) time integration to construct second-order numerical

flood models. Within the scope of flood modeling, it is still

of practical benefit to compare between the RKDG and the

MUSCL approaches pertaining to (i) their response to mesh

coarsening and (ii) their response to parallelization, which is

the focus of this article.

In line with issue (i), [7] compared RKDG and MUSCL

shallow water solvers with application to flood modeling.

Their finding reveals that the extra cost and complexity

of the RKDG2 model pays off by providing higher-quality

predictions on very coarse meshes. However, this study

only considered quadrilateral meshes (along with a modal

DG basis) and overlooked the aforementioned issue (ii).

While results by [35] show that DG-based models on
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quadrilateral meshes are more efficient and accurate, they

remain questionable given the academic nature of the tests

on which the comparisons were performed. Reference [43]

conducted more realistic comparisons of the trade-offs of

mesh-types for a 2D FV Godunov-type flood model. Their

work retrieved the above-mentioned conclusion in [35], i.e.

on the appeal of quadrilateral meshes, for academic tests; but

more realistic testing indicate that each element type (i.e.,

triangles vs. quadrilaterals) is advantageous under different

circumstances. Practically speaking, an unstructured triangular

mesh is very appealing to generate and tailor the mesh to the

unique geometry of application sites and the ability to locally

refine the mesh around areas of interest [44]-[46]. Within

this setting, greater operating costs are expected to track the

neighboring of data surrounding each cell, and the computation

of the MUSCL gradients is more demanding [47].

This work therefore aims to compare nodal RKDG and

MUSCL flood model formulations on unstructured triangular

meshes, in light of the above-identified issues (i) and (ii). Both

formulations are implemented with the same time integration

scheme, same slope limiter function and same approaches to

incorporating the practical shallow water features. Differences

between them are also discussed in terms of level of numerical

complexity. The RKDG and MUSCL flood models are jointly

assessed for reproducing analytic solutions, experimental and

real-scale violent flooding scenarios. Finally, the findings are

discussed, summarized and key conclusions are outlined.

II. GOVERNING EQUATION

The two–dimensional shallow water equations can be

written in a conservative form as:

∂U

∂t
+

∂E (U)

∂x
+

∂G (U)

∂y
= S(U), (1)

or equivalently:

∂U

∂t
+∇ · F (U) = S(U), (2)

where, t is the time, x and y are the Cartesian coordiantes, U
and F (U) = (E (U) , G (U)) denote the vectors of conserved
flow variables and the flux, and S is the source vector.
Neglecting Coriolis effects, kinetic and turbulence viscous
terms and wind stresses, S only includes bed slope source
S0 and friction source Sf . These vectors are expressed as

U =

⎛
⎝

h
qx
qy

⎞
⎠ , E =

⎛
⎝

qx
uqx + gh2/2

uqy

⎞
⎠ , G =

⎛
⎝

qy
vqx

vqy + gh2/2

⎞
⎠ ,

(3)

and

S = S0+Sf =

⎛
⎝ 0

−gh ∂z
∂x

−gh ∂z
∂y ,

⎞
⎠+

⎛
⎜⎝

0

−ghn2u
√
u2+v2

h4/3

−ghn2v
√
u2+v2

h4/3

⎞
⎟⎠ , (4)

where h is the water depth, u and v are the velocities and

qx and qy are the unit-width discharges in x- and y-directions

(qx equals to hu and qy equals to hv), respectively, g is the

gravitational acceleration, z is the bottom elevation, and n is

the Manning roughness coefficient.

III. RKDG DISCRETIZATION

The 2D domain Ω is discretised into a mesh of

non-overlapping triangles. Multiply (2) by a test function

v ∈ H1 (Ωi) and integrate over the element Ωi, and use the

divergence theorem to obtain the weak formulation

∂

∂t

∫
Ωi

vUdΩi +

∫
Ωi

∇v · F (U)dΩi −
∫
∂Ωi

vF (U) · nids

=

∫
Ωi

vSdΩi, (5)

where ni is the unit outward facing normal for element Ωi’s

edges. To obtain a simpler formulation, we map each element

ωi in the domain to a canonical element Ω0 with vertices at

(0, 0), (1, 0), and (0, 1) with the bijection⎛
⎝x
y
1

⎞
⎠ =

⎛
⎝x1 x2 x3

y1 y2 y3
1 1 1

⎞
⎠

⎛
⎝1− ξ − η

ξ
η

⎞
⎠ , (6)

where (xk, yk) , k = 1, 2, 3, are the vertices of the given

triangle, and (ξ, η) ∈ Ω0. We also map the edges of each

element to the canonical interval I0 = [−1, 1]. This mapping

is given by (
x
y

)
=

(
x1 x2

y1 y2

)(
1
2 (1− ζ)
1
2 (1 + ζ)

)
, (7)

where (xk, yk) , k = 1, 2, are the endpoints of the given edge

and ζ ∈ I0.

Let Φ = {φj}Np

j=1 be an orthogonal basis of Np basis

functions for V (Ω0) and let Ui over element Ωi be a linear

combination of basis functions φj

Ui =

Np∑
j=1

Ui,j(t)φj , (8)

where Ui,j(t) is a vector of solution coefficients. We use an

orthonormal basis over Ω0 and expressed as

φ1 =
√
2,

φ2 = 2− 6ξ,

φ3 = 2
√
3 (1− ξ − 2η) .

Using this orthogonal basis produces a system of ODEs

d

dt
Ui,j(t) =

∫
Ω0

F (Ui) ·
(
J−1
i ∇φj

)
dξdη

− 1

detJi

3∑
q=1

∫
I0

φjF (Ui) · ni,qli,qdζ

+

∫
Ω0

S(Ui) · φjdξdη, (9)

where detJi and li,q denote the determinants of the Jacobian

of (6) and (7), respectively. The surface integrals are

discretised using the Gauss three midpoints rule and the

boundary integral is approximated by a Gaussian two points

rule. The physical fluxes involved in boundary integral are

replaced by numerical flux functions based on an approximate

Riemann solver [REF Georges] for resolving solving solution

discontinuities at the faces between adjacent elements. In
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this work, the HLLC Riemann solver [14] is used. Finally,

the well-balanced property can be genuinely obtained by

projecting the topography function into the same space of local

polynomial approximation [48]

zi =

Np∑
j=1

zi,j(t)φj , (10)

and the partial derivatives of z in the source term S are

computed as

∂zi
∂x

=

Np∑
j=1

zi,j(t)
∂φj

∂x
and

∂zi
∂y

=

Np∑
j=1

zi,j(t)
∂φj

∂y
. (11)

A semi-implicit method [49] is applied to evaluate the

friction source terms. Finally, each of the local coefficients,

Ui,j(j = 1, 2, 3) is advanced in time using the explicit

double-stage Runge-Kutta time discretization with a CFL

number equal to 0.33 [50]. Cockburn and Shus slope limiter

[50] is applied to eliminate spurious oscillations around sharp

gradients.

IV. MODEL VALIDATION

In this section, the RKDG model is assessed in relation to

its response to i) coarseness to mesh resolution and ii) parallel

scalability. The first test case with analytical solution is first

used to evaluate the ability of the model to compute flows

involving wet/dry front, smooth and sharp flow transitions

Then the model is applied to simulate three real flood events

and its performance is compared with laboratory and field data

as well as with the MUSCL solver.

Parallel simulations are conducted on a 24-core, dual socket

2.5 GHz Intel Xeon Haswell. The parallel implementation

platform OpenMP has been used and analyzed in terms of

speedup rate and parallel efficiency. The speedup ratio is

defined as the execution time of the sequential code divided by

the execution time of the parallel code. The parallel efficiency

is defined as the speedup divided by the number of threads

used. Parallel speedups are measured starting with the serial

case, pinning 1 thread per core up to 24 threads.

A. Wetting and Drying in a Parabolic Bowl

The purpose of this test problem is to assess the

capacity of the method to capture a moving wet/dry

wavefront over irregular topography and nonlinear smooth

flow curvatures. Therefore, a nonlinear oscillatory water flow

in a parabolic bowl with a moving shoreline is considered.

The domain topography follows a parabolic lake defined over

[−4000, 4000]2 by

z (x, y) = D0

(
x2 + y2

L2
− 1

)
. (12)

The parameters D0, L, and Z0 are constants (D0 = 3 m,

L = 3000 m, and Z0 = 1 m). The resulting flow will oscillate

indefinitely with an amplitude of w =
(
8gD0/L

2
)1/2

and a

period of T = 2π/w (i.e., T = 2457 s). The analytical solution

for the water surface in the frictionless bowl is given by [51]

η (x, y, t) =D0

[ √
1−A2

1−A cos (wt)
− 1

−x2 + y2

L2

(
1−A2

(1−A cos (wt))
2 − 1

)]
, (13)

A =
(D0 + Z0)

2 −D2
0

(D0 + Z0)
2
+D2

0

. (14)

In the numerical simulation, the four boundaries are closed

and the initial condition is given by (13), with t = 0, u = v =
0. The simulation is executed up to one period cycle T = 2457
s.

In order to study the response of the RKDG model to a

coarsening of spatial resolution, the simulation is run on two

different meshes, coarse and fine, consisting of 10, 048 cells

and 655, 594 cells, respectively. Figs. 1 and 2 compare the

RKDG and MUSCL water level predictions with the analytical

solution along the centerline y = 0, at T/4, T/2, 3T/4, and

T (one period cycle is attained). As Figs. 1 and 2 indicate,

the coarseness of the mesh seems to have a major impact

on the MUSCL predictions of the moving wet/dry shoreline

and the flow curvature. However, the MUSCL model provided

a much improved prediction of the wet/dry front on the fine

mesh (Fig. 2). In contrast, the RKDG model produces excellent

predictions on both coarse and fine meshes.

To allow a quantifiable validation, the models are run again

on four meshes consisting of 10, 048, 40, 886, 163, 840, and

655, 594 cells, respectively. Errors and associated numerical

accuracy orders are presented in Table III. L2 error is

used to reflect the deviation of the numerical results from

the analytical solution. For 2D unstructured grids, the area

weighted L2 error has to be used [52], formulated as

L2(U) =

√∑nc

i=1 Ωi

(
UExact
i − UNum.

i

)2∑nc

i=1 Ωi
, (15)

where nc represents the number of cells. Table I lists the L2

errors and associated orders generated by both MUSCL and

RKDG estimation to the water depth at output time T , where

Δx represents the average cell length for triangular grids and

is computed by Δx =
√
S and S is the averaged cell area. The

results demonstrate that the order of accuracy of the RKDG

is higher than that the MUSCL scheme. On average, the order

of accuracy of the RKDG scheme is about 1.7 while that of

the MUSCL scheme is about 1.3 for this test. As expected,

the order of accuracy is predicted to be close to but slightly

lower than second-order due to the first-order treatment at the

wet-dry front; this is a common numerical phenomenon also

reported by many other researchers [31], [19], [12].

In terms of computational cost, the RKDG method is

undoubtedly more costly to run than the MUSCL scheme (see

Table II). This cost is noted to intensify with increasing level of

grid resolution. The average computational time ratio between

the two schemes while running in sequence is around 3.07.

However, the RKDG model is economical in the sense that it
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Fig. 1 Wetting and drying in a parabolic bowl: free-surface predictions for the coarse mesh (10, 048 triangular cells) (a) t = T/4, (b) t = T/2, (c)
t = 3T/4, (d) t = T

TABLE I
L2 ERRORS AND CORRESPONDING ORDERS

MUSCL RKDG2
L2-error L2-order L2-error L2-order

Mesh1 9.5E-2 - 8.8E-3 -
Mesh2 4.7E-2 1.0 2.9E-3 1.6
Mesh3 2.1E-2 1.1 9.1E-4 1.6
Mesh4 8.4E-3 1.3 2.8E-4 1.7

provides very reliable simulations on the coarse mesh, while

a simulation of equivalent accuracy with the MUSCL scheme

requires a finer mesh and, consequently, takes more time to

run.

To explore the parallel scalability, the MUSCL and RKDG

schemes are run again in parallel. As we can see from Table

III, the RKDG scheme provides clearly better speedups than

the MUSCL scheme, and despite the RKDG’s triple overhead

in operational cost. This likely due to the locality in the RKDG

formulation to achieve high-order. On the coarse mesh, we

observe a speedup rate of 14.89 (62 % parallel efficiency)

for the MUSCL scheme and 17.32 (72 % parallel efficiency)

for the RKDG scheme. With the fine mesh, better scaling

behavior is observed with a speedup rate of 18.95 (79 %

parallel efficiency) for the MUSCL scheme and 21.56 (90 %

parallel efficiency) for the RKDG scheme. Greater speedup is

observed for the fine mesh which is likely due to the increased

workload per thread and relative decrease in overhead required

to manage the thread pool. The RKDG scheme is around

10 % more efficient in terms of parallel efficiency than the

MUSCL scheme on the four meshes. The computational time

ratio decreases to 2.66. Taken as whole, the RKDG model

appears to be an accurate and reliable alternative for coarse

mesh simulation of nonlinear shallow water flow involving

cyclic wetting and drying processes.

B. Physical Model of the Toce River Valley

A physical model of a city located within a narrow flood

plain was built at ENEL (Milano, Italy) under the EU funded

CADAM and IMPACT projects to study extreme flood events

[53]. A 5 km reach of the Toce river valley in Italy was scaled

down 100 times to reduce the dimensions to 50× 13 m in the

physical model. Cubic concrete blocks of 0.15 m length were

implemented in the upstream reach of the scaled model. In

order to separate the effects of the valley topography from

those caused solely by the urban district, two masonry walls

were placed parallel to the model main axis, thus providing a

channelling effect. The Digital Terrain Model (DTM) of the

valley are scaled down to a resolution of 0.0025 m2 covering

the 2D domain. Water levels were measured with 0.2 s time

step at 10 locations by means of gauges indicated by numbers

1,2,...,10 in Fig. 3.

In the computations, only the 7 m long region located at

the upstream end of the physical model was simulated. The

numerical grid was composed of 18, 400 cells, with an average

grid size of 0.03 m. The domain is initially dry and the

measured inflow hydrograph is shown in Fig. 4. A free outlet

boundary is specified at the downstream end, and the Manning
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Fig. 2 Wetting and drying in a parabolic bowl: free-surface predictions for the fine mesh (655, 594 triangular cells) (a) t = T/4, (b) t = T/2, (c)
t = 3T/4, (d) t = T

TABLE II
GENERATED RUNTIME COSTS IN SECOND

Series Parallel
MUSCL RKDG2 Ratio MUSCL RKDG2 Ratio

Mesh1 35.64 114.77 3.22 2.39 6.63 2.77
Mesh2 206.62 628.75 3.04 12.94 33.39 2.58
Mesh3 2647.13 8179.63 3.09 146.57 398.81 2.72
Mesh4 25733.78 75657.32 2.94 1357.98 3509.15 2.58

TABLE III
SPEEDUP AND PARALLEL EFFICIENCY

Speedup Parallel Efficiency (%)
MUSCL RKDG MUSCL RKDG

Mesh1 14.89 17.32 62 72
Mesh2 15.97 18.83 67 78
Mesh3 18.06 20.51 75 85
Mesh4 18.95 21.56 79 90

coefficient is set to 0.0162 s.m−1/3, as recommended by [53].

Fig. 5 shows snapshots of the simulated water surface

elevation at t = 12 and 20 s. The urban district induced a

reduction of the available flow section, which resulted in the

formation of strong hydraulic jumps upstream of the buildings

and in complex flow features (e.g. wake zones behind the

buildings) inside the urban district (t = 12 s). As water

progressed further downstream into the city, the flow became

much more uniform, and the hydraulic jumps propagated in

the upstream direction until their intensity decreased with time

according to the inflow discharge (t = 20 s).

The computed stage-time hydrographs at different gauges

are compared with measurements in Fig. 6 as well as with

Fig. 3 Physical model of the Toce river valley: locations of the square
blocks and gauging stations [53]

those obtained by MUSCL scheme. The overall trend of

stage-time hydrographs was well reproduced although the

model tended to underestimate the flow depth at some gauges.

The root mean square error RMSE is 0.0075 and 0.01 m for

RKDG and MUSCL schemes, respectively.

The RKDG simulations required around 6, 107 s of runtime,

while the MUSCL scheme cost 1, 651 s (i.e., roughly 3.7
times less). Next, the two schemes are run in parallel. Quite
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Fig. 4 Physical model of the Toce river valley: inflow hydrograph used as
upstream boundary conditions

similar parallel efficiency, as before, is observed with the

Toce River test case. The MUSCL scheme achieves a speedup

of 16.08 (67% parallel efficiency) and the RKDG scheme

achieves a speedup of 19.11 (79% parallel efficiency). The

RKDG scheme produces again better scalability results and

outperforms the MUSCL scheme by 11%.

C. Malpasset Dam-Break

The Malpasset dam was located in the Reyran river valley

in southern France, and collapsed in 1959 after an extremely

heavy rain. This disastrous event had already been simulated

by [54]-[56], [12] to test their numerical models. Here, it is

chosen as a large scale case to verify the current models.

The grid consists of 13, 541 nodes and 26, 000 triangular

cells and was generated in [54], where the topography data

was also provided. As suggested by [54], the real arch dam

in simulation is approximated as a straight line between the

points of coordinates being (4701.18 m, 4143.41 m) and

(4655.50 m, 4392.10 m), and the remnants of the dam after

failure are not taken into account. Except for the see and

the reservoir where a constant water level of 100 m above

see level is assumed, the floodplain is assumed initially dry.

The boundaries near the see are set to be transmissive and

other ones are regarded as solid walls. Manning coefficient

is considered as 0.033 s/m1/3 as that in [54]-[56], [12]. The

simulation stops when t = 3600 s. Fig. 8 illustrates the flood

wave evolution by the RKDG model at t = 1800 s, when the

wave has already reached the downstream floodplain.

A police survey after this accident was undertaken to mark

the maximum water levels along the two banks at certain

points. The wave arrival times at three electric transformers

were also known because the exact times of their shutdowns

were recorded. In addition, a physical model with a scale of

1 : 400 was built and the maximum water levels and the wave

propagating processes were measured at 9 gauges along the

valley [54]. The locations of the electric transformers, chosen

survey points and experimental gauges are sketched in Fig. 3.

The results of the survey and the experimental measurements

in terms of maximum water levels are compared with the

numerical results in Fig. 9.

The numerical results of the model agree well with the

survey and measurements, though with some discrepancies,

which are perhaps attributed to the limitations of the 2D

model in simulating a 3D flow, some measuring uncertainties

in survey and experiment, changes of the topography after

the event and scale effect in experiment especially for the

roughness. As a whole, the RKDG model seems to be at least

as accurate as the MUSCL scheme and could obtain approving

predictions for such complex flow with wetting and drying

over uneven bed on unstructured grid and thus is acceptable

for field-scale applications.

The RKDG simulation for this test case lasted around

9395.52 s. In contrast, the MUSCL scheme did the job in

2665.24 s, which is about 3.53 times less. Both schemes are

again run in parallel. Once again, the RKDG produces better

scalability results yielding a speedup of 17.54 (73 % parallel

efficiency). The MUSCL scheme achieves a speedup of 14.96
(62 % parallel efficiency). The computational time ratio is

reduced to 3.01. This suggests again that the computational

gain obtained using the parallel implementation with the

RKDG is more important than the MUSCL scheme.

D. Tous Dam-Break

Tous Dam is the last flood control structure of the Júcar

River basin that covers some 21, 600 km2 of hinterland in the

central part of the Mediterranean coast of Spain (Fig. 10).

During 20 and 21 October 1982, extremely heavy rainfalls

fell over the Tous dam catchment (area of 17, 820 km2), with

an average depth of 500 mm. The total rainfall volume over

the basin reached almost 600 million m3, largely exceeding

the storage capacity of the Tous reservoir (120 million m3).

At 19:00 on October 20, the Tous dam failed, giving rise to

a flooding wave that reached the cities located downstream

of the dam, drastically changing the Júcar valley morphology.

The consequences of this event were catastrophic: 300 km2 of

inhabited land were flooded severely; some 200, 000 people

were affected and eight casualties were recorded. One of

the most affected cities was the small town of Sumacárcel,

located about 5 km downstream of the dam. The topography

of the town is mountainous and most of the buildings lie on a

steep slope terrain, which protected them from the river flow

overtopping. However, the older part of the town is located

closer to the right bank of a meander of the Júcar river,

and was completely flooded on 20 October 1982, with flow

depth reaching 67 m at some locations. Two Digital Terrain

Models (DTM) with 5 m resolution have been retrieved. The

first one dates back to a few weeks after the disaster and the

other one was produced in 1998. This case was selected as a

benchmark study for the flood propagation workpackage under

the EU funded IMPACT project (IMPACT 2004). A complete

description of the case study and of the data can be found in

[57].

Given the diversity of soils, vegetation coverage, and crop

fields present in the area under consideration, it is clear that the

roughness varies substantially all over the domain. The areas

covered with orange trees appear to have a large influence

on the flood propagation, significantly slowing down the flow

velocity. These areas located near the town were represented

in the numerical computations as areas with a higher friction
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Fig. 5 Physical model of the Toce river valley: computed water level by the RKDG model at (a) t = 12 s, (b) t = 20 s
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Fig. 6 Physical model of the Toce river valley: computed water level at gauges (a) P3, (b) P4, (c) P5, (d) P6, (e) P7, (f) P8, (g) P9, and (h) P10

coefficient, corresponding to a Manning coefficient of 0.1
s.m−1/3. For the rest of the domain, a Manning coefficient

of 0.03 s.m−1/3 is used, as suggested by [57].

The calculations meshes, the application of the boundary

conditions, and also the city model included in the simulations

differ between modelers participating in the project [58]-[60].

In this computation, a triangular grid with 25782 cells is used

(consistent with the referenced studies). The mesh is finer in

the main bed of the river and on the right bank where the city

is located. A dry bed condition is initially imposed and the

flow discharge hydrograph shown in Fig. 11 is imposed at the

upstream boundary condition. For the downstream boundary

condition, the flow is assumed critical.

The predicted maximum water depths by the RKDG model

are sketched in Fig. 12. Water overflowed the Júcar river banks

extensively, flooding the town and reaching depths up to 8 m

at some locations. The flood flow path is well predicted along

the channel by the two schemes. In addition, reflections and

deflections because of irregular boundaries and bed topography

are also handled accurately.

Maximum water elevation marks were recorded at 21
locations within, or very close, to Sumacárcel (Fig. 13).
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Fig. 7 Malpasset dam-break: Domain with topography and locations of dam, survey points P and experimental gauges G

Fig. 8 Malpasset dam-break: numerical flood routing at t = 1800 s

The results of the survey and the measurements in terms of

maximum water depth are compared with the numerical results

in Fig. 14. The numerical results of the RKDG model agree

well with the survey and measurements, though with some

discrepancies, which could be attributed to the limitations of

the 2D models in simulating 3D flows, some uncertainties in

survey and measurement, sediment deposition that took place

in the river bed just after the dam-break wave, changes of the

topography after the event, and scale effect in the experiment

especially for the roughness. At gauge 1, the model predicts

a lower level than the observed data probably because of its

closeness to the upstream boundary of the model, where the

inflow condition might include non-negligible uncertainties

[61]. This underestimation does not seem to influence the flow

immediately upstream, as the model accurately predicts the

water depth at gauges 2, 3, 4, 12, 19, and 20. The model is

also able to satisfactorily predict the water depth at gauges 5,

6, 7, 8, 9, 10, and 14. However, quite large differences can be

observed at gauges 11, 13, 15, 16, and 17. Note that gauges

18 and 21 recorded no flooding (zero flow depth as observed).

The results are are close to those obtained by the MUSCL

scheme for this problem. This is probably due to the

largeness of the problem domain and the different sources of

uncertainties involved, which could affect the accuracy of the

schemes. Still, the RKDG scheme performs slightly better than

the MUSCL scheme.

The RKDG simulation for this case lasted around 11.36 h.

In contrast, the MUSCL scheme did the job in 2.7 h, which is

about 4.2 times less than the RKDG scheme. The sequential

and parallel codes are also run for the Sumacárcel flooding

test. Measured speedups and parallel efficiency are observed

to be 20.01 (83%) and 17.13 (71.13%), for the RKDG and

MUSCL schemes, respectively. Again, the RKDG consistently

performs better and is around 12% more efficient than the

MUSCL scheme while running in parallel.

V. CONCLUSION

Godunov-type numerical solvers to the 2D SWEs on

triangular unstructured mesh are of interest to model

flood inundation over real and irregular domains. Higher

than first-order flood model formulations are beneficial

to reduce numerical error over relatively coarse meshes.
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Fig. 9 Malpasset dam-break: comparison of numerical results (a) maximum water levels at survey points, (b) maximum water levels at experimental gauges

Fig. 10 Tous dam: Aerial view of the Júcar river reach from Tous dam to
Sumacárcel about one week after the flood [57]
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Fig. 11 Tous dam: discharge hydrograph imposed at the upstream boundary
for the Tous dam

This work has therefore presented and compared two

popular second-order numerical modelling alternatives for

real-scale flood simulation: the MUSCL (non-local) spatial

reconstruction approach and the local Discontinuous Galerkin

(DG) approach. Both approaches have been taken with an

explicit Runge-Kutta (RK) local time integration scheme,

which were parallelized using the OpenMP platform.

Simulations were conducted on a 24-core, dual socket 2.5 GHz

Intel Xeon Haswell. Experimental and real-field benchmark

tests are used to systematically compare between the models,

focusing in particular on their response to mesh coarsening

and parallel efficiency.

Comparisons between simulation results and reference data

(i.e. analytical, experiments or field surveys) indicate that

the two models generically lead to adequate performance.

Consistent differences are detected in depth predictability

and efficiency speedup relating to mesh coarsening and

parallelisation. With coarsening of the mesh, results from the

MUSCL calculations tend to deteriorate as compared with

the RKDG ones, which remain better in the capture of water

jumps, wave reflections and wet-dry front. Nonetheless, results

among both models remain very close to each other at local

zone where the flow is fluvial or gradual. In term of CPU

runtime saving (on a single core), RKDG is undoubtedly more

expensive on the same mesh due to its extra number of space

operators, the need to apply the RK update to more-than-one

coefficient at a time, and to the more restrictive CFL time step

condition. However, considering further the superior accuracy

of the RKDG outputs on the coarse mesh, the latter can

be classified as more economical and practical; from the

perspective that the mesh size that fits length-scale of the

shallow wave features and/or topographic data are often not

affordable/obtainable.

For the same test cases, the efficiency of the parallel

implementation and its scaling effects have also been analysed

considering also fine meshes (to more effectively exploit
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Fig. 12 Tous dam: computed maximum water depth by the RKDG model (a) in the whole valley, (b) in the town of Sumacárcel

Fig. 13 Tous dam: locations of the gauges in the streets of Sumacárcel twon
[57]
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Fig. 14 Tous dam: measured and computed maximum water level at the
different gauges

the power of parallelisation). The locality of the RKDG

provides much better speedups than MUSCL, despite the

RKDG overhead cost. The RKDG is found to be 10 to

12 % more efficient in term of parallel scalability, than

MUSCL. Given further the above consideration, it can be

concluded that parallel RKDG flood models are promising for

use in real-scale application where domain geometry is often

irregular and the fabric data is sparse.
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