
International Journal of Architectural, Civil and Construction Sciences

ISSN: 2415-1734

Vol:13, No:1, 2019

1

Automatic Thresholding for Data Gap Detection for

a Set of Sensors in Instrumented Buildings
Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim

Abstract—Building systems are highly vulnerable to different
kinds of faults and failures. In fact, various faults, failures and human
behaviors could affect the building performance. This paper tackles
the detection of unreliable sensors in buildings. Different literature
surveys on diagnosis techniques for sensor grids in buildings have
been published but all of them treat only bias and outliers. Occurences
of data gaps have also not been given an adequate span of attention
in the academia.

The proposed methodology comprises the automatic thresholding
for data gap detection for a set of heterogeneous sensors in
instrumented buildings. Sensor measurements are considered to be
regular time series. However, in reality, sensor values are not
uniformly sampled. So, the issue to solve is from which delay each
sensor become faulty?

The use of time series is required for detection of abnormalities on
the delays. The efficiency of the method is evaluated on measurements
obtained from a real power plant: an office at Grenoble Institute of
technology equipped by 30 sensors.

Keywords—Building system, time series, diagnosis, outliers, delay,
data gap.

I. Introduction

FAULT detection and diagnosis is well proven and

known tool for several industrial process like aerospace,

automotive, nuclear and process industry and there are various

techniques available, considering the kind of applications [5],

[11], [12]. Over the past few years growing research interests

have been found to apply FDD techniques for buildings [6],

[7].

Nowadays, buildings are considered as highly dynamics

and complex systems as well. They include HVAC systems,

sophisticated controllers, a large number of sensors and energy

management systems. Various faults, failures and unplanned

events could cause a discrepancy in building performance and

a poorly maintained building causes discomfort to occupants.

Sensor measurements are often inaccurate and many external

factors can interfere with the sensing device. Then, it is

important to ensure the accuracy of sensor data before it is

used in a decision making process [17].

Recent literature contributes methods for the detection

and classification of sensor data faults [13], [14]. Fault

classification techniques vary: several existing fault taxonomies

use different criteria for categorising a fault. For exemple,
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[10] gives extensive taxonomies of data faults that include a

definition, the cause of the fault, its duration and its impact

onto sensed data. However, most researchers in the literature

are interested only by the following known fault types: drift,

outliers and bias. Occurences of data gap faults have also not

been given an adequate span of attention in the academia. Data

gap means an abnormal change in the data delays sending by

a sensor.

Conventional fault diagnosis and classification methods

usually implement pretreatments to decrease noise and extract

some time domain or frequency domain features from

raw time series sensor data. Then, some classifiers are

utilized to make diagnosis. However, these conventional fault

diagnosis approaches do not solve automatic thresholding for

heterogeneous sensors and they do not consider the non regular

samples of data time series.

Different diagnosis techniques for sensor grids in buildings

have been published in the literature. Signal based FDD

methods mainly use signals and time series which are obtained

from measurements [16]. Clustering is also considered as

an important application area for many fields including data

mining and statistical data analysis [3]. Clustering has been

formulated in various ways in diagnosis of sensor faults [9].

However, all of these methods treat only bias and outliers type

faults [8]. Also, none of these methods treat the automatic

thresholding for heterogeneous sensors which can be very

helpful to building managers.

This paper tackles this issue and focuses on developing

method for automatic thresholding for automatic data gap

detection for heterogeneous sensors in instrumented building.

In fact, if the threshold is too high, it may lead to

non-detection: the situation is assumed to be normal even

though it is not. On the contrary, a threshold that is too low will

cause false alarms: the situation is supposed to be abnormal

when it is not. Thus, there is the problem of determining

from which deviation a fault can potentially be considered.

The problem is to find an optimal time threshold that will

be the ideal compromise between a non-detection rate and a

false alarm rate. An algorithm based on time series has been

adapted to an office setting which is a sensor test bed with a

large number of ENOCEAN sensors.

This paper is organized as follow: Section II presents the

problem statement of automatic thresholding for heterogeneous

sensors (i.e, occurence of data gaps). Section III presents

the application of time series in fault diagnosis. Section IV

discusses the proposed algorithm for automatic thresholding

for data gap detection for a set of sensors in instrumented

buildings and Section V analyses the simulation results for an
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office at Grenoble Institute of Technology. Finally, concluding

remarks and future works are given in Section VI.

II. Problem Statement

A. Test Bed
The testbed is an office in Grenoble Institute of Technology,

which accommodates a professor and 3 PhD students. The

office has frequent visitors with a lot of meetings and

presentations all through the week. The setup for the sensor

network includes (see Fig. 1):

• 2 video cameras for recording real occupancy and

activities.

• 2 luminosity sensors with different sensitivities

• 4 indoor temperature, for the office and the bordering

corridor

• 2 COV+CO2 concentration sensors for office and corridor

• 1 relative humidity sensor

• 4 door and window contact sensors

• 1 motion detector

• 1 binaural microphone for acoustic recordings

• 5 power meters

• outdoor temperature, nebulousness, relative humidity,

wind speed and direction, . . . from weather forecasting

services

• a centralized database with a web-application for

retrieving raw data from different sources continuously

When smart buildings are expanded to make use of multiple

sensors, the possibility of time delayed data becomes a reality.

Sensor measurements are considered to be statistical time

series. When the sensors are in ok states, the delay data have

a distributions corresponding to the normal mode of operation

and theses distributions change when the sensor is faulty.

Sensor values are not necessarily uniformly sampled. While

after pre-processing the sensors report values regularly, reality

shows that quite many values are missing. The gaps that as a

result exist, are sometimes too small to be visible on a graph.

In general, there is no regularly delayed data for a variable.

Delays depend not only on type of the sensor but also on

the measured values. The question that arises is from which

delay can we say that the sensor become fauly? Automatic

thresholding for data gap detection for heterogeneous sensors

is a feasible paradigm for the instrumented residential

environment.

III. Time Series Applications in Fault Diagnosis

Over the last two decades, advances in data manipulation

techniques and sensor technology have contributed to the

widespread application of signal processing concepts for fault

diagnosis. However, most of these diagnoses, or data, don’t

have the level of redundancy presented in the model-based

methods. Among other things, it is important to consider the

importance of this method. In addition, the data-based method

describes the dynamics of the system with an increased level

of redundancy.

The strength of time series techniques is their capability

to represent an observation in a time invariant parameterized

structure. Such invariance creates the possibility to predict the

data and, hence offers insight to the sensor behavior. Moreover,

their applicability adds to their adequacy for fault diagnosis.

These facts represent the driving motivation in pursuing their

application for diagnostics.

Under certain normal conditions, sensor measurements have

a typical spectrum frequency and any deviation from the

frequent characteristics of a signal is connected to an anomaly.

The application of a decision procedure makes it possible

to detect and locate the faulty sensor. Among the decision

procedures applied to a sample of measures are empirical test

of crossing of threshold, test of variance, the test of the average

[2].

Break detection is a subject related to other classical

problems of signal processing, information or statistics, among

which we can mention the detection of anomalies in general.

The detection of breaks itself corresponds to several problems

: detect changes in signal characteristics and locate them,

and then be able to analyze segments of the time series

individually. The information extracted from it makes it

possible to propose a diagnosis. Reference works detail the

various existing approaches, the reader can particularly refer

to [1] for the detection of a single break mainly in an online

context and [4] for a set of parametric methods and their

applications.

In the time domain, a main trend exists consisting of

constructing a parametric time series model for the observed

data considering a fault-free situation. Then, an analysis

is performed to the observed residuals between the model

prediction and the actual observation in an approach very

similar to that pursued in model-based techniques. A wide

variety of residual analysis methods have been applied. For

example, [15] compared the prediction error of an ARMA

model of the observed multivariate signal in both fault-free

and fault situation as a decision base to detect sensor faults.

Online approaches are also present in the literature [1]. In

on-line approach, samples are taken sequentially and decisions

are made based on the observations up to the current time.

If the decision is made from the values of observations

directly, then when the observations X(t)= [x1(t), x2(t), ...,

xn(t)]
′
∈ Rn where Rn is the so called stopping region, it is

concluded that there is a change in the process.

More often g(t), a function of observation x(t) is designed

and the decision is made according to the comparison of g(t)

with some threshold value c. This idea can be translated into

a stopping rule problem with a standard form

{ τ=inf t ≥ 1; g(t)≥ c }

τ is the greatest lower bound, i.e., the first time when g(t ) is

greater than c.

The main objective of this work is a time series, consisting

of a finite number of successive observations i.e delay data. It

is formalized by the vector X = (X1, ..., Xn). In the absence

of fault, X is stationary i.e time samples are regular. A break

is defined by a change in the sending of data by a sensor. The

solution of this issue is discussed in the following section.
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Fig. 1 Test bench

IV. Proposed Algorithm

The proposed algorithm is a way of describing a data point

in terms of its relationship to the average difference between

two consecutive data points for the whole data set and standard

deviation of the difference between two consecutive data points

for the whole data set.

This method was based on the principle that the variation

of measurements (i.e delays) should smoothly vary and follow

a uniform distribution. The proposed cutoff was the outlier

fence, which is defined by the average difference between

two consecutive data added by a standard deviation of the

difference of the time serie measurements.

The aim of this paper is to process time series of data

representing time samples. Outliers on the delay have to be

detected. They are defined as data points, which, in the contact

of previous and future data points, seem highly improbable.

In the case of normally distributed time samples, it is

assumed that, at a given moment, the difference between the

current and previous data point i.e. data sent by a sensor (see

(1)) is equal to the current and next data point (see (2)).

pdi f fk = xk − xk−1 (1)

fdi f fk = xk+1 − xk (2)

Then, a rule has been fixed at a fixed threshold and is equal

to mΔx +λσΔx , with λ a configurable parameter. If no outliers

is found, reducing the value of λ for testing is required.

Since, the majority of points in a distribution are within

"λσΔx" deviations of the average difference. The decision is

"abnormal delay" when the value of delay is this threshold,

otherwise the decision is "normal case".

These points have been detected as the ones that follow the

equations simultaneously:

|pdi f fk | > mΔx + λσΔx (3)

| fdi f fk | > mΔx + λσΔx (4)

pdi f fk . fdi f fk < 0 (5)

where:

• xk : value of the variable at time sample

• pdi f fk : difference between the current and previous data

point

• fdi f fk : difference between the current and next data point

• mΔx : average difference between two consecutive data

points for the whole dataset

• σΔx : standard deviation of the difference between two

consecutive data points for the whole dataset

• λ: configurable parameter

V. Simulation Results

A data set covering 1 month from 01-March-2016 have been

used to detect the abnormalities on the delay and subsequently

the data gaps from raw measurements of sensors.

The following figures show the detection of outlier with λ =
5 (Fig. 2) as well as the data gaps (Fig. 3) for the Toffice-wall

sensor installed in the H358 office in Grenoble INP.

Fig. 2 Detection of outliers

Each outlier corresponds to a non-healthy period.

The data gaps are detected in the following intervals:

[((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),

((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),

((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))]
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Fig. 3 Detection of data gaps

Fig. 4 Interval 1

Fig. 5 Interval 2

A zoom on the result of the figure (Fig. 3) shows the

accuracy of these intervals (see Figs. 4-6)

The configurable parameter λ has an effect on the outlier

detection rate and consequently on the determination of

unsound periods of sensors (see Table I).

Interpretation:

A well-known advantage of the proposed method is

robustness in the presence of outliers and more precisely to

the different λ configurable parameter change profiles. For

example, consider the calculation of the average difference

between two consecutive data points for the data set. If the

Fig. 6 Interval 3

TABLE I

Effect of λ on the Outlier Detection Rate

λ detection intervals

rate

12 1 ((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))

5 3 ((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),

((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),

((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))

0.3 4 ((2016, 3, 10, 2, 19, 17), (2016, 3, 10, 10, 11, 28)),

((2016, 3, 13, 5, 29, 42), (2016, 3, 13, 6, 55, 42)),

((2016, 3, 15, 5, 24, 56), (2016, 3, 15, 10, 6, 6)),

((2016, 3, 25, 18, 1, 6), (2016, 3, 29, 9, 33, 12))

standard deviation of the difference between two consecutive

data point is linked with a very high value of λ, the average

difference is largely changed. On the other hand, it can be

quite substantially modified for a low value of λ.

Consider scenarios 2 and 3 in which the data (whose

distribution has been described by λ = 5 and λ = 0.3

respectively) are progressively contaminated by an increasing

amount of outliers. The number of outliers on the delay for

scenario 2 is 3 while that of scenario 3 is 4. The limitation

of this method is that we can not conclude on the optimal λ
parameter for the detection of outliers.

The following figure (Fig. 7) shows the evolution of data

gaps for the sensor grid in the H358 office during the year

2016.

Fig. 7 Evolution of raw measurements
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VI. Conclusion

With the emergence of new building issues, diagnosis is

become more and more complex and new methods for design

are required. This paper presents a method for automatic

thresholding for data gap detection for heterogeneous sensors

in instrumented buildings. The solution is based on the use of

time series for detection of abnormalities on the delay. This

method has been applied to a small selection of sensors.

The limitation of the propsed method is that, it depends

on the configurable parameter λ. Moreover, proposed

methodology could provide the first explanation of automatic

thresholding for data gap detection for hererogeneous sensors

to help building reserachers.

Future works will be around the development of an off-line

algorithm for the determination of an optimal configurable

parameter λ. More improvements could be made also for

testing the efficiency of this method on a bigger selection of

sensors, so a large time series.
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