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 
Abstract—Autonomous vehicles offer the possibility of 

significant benefits to social welfare. However, fully automated 
cars might not be going to happen in the near further. To speed the 
adoption of the self-driving technologies, many governments 
worldwide are passing laws requiring data recorders for the testing of 
autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle 
bus) has to be monitored from a remote control center. When an 
autonomous vehicle encounters an unexpected driving environment, 
such as road construction or an obstruction, it should request 
assistance from a remote operator. Nevertheless, large amounts of 
data, including images, radar and lidar data, etc., have to be transmitted 
from the vehicle to the remote center. Therefore, this paper proposes a 
data compression method of in-vehicle networks for remote 
monitoring of autonomous vehicles. Firstly, the time-series data are 
rearranged into a multi-dimensional signal space. Upon the arrival, for 
controller area networks (CAN), the new data are mapped onto a 
time-data two-dimensional space associated with the specific CAN 
identity. Secondly, the data are sampled based on differential 
sampling. Finally, the whole set of data are encoded using existing 
algorithms such as Huffman, arithmetic and codebook encoding 
methods. To evaluate system performance, the proposed method was 
deployed on an in-house built autonomous vehicle. The testing results 
show that the amount of data can be reduced as much as 1/7 compared 
to the raw data. 
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I. INTRODUCTION 

UTONOMOUS vehicles are expected to offer many 
benefits, including reduced traffic and parking congestion 

(and therefore infrastructure savings), independent mobility for 
low-income people (and therefore reduced need for public 
transit), increased safety, energy conservation and pollution 
reductions. However, these advantages will only be significant 
when autonomous vehicles become common and affordable, 
probably in the 2040s to 2050s [1]. Currently, The Society of 
Automobile Engineers (SAE) defined six levels of autonomous 
driving, according to their relative extent of automation [2]. 
Level 0 refers to the traditional vehicle, on which the human 
driver take all aspects of the dynamic driving task. Level 1 
refers to the vehicle with driver assistance system, which 
supports the driver but do not take control. Level 2 defines 
partly automated driving, where systems can also take control, 
but the driver remains responsible for operating the vehicle. 
Level 3 refers to highly automated driving, where the driver can 
disengage from the driving for extended periods of time in 
certain situations. Level 4 defines fully automated driving, 
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where the vehicle drives independently most of the time, while 
the driver remains able to drive but can, for example, takes a 
nap. Level 5 defines full automation, where the vehicle assumes 
all driving functions and the people in the vehicle are only 
passengers. 

To achieve full automation, many companies are working on 
self-driving cars. Unfortunately, some vehicles crashed 
recently [3], [4]. To help determine what the vehicles are doing 
before, during and after crashes, self-driving cars are required 
to equip with data recorders to collect information of driving 
behavior [5]. Unlike the traditional vehicles, self-driving cars 
utilize a combination of advanced sensors, such as stereo 
cameras and long- and short-range radars, and lidars, to monitor 
and respond to their surroundings. These sensors can generate a 
huge amount of data per second. Therefore, this paper proposes 
a method of data compression for remote monitoring of 
autonomous vehicles. Fig. 1 shows the system architecture of 
remote monitoring for self-driving cars. The proposed data 
recorder is deployed on the autonomous vehicle. Data on the 
in-vehicle network are compressed and transmitted to the 
remote center for the purposes of vehicle monitoring and data 
analysis. 

The rest of this paper is organized as follows. Section II 
presents the system architecture and the proposed scheme. 
Section III shows the test results. Finally, Section IV provides 
some concluding remarks. 
 

 

Fig. 1 Remote monitoring of autonomous vehicles 

II. SYSTEM ARCHITECTURE AND PROPOSED SCHEME 

Besides CAN, autonomous vehicles are usually equipped 
with Ethernet. Fig. 2 shows the heterogeneous architecture of 
the in-vehicle network, which consisted of CAN bus and 
Ethernet. The decision and control modules are connected with 
the CAN bus, while the advanced sensors are connected with 
the Ethernet. The CAN network and the Ethernet are connected 
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through a gateway, i.e., the data recorder, which collects all the 
data from the Ethernet and CAN network. In additional to data 
storing, the data recorder also transmits the collected data to a 
remote control center through the 4G cellular network. 

 

 

Fig. 2 Heterogeneous architecture of in-vehicle network 
 

Fig. 3 shows the software block diagram of the proposed data 
recording. The input interface is either CAN bus or Ethernet. 
The data sources include perception module, decision module, 
control module, lidar, radar, cameras, RTK GPS, IMU, and 
odometer. The data parser tells if the message is for real-time 

monitoring or historical data recording. The parameters of the 
real-time monitoring, including vehicle location, speed, 
heading, mileage, diagnostic trouble code, etc., are sent to the 
remote center every second. Meanwhile, the historical data, 
including all the data on the in-vehicle network, are compressed 
into files with a period of ten minutes. The historical data files 
are sent to the remote control center when available.  

As the autonomous vehicles generate large amounts of data 
constantly, the data have to be compressed to facilitate the 
transmission to the remote center. Fig. 4 shows the compression 
block diagram of the proposed data recording for in-vehicle 
networks. Fig. 5 shows the original time series of the CAN data, 
which is consisted of CAN identity (ID), data length code (DLC) 
and the data. Firstly, the time series data are grouped into a 
multi-dimensional signal space. Upon the arrival of a CAN 
message, the new data are mapped onto a time-data 
two-dimensional space associated with the specific CAN ID, as 
shown in Fig. 6. Secondly, the multi-dimensional data are 
sampled based on the differential sampling. Finally, the whole 
set of data are encoded using existing algorithms such as 
Huffman, arithmetic and codebook encoding methods. 

 

 

Fig. 3 Software block diagram of the proposed data recording for in-vehicle network 
 

 

Fig. 4 Compression block diagram of the proposed data recording for in-vehicle network 
 

 

Fig. 5 Time series of CAN data 
 

Fig. 7 shows the dataflow of the remote monitoring for 
autonomous vehicles in this paper. The data recorder collects 
vehicle’s information and sends the data to the remote center 
through the 4G cellular network. The real-time data receiver in 
the figure decodes some selected parameters for vehicle 
monitoring, while the historical data file receiver aggregates all 

the data collected at the data recorder. Both the real-time data 
and the historical data are imported into a database. Meanwhile, 
a web server provides web pages for users to monitor the 
vehicles and download the historical data for further analysis. 
When the autonomous vehicle encounters an unexpected 
driving environment, the remote operator can send control 
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commands to the vehicle through the remote command 
transmitter shown in the figure. 

III. TESTING RESULTS 

The data recorder was deployed on an in-house built self- 
driving e-golf cart. Fig. 8 shows the e-golf cart and the 
associated modules, including a lidar, a camera, a HMI, three 
ultrasonic sensors, a GPS/IMU, a battery management system, 
electronic chassis modules, a wireless charging module, and a 
decision module. The e-golf cart provides shuttle service on the 
campus of ARTC (Automotive Research and Testing Center). 
As shown in Fig. 9, there are seven stops along the shuttle route. 
All the information on the heterogeneous network was 
collected by the data recorder on the vehicle. Then, the data 
were compressed and sent to a remote center through the 4G 
cellular network. The data were compressed as a file every ten 
minutes. All the modules on the e-golf cart generated more than 

50 kinds of CAN messages with different periods. During each 
ten-minute, 150,565 records were collected. Each CAN record 
was consisted of arrival time, CAN ID, DLC, and data bytes. 
The total size of raw data during ten minutes was 2,198,467 
bytes. By using the proposed compressed method, the data size 
was reduced to 305,000 bytes. The compression ratio reached 
as high as 1/7. 

 

 

Fig. 6 Data grouping and differential sampling of the proposed method 

 

 

Fig. 7 Dataflow of the proposed remote monitoring for autonomous vehicles 
 

 

Fig. 8 The in-house built self-driving e-golf cart 

 

Fig. 9 Operating route of the shuttle service 

IV. CONCLUSIONS 

This paper has presented a data recording method for remote 
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monitoring of autonomous vehicles. The time series data on the 
in-vehicle network are grouped into a multi-dimensional signal 
space. Upon the arrival of a CAN message, the new data are 
mapped onto a time-data two-dimensional space associated 
with the specific CAN ID. Afterwards, the multi-dimensional 
data are sampled based on the differential sampling. Lastly, the 
whole set of data are encoded using existing algorithms such as 
Huffman, arithmetic and codebook encoding methods. The data 
recorder was deployed on an in-house built self-driving e-golf 
cart, which provides shuttle service on the campus of ARTC. 
The test results show that the data size can be reduced to 1/7 by 
using the proposed method. 
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