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 
Abstract—This paper presents a context-sensitive media 

similarity search algorithm. One of the central problems regarding 
media search is the semantic gap between the low-level features 
computed automatically from media data and the human interpretation 
of them. This is because the notion of similarity is usually based on 
high-level abstraction but the low-level features do not sometimes 
reflect the human perception. Many media search algorithms have 
used the Minkowski metric to measure similarity between image pairs. 
However those functions cannot adequately capture the aspects of the 
characteristics of the human visual system as well as the nonlinear 
relationships in contextual information given by images in a 
collection. Our search algorithm tackles this problem by employing a 
similarity measure and a ranking strategy that reflect the nonlinearity 
of human perception and contextual information in a dataset. 
Similarity search in an image database based on this contextual 
information shows encouraging experimental results. 
 

Keywords—Context-sensitive search, image search, media search, 
similarity ranking, similarity search.  

I. INTRODUCTION 

IMILARITY search is essential to media information 
retrieval systems. In content-based media retrieval 

(CBMR), the media object is usually characterized by feature 
vector in a very high dimensional space, say, over 100. The 
degree of similarity between two media objects in CBMR is 
usually measured by Euclidean distance. However, users 
sometimes have experienced the mismatch between their 
requests and the results returned from the CBIR system. While 
the notion of similarity is usually based on high-level 
abstraction, the system-based low-level features used in the 
similarity comparison do not sometimes reflect the human 
perception. In this paper, we attempt to find a solution for 
negotiating this semantic gap by devising a new similarity 
measure and a new similarity ranking algorithm.  

Let us consider a real example that shows the standard 
definitions of similarity fail to produce reasonable search 
results. We would like to select two images similar to a given 
query image in a handwritten digit image database. Fig. 1 (a) is 
a query image and Figs. 1 (b) and (c) are the results when a 
human selects two images similar to the query image from the 
database. On the other hand, Figs. 2 (b) and (c) are the actual 
results from the similarity search experiment when the 
Euclidean distance is used as a measure for similarity 
comparison. The digit ‘1’ in Fig. 2 (c) is not matched to the 
query digit ‘4’. This result clearly shows that there exists a 
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discrepancy between human perception and the distance 
metrics such as Euclidean distance. Therefore, in CBMR, it is 
necessary to establish the link that bridges the gap between 
human perception and distance calculation. Based on this 
concept, we define the semantics of an image dataset as the 
contextual relationship in the dataset, in other words, the 
information about the distribution and cluster structure of a 
given dataset. This concept also agrees with the cluster 
assumption [6]: (1) Points in the same local high density region 
are more similar to each other than to points outside this region; 
(2) Points in the same global structure are more similar to each 
other than to points outside this structure. This concept is the 
basis of our similarity metric. 

 

 

(a)                (b)                (c) 

Fig. 1 Human perception based retrieval: (a) is a query image; (b) and 
(c) are two images retrieved by similarity search 

 

 

(a)                (b)                (c) 

Fig. 2 Euclidean distance based retrieval: (a) is a query image; (b) and 
(c) are the two images retrieved by similarity search 

 
In this paper, we attempt to tackle the semantic gap problem 

in image search by capturing the nonlinear relationships in 
contextual information given by an image collection. It has 
been widely acknowledged in media search that a query 
concept is typically a nonlinear combination of perceptual 
features [7]. In this paper, we first conduct the nonlinear 
transformation on the original dataset not only to capture 
nonlinear relationships but also to simulate human perception. 
For nonlinear transformation, we adopt a Gaussian function 
because it possesses an excellent nonlinear approximation 
capability [8], [9]. Compared to the conventional Minkowski 
metric (or Lp-norm), the similarity search based on the 
contextual information offers a more effective search results 
from a human viewpoint. 

II.  RELATED WORK 

A collection of research prototype and commercial CBMR 
systems have exploited the visual features of images, such as 
colors, shapes, and textures, to represent and index image 
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contents. However, it is widely noted that there is a semantic 
gap between the visual features and the semantic meanings of 
images, and it has been a major problem in CBMR systems 
[23].  

The representation of semantic meaning perceived by users 
in a certain domain is a complex problem. Many researchers 
have proposed the use of relevance feedback to bridge the 
semantic gap between the automatically captured visual 
features and the human interpretation of image content. To take 
account of relevance feedback in image search, several 
researchers have explored supervised learning [10]. Tong and 
Chang [4] proposed SVMactive for learning a decision boundary 
by iteratively adding the most informative samples as training 
data. Hoi and Lyu [11] developed a soft-label support vector 
machine (SVM) by taking the feedback confidence into 
consideration in learning the decision boundary. Despite these 
efforts, we note that though SVM [10] is effective for 
classification, the decision boundaries derived by the two 
schemes would be unstable when the feedback contains only a 
few image examples for on-line training.  

The automatic image annotation methods [12]-[15] usually 
employ segmentation techniques to generate keyword-based 
annotations for the images being indexed to facilitate semantic 
searching. However, the segmentation techniques deployed on 
the images are often not robust enough to produce meaningful 
semantics. In addition, clustering of images based on the 
keyword output may include noise, and is usually error-prone 
[23]. 

The latest trend in the image search has shifted somewhat 
towards recovering the intrinsic structure for a proper image 
space of reduced dimensionality. Instead of working with the 
conventional Euclidean space, the main theme is to assume that 
the images are spread as a manifold, and the task is to learn the 
underlying structure of a dataset. Consequently, a similarity 
measure can be computed on the learned manifold. He et al. [16] 
used geodesic distances to approximate the distances between 
image pairs along the manifold. However, the main drawback is 
that the mapping is defined only on the set of training data, and 
thus needs additional mechanisms, such as radial basis function 
networks, to handle test data. Similarly, Wu et al. [7] also 
proposed a method for formulating a context-based distance 
function for measuring similarity. It uses the kernel function 
[10] to nonlinearly transform traditional distances into 
similarity in a transformed feature space. However, it requires 
human intervention to collect the contextual information and 
also needs the contextual information in the form of training 
data. 

In [17], a non-metric distance function called dynamic 
partial function (DPF) was proposed to measure perceptual 
similarity. Although DPF proved that it works better than 
Minkowski metric for measuring perceptual similarity, it is 
actually difficult to dynamically select features to be used for 
distance computation. 

In this paper, similar to the semantic manifold learning 
methods, we first conduct the nonlinear transformation on the 
original dataset not only to capture nonlinear relationships but 
also to simulate human perception. However, unlike [7], [16], 

we do not require human intervention to collect the contextual 
information and the training data. 

III. NONLINEAR SIMILARITY MODEL 

In this section, we discuss the difference between the 
assumptions under our work and the similarity models 
proposed in the literature and introduce our nonlinear similarity 
model, which captures the contextual information as well as 
simulates human perception for similarity evaluation. 

A. Nonlinear Similarity Function 

Constructing an effective image search system requires 
accurate characterization of visual information. Conventional 
models based on Minkowski distance metrics do not adequately 
capture all the aspects of the characteristics of the human visual 
system. The visual section of the human brain is known to use a 
nonlinear processing system for tasks such as pattern 
recognition and classification [8]. We refer to the systems that 
evaluate the degree of similarity between two images linearly 
proportional to the magnitude of their distances as the linear 
model-based retrieval methods. 

In order to simulate human perception for similarity 
evaluation between images, we first establish a nonlinear 
model. The assumption for the nonlinear approach is that the 
same lengths of the distances do not always give the same 
degrees of similarity when judged by humans [18]. In other 
words, the linear model is not competent for the nonlinear 
nature of human perception and cannot cope with the complex 
decision boundary. We therefore propose to use a nonlinear 
criterion in performing similarity comparison. 

The nonlinear model is constructed by an input-output 
mapping function f(x) that uses feature values of input image x 
to evaluate the degree of similarity to a given query [19]. In its 
most common form, the input-output mapping function should 
be smooth in the sense that similar inputs correspond to similar 
outputs. We adopt the following Gaussian function as our basic 
similarity model for the input-output mapping function: 
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The Gaussian function possesses an excellent nonlinear 

approximation capability [8], [9]. The exponential similarity 
function is more sensitive to local changes and gives rise to 
better performance improvement with respect to human 
perception. Psychophysical studies find that the similarity, or 
the confusion frequency, between stimuli decays exponentially 
with some power of the perceptual measure of distance [20], 
[21]. 

B. Nonlinear Transformation 

In our similarity model, it is needed to extract the global 
information to classify the dataset into clusters. While it is 
unclear how to extract this global information, it is easy to 
extract the local property of the points, i.e. the pairwise 
similarity of the points: Two points that are close by are 
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‘similar’ and two points that are far apart are ‘different’. We 
can discover the global information of a dataset from the 
pairwise similarity of individual points. This idea is inspired by 
the work by Shi and Malik [22]. 

If a dataset contains m images we can construct an m  m 
similarity matrix S that describes the similarity properties 
between two images xi and xj according to (1) as:  

 

Sij = exp(||xi  xj||
2 / 2), 

 

where  is a parameter chosen by user. When two images are 
very similar then Sij has a high value and they are not similar at 
all then Sij  0. This similarity function has the following 
properties: 
 

 i, j: Sij  [0, 1], Sii = 0, Sij = Sji. 
 

The first property imposes a normalization on S, the second 
property sets the self-similarity to zero, and the third property is 
a symmetry requirement. 

C. Similarity Ranking 

In order to consider the contextual relationship revealed by 
the dataset we introduce the concept of similarity distribution. 
Assume a set of points X = {x1, x2, , xm} Rn that we would 
like to rank based on the similarity to the query point. Let xq be 
the query point. We define a vector si = [siq, si1, si2, , sim]T, 
where sij is the similarity value between two objects xi and xj. 
The similarity value sij is computed by (1), i.e., sij = exp(||xi  
xj||

2 / 2). We consider the vector si as the distribution of 
similarities between the point xi and all other points in a dataset 
including the query point. The vector sq = [sqq, sq1, sq2, , sqm]T 
represents the distribution of similarities between the query 
point xq and all other points including the query point itself. We 
define sqq as 1.0 but sii, i  q, as 0.0 to avoid reinforcement of 
self-similarity value and the reason will be explained later in 
detail. 

We define the similarity value of a point xi to the query point 
xq by the dot product of the similarity distribution for xi and that 
for xq in Gaussian feature space. The similarity value siq of point 
xi to the query point xq is computed by 
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In (2), si and sq are the similarity distribution vectors for 

points xi and xq, respectively, and the similarity values sij and sqj 
are computed by (1). The similarity measure given by (2) 
denotes the actual similarity value between the query point and 
point xi plus the linear combination of the similarity values 
between point xi and its neighbors, weighted by its neighbors’ 
similarity values to the query point. Therefore, the similarity 
value of a point affects its neighbors’ similarity values, and if 
two points are close, they are more influenced by each other 
because their respective similarity values to query point are 
weighted by the similarity value between two points. With this 

similarity metric based on the similarity distribution, the points 
clustered near the query point are favored in similarity ranking.  

Based on the similarity distribution we introduced, similarity 
ranking can be performed as: 

 
[Input]  A set of points X = {x1, , xq, xq+1, , xm}  Rn, where x1, , 

xq are query points and the rest xq+1, , xm are the data points 
we would like to rank  

[Output] The ranked list of data points 
 
1.   Construct a similarity matrix S  Rmm defined by 

Sij = exp(||xi  xj||
2 / 2 )  if i  j, and Sii = 0 

2. Construct a diagonal matrix D whose (i, i)-element is the sum of 
S’s i-th row. 

3.  Form a normalized similarity matrix S = D1/2S D1/2. 
4.  Create the initial similarity values sij between a point xi and the 

query point xj, 1  j  q, q+1  i  m. 
1   for 1  i  q, i.e., both xi and xj are query  

points. 
                   Sij   for q +1  i  m. 
 
5.   for i = q+1 to m do  // for each data point 
6.          for j = 1 to q do  // for each query point 
7.  

    



m

qk
kjikijij SSss
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8.       end for 
9.   end for 
10. Compute the similarity score si of xi to q query points by si = max 1 

j  q {sij}. 
11. Sort the set SS = {sq+1, sq+2, , sm} in non-increasing order and 

return the top k points as the result.  
 

In step 1, Sii is set to 0 and the reason is explained as follows. 
Let us expand (2) to compute the similarity value Siq between a 
point xi and the query point xq. If we set Sii to 1, then Siq is 
expanded as: Siq = Siq  Sqq + (Si1  Sq1 + Si2  Sq2 +  + Sii  Sqi + 
 + Sim  Sqm) = Siq + (Si1  Sq1 + Si2  Sq2 +  + Sqi +  + Sim  
Sqm). This means that the component Siq (= Sqi) is involved twice 
in computing the similarity value Siq when we set Sii = 1. In 
order to avoid this overestimating, we set the self-similarity 
value as Sii = 0 (but Sqq = 1). Note that the steps 1-3 are 
performed in a batch mode before the search. The cost to 
compute k Sik  Skj in step 7 increases with the number of 
objects in a dataset, but it is not a heavy burden because the 
similarity values Sik and Skj are already computed and saved in 
the similarity matrix S. 

IV. EXPERIMENTS 

To illustrate the effect of our ranking algorithm, let us 
consider a toy dataset containing 100 data points shown in Fig. 
3. The dataset has 3 cluster structures. Every point should be 
similar to the points in its neighborhood, and furthermore, 
points in one cluster should be more similar to each other than 
to points in the other clusters. The query point is denoted by + 
and the number beside each point denotes its similarity rank. As 
shown in Fig. 3, the ranking algorithm amazingly exploits the 

sij = 
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contextual information of the dataset. 
In order to carry out experimental evaluation of our approach 

to the context-sensitive image search, we use the MNIST 
database [24] that contains 120,000 handwritten digit images 
with 28  28 pixels. The MNIST database is a good database 
for people who want to try learning techniques and pattern 
recognition methods on real-world data while spending 
minimal efforts on preprocessing and formatting. In our 
experiments, we use only the first 6,000 images from the 
MNIST database and perform a similarity search to return k 
most similar images for given query images. 

 

 

Fig. 3 Similarity ranking on a query point + over 100 data points 
 

 

Fig. 4 Top 100 images by our similarity ranking, where the top-left 
image is the query image (precision: 98%) 

 

 

Fig. 5 Top 100 images by Euclidean distance based ranking (precision: 
88%) 

 
To obtain an objective measure of performance, we assume 

that a query concept is a category to which the query image is 
belonged, i.e., one of the labels ‘0’, ‘1’, , ‘9’ given to each 
digit category.  

We evaluate precision performance for k nearest neighbor 
(k-NN) queries, where k is 10-100, and precision is computed 
by the fraction of the returned k images that belong to the query 
image category. 

We perform k-NN queries 100 times and average their 
performances. The query images are randomly selected from 
the MNIST database. In order to provide the intuition for our 
method, we show the k-NN search results in Figs. 4 and 5. 

Fig. 6 compares the precision performance for k-NN queries 
among our method, Euclidean distance based method, the 
SVMactive method [4], and the general SVM-based method 
without the relevance feedback. In [4], it is stated that SVMactive 
outperforms three query refinement methods: (1) query 
reweighting methods such as MARS [3], (2) the query point 

movement methods such as MARS [2] and MindReader [1], 
and (3) the query expansion methods such as Falcon [5]. 
Therefore, we compare our method with SVMactive. SVMactive is 
a relevance feedback method based on active learning with 
SVM. It retrieves top-k images after a few relevance feedback 
rounds. In each round of relevance feedback, SVMactive 
determines the images as “relevant” if they have the same label 
as the query image. In the experiment of SVMactive, we conduct 
four relevance feedback rounds and use 100 training samples 
per round. SVMactive shows the worst performance. The poor 
performance of SVMactive can be explained as follows. 
SVMactive learner has no prior knowledge about the handwritten 
digit image categories and it learns a query concept only 
through a relevance feedback process. However, in many cases, 
classifiers perform poorly in a high-dimensional space given a 
small number of training samples. In our experiments, 
SVMactive fails to achieve an average of 30% accuracy.  

We also perform experiments with SVM to verify the 
classification effect of SVM in our domain. After trained 6,000 
images through SVM, we achieve the averages of 86.1% and 
82.9% accuracies on the top-10 results for single- and 
double-point queries, respectively. However, this prior training 
is not the approach employed by SVMactive but learning the 
query concept dynamically is the motivation of SVMactive. 
Therefore, it seems that SVMactive approach without prior 
training steps might fail in high-dimensional spaces. 

As shown in Fig. 6, our method achieves at least 90% 
precision on the top-k results, whereas other methods cannot 
achieve our performance.  

 

 

Fig. 6  Single-point queries: average top-k precision 
 

Fig. 7 shows the precision result for multi-point k-NN 
searches. Our method achieves over 80% precision in any case, 
whereas SVM, SVMactive and Falcon cannot achieve this 
performance.  

Fig. 8 shows the average positions of irrelevant ones in top-k 
images returned. This position indicates where the irrelevant 
images appear in top-k results. It is desirable that the irrelevant 
images are found in rear positions. In our method, the positions 
of irrelevant images found are compared far later with other 
methods when the number of images returned is small, i.e., 
small k. This is a desirable result because users usually do not 
want to have a large number of images returned.  
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Fig. 7 Multi-point queries: average top-k precision 
 

 

Fig. 8 Positions of irrelevant ones in top-k images 

V.  CONCLUSION 

For effective image retrieval centered on a human viewpoint, 
we have captured the contextual relationship in a dataset and 
presented a similarity measure and a context-aware ranking 
algorithm based on a nonlinear similarity model. The similarity 
measure and the ranking algorithms proposed in this paper take 
into account the intrinsic structure and the data distribution 
revealed by the dataset to estimate image similarity. Our 
approach has demonstrated its effectiveness and outperformed 
the existing image retrieval methods such as SVMactive, 
Falcon, Euclidean distance-based method, and the SVM 
classification-based method. Our method takes advantage of 
the intuition that the same portions of the distances given by 
Minkowski metric do not always give the same degrees of 
similarity when judged by humans. 
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