
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:1, 2019

6


Abstract—Gradient boosting methods have been proven to be a

very important strategy. Many successful machine learning solutions
were developed using the XGBoost and its derivatives. The aim of
this study is to investigate and compare the efficiency of three
gradient methods. Home credit dataset is used in this work which
contains 219 features and 356251 records. However, new features are
generated and several techniques are used to rank and select the best
features. The implementation indicates that the LightGBM is faster
and more accurate than CatBoost and XGBoost using variant number
of features and records.

Keywords—Gradient boosting, XGBoost, LightGBM, CatBoost,

home credit.

I. INTRODUCTION

ESPITEthe recent re-rise and popularity of artificial
neural networks (ANN), boosting methods are still more

useful for a medium dataset because the training time is
relatively very fast and it does not require a long time to tune
its parameters.

Boosting is an ensemble strategy that endeavors to make an
accurate classifier from various weak classifiers. This is done
by dividing the training data and using each part to train
different models or one model with a different setting, and
then the results are combined together using a majority vote.
AdaBoost was the first effective boosting method discovered
for binary classification by [1]. When AdaBoost makes its first
iteration, all records are weighted identically, but in the next
iterations, more weight is given to the misclassified records,
and the model will continue until an efficient classifier is
constructed. Soon after AdaBoost was presented, it was noted
that even if the number of iterations is increased, the test error
does not grow [2]. Thus, AdaBoost is a suitable model for
solving the overfitting problem. In recent years, three efficient
gradient methods based on decision trees are suggested:
XGBoost, CatBoost and LightGBM. The new methods have
been used successfully in industry, academia and competitive
machine learning [3].

The rest of this paper is organized as follows: Section II
provides a short introduction about the gradient boosting
algorithms and the recent developments. Section III explores
the home credit dataset and exploits the knowledge of the
domain to generate new features. Section IV implements
gradient boosting algorithms and discusses a new mechanism
to generate useful random features, and the conclusion is

E. Al-Daoud is with faculty of Information Technology, Computer Science

Department, Zarka University, Jordan (phone: +96279668000, e-mail:
essamdz@zu.edu.jo).

provided in Section V.

II. RELATED WORK

Gradient boosting methods construct the solution in a stage-
wise fashion and solve the over fitting problem by optimizing
the loss functions. For example, assume that you have a
custom base-learner h(x, θ) (such as decision tree), and a loss
function 𝜓ሺ𝑦, 𝑓ሺ𝑥ሻሻ; it is challenging to estimate the
parameters directly, and thus, an iterative model is suggested
such that at each iteration. The model will be updated and a
new base-learner function h(x, θt)is selected, where the
increment is guided by:

𝑔௧ሺ𝑥ሻ ൌ 𝐸௬ ቂడటሺ௬,௙ሺ௫ሻሻ

డ௙ሺ௫ሻ
|𝑥ቃ

௙ሺ௫ሻୀ௙ሚ೟షభሺ௫ሻ

This allows the substitution of the hard optimization

problem with the usual least-squares optimization problem:

ሺ𝜌௧, 𝜃௧ሻ ൌ arg 𝑚𝑖𝑛ఘ,ఏ ∑ ሾെ𝑔௧ሺ𝑥௜ሻ ൅ 𝜌 ℎሺ𝑥௜, 𝜃ሻሿே
௜ୀଵ

ଶ

Algorithm 1summarizes the Friedman algorithm.

Algorithm 1 Gradient Boost

1- Let 𝑓መ଴be a constant
2- For i= 1 to M

a. Compute gi(x) using eq()
b. Train the function h(x, θi)
c. Find 𝜌௜ using eq()
d. Update the function

𝑓መ௜ ൌ 𝑓መ௜ିଵ ൅ 𝜌௜ℎሺ𝑥, 𝜃௜ሻ
3- End

The algorithm starts with a single leaf, and then the learning

rate is optimized for each node and each record [4]-[6].
eXtreme Gradient Boosting (XGBoost) is a highly scalable,

flexible and versatile tool; it was engineered to exploit
resources correctly and to overcome the limitations of the
previous gradient boosting. The main difference between
XGBoost and other gradient boosting is that it uses a new
regularization technique to control the overfitting. Therefore,
it is faster and more robust during the model tuning. The
regularization technique is done by adding a new term to the
loss function, as:

𝐿ሺ𝑓ሻ ൌ ∑ 𝐿ሺ𝑦ො௜, 𝑦௜ሻ ൅ ∑ Ωሺ𝛿௠ሻெ

௠ୀଵ
௡
௜ୀଵ

with

Ωሺ𝛿ሻ ൌ 𝛼|𝛿| ൅ 0.5𝛽‖𝑤‖ଶ

Comparison between XGBoost, LightGBM and
CatBoost Using a Home Credit Dataset

Essam Al Daoud

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:1, 2019

7

where || is the number of branches, w is the value of each leaf
and is the regularization function. XGBoost uses a new gain
function, as:

𝐺௝ ൌ ∑ 𝑔௜௜∈ூೕ

𝐻௝ ൌ ∑ ℎ௜௜∈ூೕ

𝐺𝑎𝑖𝑛 ൌ
ଵ

ଶ
ቂ

ீಽ
మ

ுಽାఉ
൅

ீೃ
మ

ுೃାఉ
െ

ሺீೃାீಽሻమ

ுೃାுಽାఉ
ቃ െ 𝛼

where

𝑔௜ ൌ 𝜕௬ො೔
𝐿ሺ𝑦ො௜, 𝑦௜ሻ

and
ℎ௜ ൌ 𝜕௬ො೔

ଶ 𝐿ሺ𝑦ො௜, 𝑦௜ሻ

G is the score of the right child, H is the score of the left child
andGain is the score in the case no new child [7].

To reduce the implementation time, a team from Microsoft
developed the light gradient boosting machine (LightGBM) in
April 2017 [8]. The main difference is that the decision trees
in LightGBM are grown leaf-wise, instead of checking all of
the previous leaves for each new leaf, as shown in Figs. 1 and
2. All the attributes are sorted and grouped as bins. This
implementation is called histogram implementation.
LightGBM has several advantages such as better accuracy,
faster training speed, and is capable of large-scale handling
data and is GPU learning supported.

Fig. 1 XGBoost Level-wise tree growth

Fig. 2 LightGBM Leaf-wise tree growth

CatBoost (for “categorical boosting”) focuses on categorical

columns using permutation techniques, one_hot_max_size
(OHMS), and target-based statistics. CatBoost solves the
exponential growth of the features combination by using the
greedy method at each new split of the current tree. For each
feature that has more categories than OHMS (an input
parameter), CatBoost uses the following steps:
1. Dividing the records to subsets randomly,
2. Converting the labels to integer numbers, and
3. Transforming the categorical features to numerical, as:

𝑎𝑣𝑔𝑇𝑎𝑟𝑔𝑒𝑡 ൌ ௖௢௨௡௧ூ௡஼௟௔௦௦ା௣௥௜௢௥

௧௢௧௔௟஼௢௨௡௧ାଵ

where, countInClass is the number of ones in the target for a

given categorical feature, totalCountis the number of previous
objects and prior is specified by the starting parameters [9]-
[11].

III. HOME CREDIT DATASET

The aim of the home credit dataset is to predict the
capabilities of the clients repayment by using a variety of
alternative data [1], [12]. Due to shortage or non-existent
records of loan repayment, home credit attempts to expand the
safe borrowing experience for the unbanked clients by
collecting and extracting more information about the clients
from different resources as follows:
1- Application_{train|test}.csv: Each row in this file is

considered one loan, the file application_train.csv
contains a target column, while application_test.csv does
not contain a target column. The number of the clients in
this file is 307511, and the number of the features is 123
such as: SK_ID_CURR,
NAME_CONTRACT_TYPE,CODE_GENDER,
FLAG_OWN_CAR, FLAG_OWN, CNT_CHILDREN,
AMT_INCOME, AMT_CREDIT, AMT_ANNUITY,
TARGET, etc. The target variable defines whether the
loan was repaid or not.

2- Bureau.csv: The previous applications about each client
from other financial institutions, a client could have
several applications, thus the number of the records in this
file more than the number of the clients. This file has
1716428 rows and 17 features. Fig. 3 shows a snapshot of
this data.

Fig. 3 Snapshot of Bureau data

3- Bureau_balance.csv: The balance of each month for every
previous credit. This file has 27299925 rows and three
features. Fig. 4 shows a snapshot of this data.

Fig. 4 Snapshot of Bureau balance data

4- POS_CASH_balance.csv: The snapshots of monthly
balance for every previous point of sales (POS). This file
has 10001358 rows and eight features.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:1, 2019

8

5- Credit_card_balance.csv: The snapshots of monthly
balance for every credit with home credit. This file has
3840312 rows and 23 features.

6- Previous_application.csv: Each row in this file represents
a previous application related to client loans. This file has
1670214 rows and 37 features.

7- Installments_payments.csv: The history of the previous
repayments in home credit, where some rows outline
missed installments, and other rows describe payments
made. This file has 13605401 rows and eight features.

Fig. 5 Gender differences in repaying the loan

Fig. 6 Snapshot of feature generation using python

When the home credit dataset is explored, we can note that

the target label is an imbalanced, where the target column in
the most of the records have the value 0 (about 91%), which
means that the client did his installments successfully, and
24000 applicants (about 9%) had difficulties in repaying the
loan. Another important observation can be exploited is that
males, more than the females, are more prone to failure to
repay the loan or make installments successfully, as shown in
Fig. 5.

TABLE I

THE NUMBER OF FEATURES BEFORE AND AFTER FEATURE GENERATION

File #Records #features
#Feature after

generation
Application 356251 123 240

Bureau 1716428 17 80

Bureau_balance 27299925 3 15

Pos-cash 10001358 8 18

Credit card balance 3840312 23 113

Previous applications 1670214 37 219

Installments payments 13605401 8 36

Total 219 721

More features can be generated by using the domain

knowledge and aggregations, as shown in Fig. 6. Table I

summarizes the number of features before and after feature
generation.

IV. EXPERIMENTAL RESULTS

To compare between the gradient methods, the home credit
dataset is used and tested by implementing XGBoost,
LightGBM and CatBoost. The number of rows is reduced by
deleting any row with missing values more than 75% or has a
low importance rank. Five-fold validation is applied on a
variant number of rows. Tables II-IV show that LightGBM
has the best area under the curve (AUC) and the fastest
training time, while XGBoost has the worst training time, and
CatBoost has the worst AUC. However, these results cannot
be generalized to other datasets. For example, if the dataset
has more categorical features, we expect CatBoost will
outperform the other methods; the implementation time seems
to be more independent and has low correlation with the
features type.

TABLE II

TIME AND AUC USING XGBOOST

#Rows AUC Time

307507 0.788320 4306

250000 0.784516 3550

200000 0.781219 2892

150000 0.773347 2098

100000 0.772771 1219

50000 0.768899 9487

TABLE III

TIME AND AUC USING LIGHTGBM

#Rows AUC Time

307507 0.789996 786

250000 0.788589 638

200000 0.786344 512

150000 0.786215 393

100000 0.782477 263

50000 0.777649 121

TABLE IV

TIME AND AUC USING CATBOOST

#Rows AUC Time

307507 0.787629 1803

250000 0.784402 1257

200000 0.782895 851

150000 0.780762 567

100000 0.776168 442

50000 0.770666 286

Table V illustrates the effect of the features preprocessing

on the time and AUC. From the table, it can be noted that
normalization, collinear or deleting the features which have
missing values less than 75%,is unfeasible. Figs. 7 and 8 show
the features ranking using LightGBM and CatBoost,
respectively.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:1, 2019

9

Fig. 7 Feature ranking using LightGBM

Fig. 8 Feature ranking using CatBoost

Fig. 9 shows the distribution of a high rank feature

(EXT_SOURCE1) and a low rank feature (BURO_DAYS).

TABLE V
THE EFFECT OF THE FEATURES PREPROCESSING ON LIGHTGBM

PERFORMANCE

 # Features AUC Time

Full data 721 0.789804 1748

Miss 75% 696 0.789933 1685
Miss 75%

normalization
696 0.789868 1716

Miss 80
Importance 1

392 0.790115 1437

Miss 75
Importance 5

200 0.789996 786

Miss 75
Importance 7

158 0.789897 645

Miss 75
Importance 10
Collinear 95

113 0.788780 515

Miss 50
Importance 7
Collinear 95

105 0.779643 432

Miss 50
Importance 7

122 0.77310 533

Discovering new features can enhance the accuracy

significantly; however, the knowledge of the domain is not
sufficient to find all the important features. Thus, a random
features generation mechanism is adopted using random
operations (*, ^, /, +, - , max, …) with two or three of the top
features. To prevent the exponential growth of the random
features, a simple and fast rejection technique is used such as a
signal to noise feature ranking. By using the combination of
the above operations, thousands of the new features are
generated. However, only 150 features are found which have
acceptable rank; therefore, the AUC is improved after adding
the new discovered features, and became 0.79304. Fig. 10
shows a new random feature (b1n11) among the top features
using LightGBM ranking.

Fig. 9 The distribution of low and high rank features

V. CONCLUSION

Boosting methods iteratively train a set of weak learners,
where the weight of the records are updated according to the
regression results of the loss function of the previous learners.
In this study, we compared between three state-of-the-art
gradient boosting methods (XGBoost, CatBoost and
LightGBM) in terms of CPU runtime and accuracy.
LightGBM seems to be significantly faster than the other
gradient boosting methods and more accurate using the same

time budget of hyper-parameters optimization. The results can
be improved by generating new features and selecting the best
set.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:13, No:1, 2019

10

Fig. 10 New features ranking using LightGBM

REFERENCES
[1] Y. Freund, R. E. Schapire, “A decision-theoretic generalizationof online

learning and an application to boosting," Journal of Computer
andSystem Sciences, vol. 55, no. 1, pp 119-139, 1997.

[2] P. Kontschieder, M. Fiterau, A. Criminisi, S. Rota Bulo. “Deep neural
decision forests,” In Proceedings of the IEEE International Conference
on Computer Vision, pp 1467–1475, 2015.

[3] J. C. Wang, T. Hastie, “Boosted varying-coefficient regression models
for product demand prediction,” Journal of Computational and
Graphical Statistics, vol. 23, no. 2, pp 361–382, 2014.

[4] E Al Daoud, “Intrusion Detection Using a New Particle Swarm Method
and Support Vector Machines,” World Academy of Science, Engineering
and Technology, vol. 77, 59-62, 2013.

[5] E. Al Daoud, H Turabieh, “New empirical nonparametric kernels for
support vector machine classification,” Applied Soft Computing, vol. 13,
no. 4, 1759-1765, 2013.

[6] E. Al Daoud, "An Efficient Algorithm for Finding a Fuzzy Rough Set
Reduct Using an Improved Harmony Search," I.J. Modern Education
and Computer Science, vol. 7, no. 2, pp16-23, 2015.

[7] Y. Zhang, A. Haghani. “A gradient boosting method to improve travel
time prediction. Transportation Research Part C,” Emerging
Technologies, vol. 58, 308–324, 2015.

[8] K. Guolin, M. Qi, F. Thomas, W. Taifeng, C. Wei, M. Weidong, Y.
Qiwei, L. Tie-Yan, "LightGBM: A Highly Efficient Gradient Boosting
Decision Tree," Advances in Neural Information Processing Systems
vol. 30, pp. 3149-3157, 2017.

[9] A. Dorogush, V. Ershov, A. Gulin "CatBoost: gradient boosting with
categorical features support," NIPS, p1-7, 2017.

[10] M. Qi, K. Guolin, W. Taifeng, C. Wei, Y. Qiwei, M. Weidong, L. Tie-
Yan, "A Communication-Efficient Parallel Algorithm for Decision
Tree," Advances in Neural Information Processing Systems, vol. 29, pp.
1279-1287, 2016.

[11] A. Klein, S. Falkner, S. Bartels, P. Hennig, F. Hutter, “Fast bayesian
optimization of machine learning hyperparameters on large datasets,” In
Proceedings of Machine Learning Research PMLR, vol. 54, pp 528-
536,2017.

[12] J. H. Aboobyda, and M. A. Tarig, “Developing Prediction Model Of
Loan Risk In Banks Using Data Mining,” Machine Learning and
Applications: An International Journal (MLAIJ), vol. 3, no. 1, pp 1–9,
2016.

