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Performance Analysis of MATLAB Solvers in the
Case of a Quadratic Programming Generation

Scheduling Optimization Problem
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Abstract—In the case of the proposed method, the problem is
parallelized by considering multiple possible mode of operation
profiles, which determine the range in which the generators operate
in each period. For each of these profiles, the optimization is carried
out independently, and the best resulting dispatch is chosen. For each
such profile, the resulting problem is a quadratic programming (QP)
problem with a potentially negative definite Q quadratic term, and
constraints depending on the actual operation profile. In this paper we
analyze the performance of available MATLAB optimization methods
and solvers for the corresponding QP.
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I. INTRODUCTION

OPTIMAL scheduling of generators or economic dispatch

[1]–[3] is a central problem of power systems research.

In [4] a framework has been defined, in which the dispatch

optimization of generators with potentially concave production

characteristics may be carried out via a distributed manner.

Since we assume that the production characteristics are

described with piecewise linear production price/MW curves,

which may be also decreasing, the optimization task results in

a potentially non-convex QP programming problem. The paper

[4] defines so called modes of operation and MoO-profiles,

which determine the ranges in which the generators operate

through the analyzed time frame. The algorithm proposed

in [4] also allocates reserves to the generators via the

optimization procedure in order to make it capable of

optimizing the output of a reserve market bidding.

Joint energy and reserve markets [5] are recently born

energy-economical constructions which allocate energy and

reserve production in the same time (for an explicit example

see eg. [6], [7]). As detailed in [8], joint auction models did

not receive much attention so far, on the one hand because

of the complexity of the underlying algorithms, and on the

other hand, because the current impact of ancillary services

onto the total end user tariff is quite small. However these

frameworks which allocate energy and reserves simultaneously

may facilitate reserve-production capable power plants to an

increased vindication of their potential: In these frameworks it

is immediately taken into account that as they produce energy,
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they create the potential of reserve allocation in the same

time as well. However, as mentioned before, in this article

we do not consider explicit market models, but a prior given

zero-elasticty demand of power and reserves, similar to [4].

This approach is important in the topic of joint energy and

reserve markets [8]. The increasing market share of renewable

technologies [9] underline the importance of reserves and

co-allocation methods.

In this paper, we analyze the freely available Matlab solvers

for the optimization of a potentially non-convex quadratic

co-allocation problem, and compare their performance on

various scales as success rate, optimality and computational

time.

II. MATERIALS AND METHODS

In this paper we analyze a two-level time-frame. First, we

consider macro-periods, to which the MoOs of the generators

are assigned, and second, we consider micro-periods

inside the macro-periods. The power and reserve demands

are defined on the level of micro-periods. We consider

positive/negative secondary and tertiary reserves, denoted by

s+, s−, t+, t−. We assume n generators, T macro-periods,

and H micro-periods in each macro-period. In the following

the variable t without subscript refers to macro-periods, and

with subscript, as tk, refers to the k-th micro-period of the

t-th macro-period (t ∈ [1, ..., T ], k ∈ [1, ...H]).

The generation levels, and the amounts of allocated reserves

of each type has to be defined for every plant for each

micro-period. Thus, the variable vector to be optimized is

x =

(
xP

xR

)
(1)

where

xP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1(11)
...

p1(1H)
p1(21)

...

p1(2H)
...

pn(TH)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)
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and

xR =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1s+(11)
...

r1s+(1H)
r1t+(11)

...

r1t+(1H)
r1s−(11)

...

r1s−(1H)
r1t−(11)

...

r1t−(1H)
r1s+(21)

...

r1t−(TH)
r2s+(11)

...
rnt−(TH)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

xP holds the power generation values, pi(jk) denotes the

power production value of generator i in the kth micro-period

of macro-period j. Similarly, the value ris+(jk) denotes the

amount of secondary positive reserve allocated to plant i in

the kth micro-period of macro-period j. The notations are

straightforward for other reserve types.

xP has the dimension nTH , while xR is of dimension

4nTH . While the prior given power and reserve demands

define equality type constraints (eg. the power production

in each micro-period has to be equal to the power demand,

and similar equations for reserves), the MoO profiles define

inequality constraints by the definition of operating intervals.

A. Analyzed Solvers

The following freely available solvers were compared in this

study:

• CLP solves LPs using a Primal Simplex method, and QPs

using a Dual Simplex method [10]

• SCIP is basically a MILP solver, which also solves

non-convex quadratic (and quadratically constrained)

problems to global optimality [11]

• OOQP [12] solves QPs using a Gondzio

Predictor-Corrector method [13].

• IPOPT [14] is a general nonlinear solver for smooth,

twice differentiable, nonlinear programs. While the

objective need not be convex, IPOPT will only find local

solutions.

• Finally, as a global alternative, the fmincon function of

Matlab [15] was applied.

CLP SCIP, OOQP, IPOPTm, NLOPT were obtained from

the OPTI toolbox [16], while fmincon was called via YALMIP

[17].

B. Comparison Metrics

We compare the performance of the above solvers regarding

the following points.

• Successful solution rate. Since, as detailed in [4],

an MoO may be regarded as top-level-feasible or

low-level-feasible. Top-level-feasible MoO profiles only

ensure that eg. the maximal available power generation

level, determined by the MoO does not exceed the

power demands corresponding to the micro-periods of the

macro-periods. On the other hand, low level-feasibility

of an MoO profile means, that an actual dispatch may

be generated in the case of the constraints implied by the

MoO. Only a subset of top-level-feasible MoO profiles is

low-level-feasibile. Considering this, we may analyze the

success ratio of the solvers, considering various demand

and MoO profiles. This ratio has a maximum not equal

to 1, since not MoO profiles are low-level-feasibile.

• Optimality. It is very straightforward to calculate the price

of the allocation returned by the solver. We compare this

to the price of the most optimal case among all solutions.

• Computational demand. We measure the computational

time of the optimization as well in the case of various

solvers.

III. RESULTS

We demonstrate our results on the following example set of

plants. We consider 5 power plants, all with 4 MoOs (nm = 4).

Furthermore we are considering T = 4 and H = 6.

• PP 1 - Coal with the following operation intervals

pmin
1 = [0 400 600 750]

pmax
1 = [0 600 750 900]

• PP 2 - CCGT 1

pmin
1 = [0 150 250 350]

pmax
1 = [0 230 350 400]

• PP 2 - CCGT 2 with the same operation ranges as CCGT

1. We assume that PP 3 differs only in the offer price from

PP 2 (c3max > c2max elementwise). The prices demanded

for reserves by this generator are also higher.

• PP 4 represents a virtual power plant, which is assumed

to not being able to produce reserves.

pmin
1 = [0 40 70 120]

pmax
1 = [0 70 120 140]

• PP 5 represents a biomass power plant.

pmin
1 = [0 120 145 180]

pmax
1 = [0 145 180 200]

As mentioned above, we suppose that the plants linearly

approximate their real production characteristics in the

production intervals corresponding to MoOs. Here, we do not

detail all the real and submitted production characteristics,

the reserve characteristics and reserve prices. But to give an
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Fig. 1 Production characteristics of PP 1

Fig. 2 Reserve characteristics of PP 1. The available tertiary reserves depict
the case when no secondary reserve is allocated to the unit

example, we depict the production and reserve characteristics

of PP 1 in Figs. 1 and 2 respectively.
the nominal power demand pattern was the following (in

MW).

d(11)− d(16) = [987 905 851 749 921 991]

d(21)− d(26) = [1136 1271 1329 1391 1324 1311] (4)

4 further power demand vectors were generated as fluctuations

of the nominal demand vector with ± 50 MW fluctuations for

each micro-period (uniform distribution). We assumed that the

secondary and tertiary reserve demands are 5 and 10 percent

of the power demand in each micro-period.

A. Dimensions of the Problem

We considered T = 2 macro-periods, and H = 6
micro-periods each. This resulted in the dimension of 300

for x, 60 equality type constraints and 360 inequality type

constraints.

B. An Example Solution

To give an impression how a possible solution for the

above optimization problem looks like, we depict one possible

allocation for the nominal power demand vector.

The solution was calculated for the MoO profile

MoO =

⎛
⎜⎜⎜⎜⎝

2 3
3 3
1 2
2 2
1 1

⎞
⎟⎟⎟⎟⎠

where the rows correspond to plants and the columns

correspond to macro-periods. MoO(2,2)=3 refers to the fact

that plant 2 is in its third operation interval in macro-period

2.
Figs. 3, 4, 5, 6 and 7 depict the allocation of power

generation, secondary positiva, tertiaty positive, secondary

negative and tertiary negative reserve allocation respectively. it

is easy to recognize in Figs. 3, 4, 5, 6 and 7, that the sum of the

amount of power/reserves allocated to various plants is always

equal to the demand, thus the equality type constraints hold.

With the help of the operation intervals defined in Section

III, one may also easily check the validity of inequality type

constraints regarding power production values.
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Fig. 3 Example of power allocation among the plants
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Fig. 4 Example of secondary positive reserve allocation among the plants

C. Results
The solvers were tested in 5 different cases of demand

profiles. The numbers of top-level-feasible profiles for each

demand curve are summarized in Table I.
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Fig. 5 Example of tertiary positive reserve allocation among the plants
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Fig. 6 Example of secondary negative reserve allocation among the plants
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Fig. 7 Example of tertiary negative reserve allocation among the plants

TABLE I
NUMBER OF TOP-LEVEL-FEASIBLE PROFILES IN THE CASE OF VARIOUS

DEMAND CURVES

1 2 3 4 5
81 61 41 49 58

No.1 is the nominal demand profile.

1) Successful solution rate: The solution rates of the

various solvers are summarized in Table II.

TABLE II
SUCCES RATES OF THE SOLVERS

CLP SCIP OOQP IPOPT fmincon
1 1 1 1 0.5

We can see in Table II that all solvers except fmincon are

able to solve all low-level-feasible profiles.

2) Optimality: Optimality of the various solvers are

summarized in Table III.

TABLE III
OPTIMALITY OF THE SOLVERS

CLP SCIP OOQP IPOPT fmincon
0.1846 0 0.9739 0.0741 0.1431

The values in in Table III refer to the rate on which the

cost of the returned solution exceeds the cost of the optimal

solution (in percentage). As we can see, SCIP returns the

optimal solution in the 100% of the cases. OOQP has the

largest deviations from the optimum, while IPOPT performs

also well.

3) Computational demands: Average and maximal solution

times of the various solvers are summarized in Table IV in

seconds.

TABLE IV
COMPUTATIONAL DEMAND OF THE SOLVERS

Solver CLP SCIP OOQP IPOPT fmincon
avg. 0.0705 3.8799 0.5244 0.2470 2.4677
max. 0.0845 9.6256 1.0303 0.3039 3.5746

The computational time of fmincon was very high thus the

number of iteration was limited to 100 in its case. This affected

the results in Table III ansd possibly in Table II as well. We

have to note that the computational demands of solvers may

be similar in the case of infeasible problems as well. This

means that if we evaluate a large number of possible MoO

profiles, from which only a small subset is low-level-feasible,

the solvers with high average execution times result in high

total time.

The optimization tests were run on a standard desktop PC

with an intel Core i3-2120 CPU 3.3 GHZ and 4 GB RAM.

IV. CONCLUSION

If one is dealing with a large number of QP problems, like

the framework presented in [4], the choice of the appropriate

solver is very important in order to get results of acceptable

quality in a tractable time frame.

The results show that while SCIP is the most reliable solver

regarding the optimality of the solutions, its computational

demand is quite high. CLP represents a very fast alternative

and the calculations show that it returns suboptimal

results relatively close to the desired optimum, while its

computational demands are in average only about 2 percent of

SCIP. OOQP is also much faster than SCIP, but still almost ten
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times slower than CLP. The second fastest method is IPOPT,

which represents a possible compromise between speed and

optimality.
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