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Abstract—When a partially or completely immersed solid moves 
in a liquid such as water, it undergoes a force called hydrodynamic 
drag. Reducing this force has always been the objective of 
hydrodynamic engineers to make water slide better on submerged 
bodies. This paper deals with the examination of the different terms 
composing the analytical solution of the flow over an obstacle 
embedded at the bottom of a hydraulic channel. We have chosen to 
use a linear method to study a two-dimensional flow over an obstacle, 
in order to understand the evolution of the drag. We set the following 
assumptions: incompressible inviscid fluid, irrotational flow, low 
obstacle height compared to the water height. Those assumptions 
allow overcoming the difficulties associated with modelling these 
waves. We will mathematically formulate the equations that allow the 
determination of the stream function, and then the free surface 
equation. A similar method is used to determine the exact analytical 
solution for an obstacle in the shape of a sinusoidal arch. 

 
Keywords—Free-surface wave, inviscid fluid, analytical solution, 

hydraulic channel. 

I. INTRODUCTION 

HE calculation of the free surface induced by the 
deformation of the bottom of a channel is not an easy task. 

Several authors have tried and ended up choosing a certain 
form of disturbance, such as Boutros et al. [1]. Indeed, 
methods calculating the free-surface elevation often involve 
integrals that are quite difficult to carry out analytically. To 
pass this milestone, each researcher has his own method: 
- The integral is replaced by an approximation. 
- We choose an obstacle for which the integral is 

calculated; this is, for example, the case of the triangular 
obstacle. 

In this paper, we highlight all the analytical terms that make 
up the free surface equation and use a method that will allow 
us to address a particular bump lying in the bottom of a 
hydraulic channel. 

 

 

Fig. 1 Physical scheme 
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II. MATHEMATICAL EQUATIONS 

Let’s consider a free-surface flow in the presence of an 
obstacle of length l and maximum height b. The upstream 
water level is H. 

The fluid is assumed to be incompressible and inviscid. 
Surface tension forces are neglected. Upstream, the flow is 
steady, uniform, and therefore irrotational. 

The bottom equation can be written as: 
 

y = - H + f(x)                         (1) 
 
f(x) is the function describing the obstacle assumed to satisfy 
Dirichlet's conditions. 

The velocity components are given by: 
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(x,y) is the stream function which must satisfy adequate 
boundary conditions at the appropriate borders. In the case 
where b/H is very small, the small disturbance method can be 
used and we write: 
 
 (x,y)  -Uy     (x,y) with  0       0             (3) 

 
The free surface is a streamline; we can write Bernoulli's 

relationship on it, as: 
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The bottom is also a streamline. 
 

 UH )y,x(                           (5) 
 
At the first order of the expansion, (4) and (5) give: 
 

H)- (x,   f(x) U                                     (6) 
 
f(x) is written in the form: 
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The stream function disturbance φ(x,y) is written [1]: 
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A. Triangular Bump 

Let's write the triangle equation: 
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Let's call: kH = t,  l1/H = L1,  l2/H = L2,  b/H = B, y0 = 
(x,o)/H,   Q(t)=1/(t²(cht - sht/Fr² t)), B/L1 = tan , B/L2 = tan 
. Fr is the Froude number defined by: Fr2 = U2/gH 

By using (9) in (8), the free surface is written as: 
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The poles of the function to be integrated are the roots of 

Q(t) which are: t = 0, t =  in n= 1,2,.....  with tan n = Fr² 
n, t =   with th   = Fr² . 

The last pole exists only if Fr<1. This condition allows the 
subcritical regime to be distinguished from the supercritical 
regime. Q(z) is then written as: 
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Fig. 2 Semi-infinite step 
 

 

Fig. 3 Semi-infinite step 
 

 

Fig. 4 Angles of the triangle 
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The following identities were used: 
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It is very clear that the free-surface is the sum of three 

contributions, each due to a pole. 
The pole t = ± a exists only if the Froude number is less 

than one; it gives rise to two trains of the same wavelengths 
that start at the beginning and end of the obstacle. 

The following remarks can then be highlighted: 
- the length of the obstacle modulates the amplitude of the 

final waves. 
- waveless for a supercritical regime. 
- the influence of this pole on the free surface goes from 

zero to + where it is the only one to contribute to the 
final solution. 

The iβn poles contribute by two exponential decreases, 
symmetrical with respect to the beginning and end of the 
obstacle; it is at these levels that the free-surface is located. As 
for the previous pole, the variation in length L changes the 
shape of the free surface, but this influence is located in the 
vicinity of the obstacle. 

The zero pole is very particular. Its contribution is written 
as: 1- Fr² f(x) / 2 (Fr²-1). From this result, it is noted that if the 
beginning and the end levels of the obstacle are not the same, 
the average downstream free-surface does not extend the 
undisturbed upstream free-surface. 

 

Undefined side 

Undefined side 
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B. Semi-Infinite Step 

For the semi-infinite step and the rectangular triangle, the 
vertical sides of the obstacles create a mathematical 
discontinuity of the free-surface due to the fact that the 
function describing the obstacle is itself discontinuous. The 
semi-infinite step is represented by Fig. 2. The rectangular 
triangle is represented by Fig. 3. In the equation of non-
particular triangle, the angles at the base are shown in Fig. 4. 

To obtain the equation of the free-surface for a rectangular 
triangle, the angle value of γ is increased up to π/2. If θ = 0 
and γ = π/2, we obtain the free-surface expression of the semi-
infinite step. The obtained equation for the semi-infinite step, 
for x < 0 is: 
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C1 is a constant to be determined. Let's write the undisturbed 
free-surface condition far upstream: 
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This allows us to determine the constant C1 and the 
expression of the free-surface y0 for x < 0, namely: 
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The function is continuous for the x = 0; therefore: 
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This allows us to determine C2: 
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By combining the two writings, the free-surface for a semi-
infinite step can be written, for any x: 
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This solution is identical to the one given by Bloor et al. [2] 

by another means. The contribution of each pole is 
summarized in Fig. 5. 

 

 

Fig. 5 Contribution of each pole 
 
By using the same way, we obtain the solution of the 

rectangular triangle: 
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In view of the number of papers devoted to the subject, we 
will mention only a few of them in chronological order. Lamb 
[1] considered a very small obstacle. Gazdar [2] showed that 
some obstacles do not produce waves. Bouhadef et al. [3] 
conducted, in addition to the analytical study, an experimental 
investigation. Forbes and Schwartz [4] treated the case of a 
semi-circular obstacle using a numerical method. Boutros et 
al. [5] considered a linear obstacle (the triangle). King and 
Bloor [6] were interested in the case of a semi-infinite step. 
Bouhadef and Peube [7], [8] took into account, in their study 
within the framework of linear theory; the fact that the 
velocity profile in the hydraulic channel is sheared and not 
constant. Zitoun and Bouhadef [9], Guendouzen-Dabouz et al. 
[10] highlighted the influence of the distance, separating two 
drowned obstacles, on the phenomenon of gravity waves. 
Bouinoun and Bouhadef [11] used the conformal mapping 
theory to treat the nonlinear free-surface problem for an 
uneven bottom. 

C. Sinusoidal Arch 

Let’s consider the flow over a sinusoidal obstacle defined 
by: 
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Instead of the streamfunction, we consider the velocity 
potential Ф decomposed into the sum of a velocity potential 
corresponding to the horizontal bottom and a velocity 
potential of the disturbance. 

 

Ф = φ - Cx with Ф  = 0 → φ  = 0                    (14) 
 
The sliding condition on the bottom of equation: 
 

yf = -H + f(x)                     (15) 
 
gives: 
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where u and v are respectively the horizontal and vertical 
velocity components and f’(x) the first derivative of f(x). 
Thus: 
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On the free-surface y0(x), the cinematic boundary condition 

is written as: 
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At the same level, the dynamic Bernoulli relation boundary 

condition gives: 
 

y0 = 
g

C
 (

x

φ




)y=0                             (19) 

 
By combining the derivative of (19) with (18) we obtain: 
 

(
2

2

x

φ




)y=0 + 2C

g
 (

y

φ




)y=0 = 0                (20) 

 
Using the Fourier transform, one can get the free-surface 

equation, for a subcritical regime (Fr<1), in the form: 
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For a supercritical regime (Fr>1), simply replace α by zero. 
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Fig. 6 Free-surface profile for a sinusoidal arch 
 

It should be noted that the above solution was 
discontinuous. The expression of the free surface involves the 
derivative of the function describing the obstacle. Since this is 
continuous for each zone (upstream, on and downstream of the 
arch), it results that the solutions obtained form a family 
generated by inverts, this same continuous derivative, i.e. with 
one constant. To identify the solution to our problem, among 
all the other possible solutions, we use the boundary condition 
expressing the fact that the free-surface, far enough upstream, 
is horizontal at the same level as the undisturbed surface. It is 
this approach, from zone to zone, that we have adopted to 
obtain the right continuous solution. 

III. CONCLUSION 

In this work, we have specified the contribution of each of 
the three poles of the complex function involved in the 
calculation of the free-surface. We were thus able to explain 
certain "anomalies" in particular cases of obstacles and 
identify their origin. Through this analytical solution, we have 
found results that are well known in the literature. On the 
other hand, the theoretical study we conducted for a very 
particular obstacle, namely a sinusoidal arch, made it possible, 
using the Fourier transform, to determine the analytical 
expression of the free surface. Since the obstacle has a specific 
characteristic, namely its period, it is shown that the amplitude 
of the generated waves is modulated by the parameters period 
and Froude number without however this amplitude becoming 
unbounded. 
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