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 
Abstract—Due to many applications and problems in the fields 

of plasma physics, geophysics, and other many topics, the interaction 
between the strain field and the magnetic field has to be considered. 
Adomian introduced the decomposition method for solving linear and 
nonlinear functional equations. This method leads to accurate, 
computable, approximately convergent solutions of linear and 
nonlinear partial and ordinary differential equations even the 
equations with variable coefficients. This paper is dealing with a 
mathematical model of generalized thermoelasticity of a half-space 
conducting medium. A magnetic field with constant intensity acts 
normal to the bounding plane has been assumed. Adomian’s 
decomposition method has been used to solve the model when the 
bounding plane is taken to be traction free and thermally loaded by 
harmonic heating. The numerical results for the temperature 
increment, the stress, the strain, the displacement, the induced 
magnetic, and the electric fields have been represented in figures. The 
magnetic field, the relaxation time, and the angular thermal load have 
significant effects on all the studied fields. 
 

Keywords—Adomian’s Decomposition Method, magneto-
thermoelasticity, finite conductivity, iteration method, thermal load. 

I. INTRODUCTION 

T was assumed that the interactions between the two fields 
take place according to the Lorentz forces embedded in the 

equations of motion. By using Ohm’s law, the electric field 
produced by the velocity of a material particle, moves in a 
magnetic field [1], [2]. The basics of the magnetoelasticity 
were introduced by Knopoff [3] and developed by Kaliski and 
Petykiewicz [4]. The most important types of thermoelasticity 
are Biot model of coupled thermoelasticity [5] and Lord-
Shulman model of generalized thermoelasticity [6] in which 
many authors considered the generalized magneto-
thermoelasticity equations [1], [2], [7]-[13]. Currently, more 
attention has been concentrated to the numerical methods 
which do not need discretization of time-space variables or to 
linearization of the nonlinear equations [14]-[17]. The solution 
can be verified to any degree of approximation. Adomian 
decomposition method has been used to get the formal 
solutions to a wide class of partial and ordinary differential 
equations [18]-[29]. Adomian modeled as systems of 
nonlinear differential equations by the ADM the dynamic 
interaction of immune response with a population of viruses, 
bacteria, antigens or tumor cells [17]. Adomian decomposition 
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method (ADM) separates the given equation to linear and 
nonlinear parts, invert the highest-order derivative in both 
sides, and find the successive terms of the series solution by 
recurrence relation [14], [26]. Many modifications have been 
done to ADM to improve the accuracy or expand the 
application of the original method [23], [25], [29]. Recently, 
the decomposition method has been used in fractional 
differential equations [30]-[32]. 

II. FORMULATION OF THE PROBLEM 

The mathematical model of a thermoelastic half-space
  0 x  has been considered. A magnetic field with 

constant intensity 0H acts normal to the bounding plane. All 

the quantities considered will be functions of the time variable 
t, and the distance x starts from the bounding plane. The 
medium is assumed initially quiescent. The primary magnetic 
field 0H  generates an induced magnetic field h  and an 

induced electric field E . We assume that both h and E are 
small in magnitude by the assumptions of the linear theory of 
thermoelasticity [1], [2]. 

Thus, the displacement vector will take the components 
 

   x y zu u x,t , u u 0   (1) 

 
The components of the magnetic intensity vector are  
 

    x y 0 zH 0 , H H h x,t , H 0   (2) 

 
The electric intensity vector is perpendicular to both the 

magnetic intensity and the displacement vectors. Thus, E  has 
the following component: 

 

   x y zE E 0 , E E x,t   (3) 

 
The current density vector J  must be parallel to E , hence 
 

   x y zJ J 0, J J x,t   (4) 

 
Maxwell's equations in vector form can be written as 
 


0

E
curl h = J +  

t
   (5) 

 




0

h
curl E =   

t
   (6) 
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div h = 0 ,   div E = 0   (7) 
 

0 00B =  ( H + h ) ,    D =  E   (8) 
 

where 0 and 0 are the electric and magnetic permeability’s, 

respectively. 
By Ohm's law, the current density is defined as [1]-[3], 

[11]: 
 

 
    

0 0

u
J σ E μ H

t
  (9) 

 

where 0σ is the electric conductivity. 

The strain components are given by, 
 


     
xx yy zz xz yz xy

u
e , e e e e e 0

x
  (10) 

 
The stress components are given by the relation: 
 

    ij ij ij 0 ij2 e e T T        (11) 

 

    
    

xx 0

u
2 T T

x
       (12) 

 

 
   

yy zz 0

u
T T

x
      (13) 

 
  xy yz zx 0     (14) 

 
where  and  are Lame’s constants, T is the absolute 

temperature of the medium,  is a material constant given by

   T3 2    , T being the coefficient of linear thermal 

expansion, is Dirac’s delta function and 0T is a reference 

temperature chosen such that   0 0T T / T   | 1 . 

Equations of motion take the form [6], 
 

i iij , j +  =  uF    (15) 

 

where   is the density and F is the Lorentz force given by: 
 

F = J  B   (16) 
 

After linearization, Ohm's law gives 
 

 
  

00 0

  u
J =   E +   H

 t
    (17) 

 
After linearization, (16) and (17), we get, 
 

    
0 00x y z0 0

 u
F  =   E +    ,  F = F = 0H H

 t
    (18) 

 
Substituting (18) into (15), we obtain the equation of 

motion in the form, 
 

   
  


 



2 2

2 2

2 2
0 0 00 0 0

 u  u  T
  = 2     -   

   xt x
 u

  H E    H
 t

   

 

  (19) 

 
The equation of heat conduction has the form [6], 
 

     
       

2 2
0E

02 2

TCT  u
  =  +    T +  

 t  K K  xx t


   (20) 

 

where K is the thermal conductivity of the medium EC  is the 

specific heat at constant strain and 0 is the relaxation time. 

Equation (5) takes the form, 
 

 
 

0

h  E
 = J +  

x  t
   (21) 

 
Substituting from (17), we get 
 

  
  

00 0 0 0

h  E  u
=    + E +  .H

x  t  t
     (22) 

 
Equation (6) takes the form, 
 

 
 0

E  h
=   .

x  t
   (23) 

 
For simplifications we shall use the following non-

dimensional variables [1], [2]:  
 

 
  

   

ij 0
0 0 ij

2 2
0 0 00 2

00 00 0 00

γ T T
x =  η x ,  u  = ηu  ,   =   ,  θ =  ,c c

λ +2μ  λ + 2 μ 

t  =   t ,  =     ,  E  =  E ,  h =  hc c
     c HH




    
 

       (24) 

 

where
E 2

0

 + 2C=    ,   =  .c
K

  
  

The above equations reduce to (dropping the primes for 
simplicity): 

 

   
   

   

2 2
2

2 22 2

u u u
E

x x t t

      (25) 

 

     
       

2 2

0 12 2

 u
=  +    +   

 t   xx t

     (26) 
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  


  
2 h  E  u

  =   E +  V
 x  t  t

   (27) 

 

 
 
 E  h

 =  
 x t

  (28) 

 

where 
22

0 0 0 200 0
2 1 2 2

0E 0 0

  H  1cT  =    ,   =   ,   =   ,  V =   ,   =  .c
 + 2 c     C c

    
    

 

The constitutive equations reduce to: 
 

x x = e      (29) 
 

 
  

 
y y z z 2

2
 =  =  1   e    


  (30) 

 

where 


2 2 


. 

Re-writing (25)-(27) by using (10), we obtain 
 

    
   

    

2 2 2
2

2 22 2 2

e E e e

x x x t t

      (31) 

 

   
    

2 2

0 12 2

 
 =  +    +  e  

  t  x t

     (32) 

 

   


    

2 2
2

2

 h  E E  e
  =    +  V

 x t  x x  t
   (33) 

 
Eliminating E by substituting from (28) into (31) and (33), 

we get 
 

    
   

    

2 2 2
2

2 22 2 2

e e e  h

x t t t x

     (34) 

 

   


   

2 2
2

2 2

 h h  h  e
  =     +  V

 x t  t  t
   (35) 

III. ADM 

The ADM usually defines the equation in an operator form 
by considering the highest-ordered derivative in the problem. 
We define the differential operator “L” in terms of the two 
derivatives contained in the problem [15]-[17], [30]. 

Consider (32), (34), and (35) in the operator form as: 
 

          1xx t 0 tt t 0 ttL x,t   L  + L x,t  +  L  + L e x,t      (36) 

 

     
   

  


xx tt 2 t

2

2 t xx

L e x,t L e x,t L e x,t

L h x,t L x,t



  
  (37) 

 

       2
xx tt t tL h x,t   = L h x,t L h x,t  + L e x,tV    (38) 

 

where the operators which appeared in the above equations are 
defined as: 
 

   
   
   

2 2

t tt x xx2 2
L , L , L , L

t t x x
  (39) 

 

Assuming that the inverse of the operator “  1 1

x xxL , L ” exist 

and can conveniently are taken as definite integral with respect 
to “x” from “0” to “x” as following [15]-[17], [30]: 

 

           
x x x

1 1

x xx
0 0 0

L f x f x dx , L f x f x dx dx  (40) 

 
Thus, applying the inverse operator on both the sides of 

(36)-(38), we obtain 
 

     

       





  



  

x 0

1
1xx t 0 tt t 0 tt

x,t
x,t 0,t

x

L  L  + L x,t  +  L  + L e x,t


 

  

  (41) 

 

     

   
   






  



  
 

  

x 0

tt 2 t1

xx 2

2 t xx

e x,t
e x,t e 0,t

x

L e x,t L e x,t
L

L h x,t L x,t



  

 (42) 

 

     

     





  



  

x 0

1 2
xx tt t t

h x,t
h x,t h 0,t

x

L L h x,t L h x,t  + L e x,tV 

  (43) 

 

Now, we will decompose the unknown functions  x,t , 

 e x,t and  h x,t by a sum of components defined by the 

following series:  
 

     
 

 
   k 0 k

k 0 k 1

x,t x,t x,t      (44) 

 

     
 

 
   k 0 k

k 0 k 1

e x,t e x,t e e x,t   (45) 

 

     
 

 
   k 0 k

k 0 k 1

h x,t h x,t h h x,t   (46) 

 
The zero-components are defined by the terms that arise 

from the boundary conditions on the bounding plane x 0 , 
which give 

 

   



 

0

x 0

e x,t
e e 0,t

x
  (47) 

 

   



 

0

x 0

x,t
0,t

x


    (48) 
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   



 

0

x 0

h x,t
h h 0,t

x
  (49) 

 
Substituting from (44)-(46) in (41)-(43), we get 
 

       

   

   















   



 
 
 
 
 







k
k 0

x 0

t 0 tt k
k 01

xx

1 t 0 tt k
k 0

x,t
x,t x,t 0,t

x

 L  + L x,t  + 
L

 L  + L e x,t


  

 



  (50) 

 

       

   

   






 

 

 

 


   



   
 
 
 



 

 

k
k 0

x 0

tt k 2 t k
k 0 k 01

xx
2

2 t k xx k
k 0 k 0

e x,t
e x,t e x,t e 0,t

x

L e x,t L e x,t
L

L h x,t L x,t



  

 (51) 

 
and 
 

       

   

 






 

 






   



  
 
 
 



 



k
k 0

x 0

2
tt k t k

k 0 k 01

xx

t k
k 0

h x,t
h x,t h x,t h 0,t

x

L h x,t L h x,t  + V
L

L e x,t

  (52) 

 

We obtain these components by  ke x,t ,  k x,t  and 

 h x,t  the recursive formulas [15]-[17], [30]: 

 

 
   
   




 
  

  

t 0 tt k1

k 1 xx

1 t 0 tt k

 L  + L x,t  +
x,t L

 L  + L e x,t

 



 (53) 

 

 
   

   




  
  

  

tt k 2 t k1

k 1 xx 2

2 t k xx k

L e x,t L e x,t
e x,t L

L h x,t L x,t



  
  (54) 

 

       
    

1 2
k 1 xx tt k t k t kh x,t L L h x,t L h x,t  + L e x,tV    (55) 

 
We assume that the bounding plane to the surface x 0  of 

the body is thermally loaded by harmonic heat and traction 
free while the induced magnetic field h is vanished in the free 
space. Hence, we have:  
 

     



 


0

x 0

x,t
0,t sin t , 0

x


     (56) 

 

       



   


x 0

e x,t
0,t 0 e 0,t 0,t , 0

x
   (57) 

 

   



 


x 0

h x,t
h 0,t 0, 0

x
  (58) 

 

where 0  is constant and   is the angular thermal load and 
assumed to be constant. Thus, we have 
 

     0 0

0 0 0sin t , e sin t , h 0       (59) 

 
Substituting from (59) into (50)-(52), we get the complete 

of the iteration formulas. 
The first components of the iteration take the forms: 
 

        
 1 2

1

1
x,t cos t sin t x

2

 
      (60) 

 

        2

1 2e x,t cos t sin t x
2

        (61) 

 

   
 2

1

cos t
h x,t x

2

 
  (62) 

 
The rest components of the iteration formulas (53)-(55) 

have been calculated by using the MAPLE 17. Moreover, the 
decomposition series solutions (53)-(55) are convergent in real 
physical problems very rapidly [23]-[26].  

In an algorithmic form, the ADM can be expressed and 
implemented in linear generalized magneto-thermoelasticity 

models with the suitable value for the tolerance  6Tol 10  and 

k is the iteration index, as follows [23]-[26]: 

Algorithm 

Step 1: Compute the initial approximations  0 0,t  ,

 0e e 0,t and  0h h 0,t  given by (59). 

Step 2: Use the calculated values of k , ke , and kh  to compute 

k 1 , k 1e and k 1h  from (53) -(55). 

Step 3: If   k 1 kmax Tol  ,   k 1 kmax e e Tol  and 

  k 1 kmax h h Tol  stop, otherwise continue and go back to 

step 2. 
Step 4: Calculating the stress from (29), (50)-(52) as follows: 
 

     
 

 
  k k

k 0 k 0

x,t e x,t x,t    (63) 

 
Step 5: Calculating the displacement from (10) and (51) as: 
 

     



   

x x

k0 0
k 0

u x,t e ,t d e ,t d      (64) 

IV. THE NUMERICAL RESULTS AND DISCUSSION 

The copper material has been chosen for the numerical 
evaluations, and the material constants were taken as follows 
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[1], [2]: 
 

 K 386 W / mK ,    5 1

T 1.78 10 K ,  EC 383.1 J / kg K ,

 28886.73 s / m , 0T 293K ,   10 23.86 10 N / m , 

  10 27.76 10 N / m ,  38954 kg/m ,  9

0 10 / 36  , 

  7

0 5.7 10 ,   7

0 4 10  ,   14

0 0.35 10 . 

 
Thus, the following non-dimensional parameters have been 

obtained; 
 

1=0.0168 , 2 80.0 , V 0.000014 ,  0.008 , 0 0.05  
 

We calculate the numerical solutions when the non-
dimensional value of the time is t 2.0 , the non-dimensional 

value of the distance is  0 x 1.0 ,   , and 0 1.0 .  
According to the above algorithm, we stopped the 

calculation on the 10th component  10 x,t ,  10e x,t , and 

 10h x,t . 

Figs. 1-6 show the distribution of the temperature 
increment, the strain, the induced magnetic field, the electrical 
field, the stress, and the displacement, respectively, with 
various cases of the magnetic field when 0H 0.0  and 

0H 0.0  to stand on the effect of the magnetic field on all the 

studied functions. The temperature increment is the only 
function that received a limited effect due to the magnetic 
field while all the rest functions received significant effects. 
For non-zero magnetic field, the absolute values of the strain, 
the induced magnetic field, the electrical field, the stress, and 
the displacement have increased. 

Figs. 7-12 show the distribution of the temperature increment, the strain, the induced magnetic field, the electrical field, the stress, and the

distribution of all the functions received significant effects due 
to the changing of this parameter. The absolute values of all 
the studied functions have decreased for 0 0.05 . 

Figs. 13-18 show the distribution of the temperature increment, the strain, the induced magnetic field, the electrical field, the stress, and th
of this parameter. The numbers of peaks have increased when 
the value of the angular thermal load parameter has increased. 

V. CONCLUSION 

A mathematical model of generalized thermoelasticity with 
one relaxation time of a half-space conducting medium has 
been constructed taking into account a constant magnetic field 
acts normal to the bounding plane. ADM has been used to 
solve the model. The results show that; the magnetic field, the 
relaxation time, and the angular thermal load have significant 
effects on all the studied fields, and ADM is a useful method 
and very suitable for that types of mathematical models.  

 

 

Fig. 1 The temperature increment distribution with various cases of 
magnetic field 

 

 

Fig. 2 The strain distribution with various cases of magnetic field 
 

 

Fig. 3 The induced magnetic field distribution with various cases of 
magnetic field 

 

 

Fig. 4 The electric field distribution with various cases of magnetic 
field 
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Fig. 5 The stress distribution with various cases of magnetic field 
 

 

Fig. 6 The displacement distribution with various cases of magnetic 
field 

 

 

Fig. 7 The temperature increment distribution with various values of 
relaxation time 

 

 

Fig. 8 The strain distribution with various values of relaxation time 
 

 

Fig. 9 The induced magnetic field distribution with various values of 
relaxation time 

 

 

Fig. 10 The electric field distribution with various values of 
relaxation time 

 

 

Fig. 11 The stress distribution with various values of relaxation time 
 

 

Fig. 12 The displacement distribution with various values of 
relaxation time 
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Fig. 13 The temperature increment distribution with various values of 
angular thermal load 

 

 

Fig. 14 The strain distribution with various values of angular thermal 
load 

 

 

Fig. 15 The induced magnetic field distribution with various values 
of angular thermal load 

 

 

Fig. 16 The electric field distribution with various values of angular 
thermal load 

 

 

Fig. 17 The stress distribution with various values of angular thermal 
load 

 

 

Fig. 18 The displacement distribution with various values of angular 
thermal load 
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