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Abstract—This paper discusses the implementation of the 
boundary element method (BEM) on an Excel spreadsheet and how it 
can be used in teaching vector calculus and simulation. There are two 
separate spreadheets, within which Laplace equation is solved by the 
BEM in two dimensions (LIBEM2) and axisymmetric three 
dimensions (LBEMA). The main algorithms are implemented in the 
associated programming language within Excel, Visual Basic for 
Applications (VBA). The BEM only requires a boundary mesh and 
hence it is a relatively accessible method. The BEM in the open 
spreadsheet environment is demonstrated as being useful as an aid to 
teaching and learning. The application of the BEM implemented on a 
spreadsheet for educational purposes in introductory vector calculus 
and simulation is explored. The development of assignment work is 
discussed, and sample results from student work are given. The 
spreadsheets were found to be useful tools in developing the students’ 
understanding of vector calculus and in simulating heat conduction.  
 

Keywords—Boundary element method, laplace equation, vector 
calculus, simulation, education 

I. INTRODUCTION 

OR some time, the spreadsheet has been utilised by 
scientists and engineers as a powerful environment for 

exploring numerically-based topics. There are a number of 
spreadsheet packages available, but the most prevalent one at 
the time of writing is Microsoft Excel. The interactive nature 
of the spreadsheet, and the immediacy of data and graphs, is 
the basis of its usefulness as a tool for exploring a topic in 
science and engineering, and hence its educational 
predisposition. There are a number of texts on the application 
of Excel to scientific and engineering problems available [1]-
[3]. These texts are a learning resource in which the authors’ 
clearly regard the spreadsheet environment as conducive to 
education. A recent paper by Niazkar and Afzali [4] reviews 
various recent application areas for spreadsheets. The 
usefulness of spreadsheet applications in enhancing 
engineering education has been the subject of research at the 
University or Central Lancashire for some time [5], [6]. 

The spreadsheet is useful for evaluating formulae, a facility 
that is required in mathematics, science and engineering. 
However, when mathematical models include, for example, 
integrals, differential equations or integral equations then, in 
general, numerical methods are required. The spreadsheet 
environment has also been explored for implementing 
numerical methods, including educational purposes [3], [7]-
[9]. A wide-ranging set of problems in science and 
engineering is modelled by partial differential equations 
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(PDEs). PDEs generally provide a physical model within a 
prescribed spatial domain in one, two or three dimensions, and 
often also in time. The spreadsheet naturally lends itself to the 
lower dimensional problems, given the two-dimensional 
nature of the computer screen and spreadsheet environment. 
The spreadsheet is therefore most applicable for the 
educational side of PDEs, and perhaps restrictive for the three-
dimensional domains that will be encountered in practice. 

In this work, the BEM [10] is implemented in Excel. The 
BEM is a method for solving PDEs. The BEM is not as 
widely-applicable as the more well-known methods for 
solving PDEs - the finite element method and the finite 
difference method. However, the BEM has the special 
property that only the boundary requires discretisation, and 
hence, the BEM is often viewed as potentially more efficient 
than the alternative methods, as less elements or nodes are 
required. More importantly, particularly from the user or 
educational viewpoint of this work, the requirement to only 
mesh the boundary also means that the BEM is a significantly 
more accessible method. 

There has been little development of the BEM in a spread-
sheet environment for some time. The main work in this area 
is that of Davies and Crann in the 1990s [11]. The work of 
Davies and Crann was focused on using the Excel spreadsheet 
to teach the BEM itself. Whilst the work in this paper may be 
extended to that aim, the focus on the educational purpose of 
the BEM implemented on a spreadsheet is that its accessibility 
facilitates teaching and learning in elementary vector calculus 
and simulation. The motivation for the work of Davies and 
Crann was that of using the spreadsheet to direct students of 
the BEM to focus on the implementation stages of the method 
itself, rather than on the development of computer code. In 
this paper, the focus is not just on hiding the complexity of 
coding the BEM, but also hiding the BEM itself so that 
students are not distracted from learning about vector calculus 
and elementary simulation. 

Spreadsheets have been available for several decades. 
Davies and Crann state that their implementation of the BEM 
could be transferred from Excel to other spreadsheet products, 
emphasising the portability of their work. However, spread-
sheets evolve, with new versions every few years, and there is 
a concern about the maintenance of applications. In this work, 
the main computations are carried out using the programming 
language VBA, that accompanies the Excel spreadsheet and 
can be activated from the spreadsheet. The sheets and cells of 
the accompanying spreadsheets are only used to set the input, 
communicate the output, and hold intermediate data. The 
outcome of this approach is that greater generality can be 
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established, and the codes are as maintainable as any computer 
codes. The Excel spreadsheets in this work are more 
maintainable than the works of Davis and Crann but are not 
transferable between various spreadsheet platforms. 

The simplest equation that can be solved by the BEM is the 
Laplace equation. The spreadsheet of Davis and Crann solves 
Laplace equation in a two-dimensional interior domain. In this 
work, a spreadsheet LIBEM2.xlsm that enables the solution of 
Laplace equation in the two-dimensional interior domain and a 
spreadsheet LBEMA.xlsm that solves Laplace equation in 
axisymmetric three-dimensions are introduced. LIBEM2 and 
LBEMA are available and free to download from the author’s 
website [8] as open-source. LIBEM2 was used as a practical 
tool in a lecture course given by the author at the LD College 
of Engineering in Ahmedabad [12] and LIBEM2 and LBEMA 
have recently been used in assignments for year two and year 
three School of Engineering (SC2153 and SC3007) students at 
the University of Central Lancashire. This work extends the 
author’s previous work on development and communication in 
the BEM [10], [13]-[16]. 

In this paper, the boundary integral equations for the 
solution of the interior two-dimensional Laplace equation are 
outlined in Section II. In Section III, it is shown that these 
equations can be discretised in order to develop the equations 
that are the basis of the two-dimensional BEM. LIBEM2, the 
spreadsheet for solving two-dimensional interior Laplace 
problems, is introduced in Section IV. In Section V, the work 
is extended to axisymmetric three-dimensional problems, and 
the LBEMA spreadsheet is introduced. The educational 
application of the spreadsheets in the area of vector calculus 
and simulation is considered in Section VI with the results 
from the students’ assignment work.  

II. THE BOUNDARY INTEGRAL EQUATION FORMULATION FOR 

2D INTERIOR PROBLEMS 

In this section, the boundary element solution of Laplace 
equation: 

 
∇ 𝜑 0 ,                                (1) 

 
for two-dimensional problems, and axisymmetric three-
dimensional problems is outlined. Traditionally, there have 
been two variations of the BEM, termed the Direct Method 
and the Indirect Method. Since there is a vast overlap in the 
computation in these methods, and for the long-term various 
uses of the spreadsheets, both methods are implemented. 
LIBEM2 solves the interior Laplace problem in two-
dimensional space and is effectively the ‘entry level’ for 
learners. 

A. Integral Equation Formulations of the 2D Interior 
Laplace Problem 

For the interior problem, Laplace equation (1) governs the 
interior domain D enclosed by a boundary S, as shown in Fig. 
1. The solution must also satisfy a boundary condition, and it 
is important in terms of maintaining the generality of the 
method that this is in a general (Robin) form: 

𝛼 𝒑 𝜑 𝒑 𝛽 𝒑 𝒑 𝑓 𝒑      𝒑 ∊ 𝑆 .         (2) 

 

 

Fig. 1 Illustration of the interior domain [10] 
 
In the direct BEM, Laplace equation is replaced by an 

equivalent integral equation of the form: 
 

𝒑,𝒒  𝜑 𝒒 𝑑𝑆 𝜑 𝒑 𝐺 𝒑, 𝒒 𝒒  𝑑𝑆         𝒑 ∊ 𝑆 .

 
𝒑,𝒒

 𝜑 𝒒 𝑑𝑆 𝜑 𝒑 𝐺 𝒑, 𝒒
𝒒

 𝑑𝑆             𝒑 ∊ 𝐷 .

 

The terminology 
∗

 represents the partial derivative of the 

function * with respect to the unit outward normal at the point 
q on the boundary. The function G is known as a Green’s 
function. Physically, G(p, q) represents the effect observed at 
a point p of a unit source at the point q. For the Laplace 
equation, the Green’s function is denoted by G and is defined 
as 𝐺 𝐩, 𝐪 ln 𝑟  for two-dimensional Laplace problems, 

where 𝑟 |𝒒 𝒑|. 
The equivalent indirect formulation is obtained by writing 

𝜑 𝒑  as a single layer potential: 
 

𝜑 𝒑 𝐺 𝒑, 𝒒  𝜎 𝒒  𝑑𝑆         𝒑 ∈ 𝑆⋃𝐷 ,       (4a) 
 
where the boundary function 𝜎 is the single layer potential 
with no particular physical representation. By differentiating 
with respect to the outward normal to the boundary for a point  
𝒑 ∈ 𝐷 and taking the limit, as the point approaches the 
boundary along a normal, returns the following equation: 
 

𝒑 𝒑,𝒒
 𝜎 𝒒 𝑑𝑆 𝜎 𝒑     𝒑 ∈ 𝑆 .       (4b) 

B. The Integral Equation Formulations in Operator 
Notation 

Integral operators provide a useful shorthand notation for 
writing integral equations and form a useful basis for 
generalisation in developing BEM software. Applying the 
integral operator to a function ζ, defined on a boundary Г, 
 

𝐺 𝒑, 𝒒 𝜁 𝒒 𝑑𝑆 µ 𝒑 ,
Г

 

 
returning a function µ. This may be written in a simplified 
form, 
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𝐿𝜁 Г 𝐩 µ 𝐩 , (5) 
 
where 𝐿 represents the integral operator and the subscript (Г) 
refers to the domain of integration. Г is used as a variable, 
representing either a whole boundary or a part of the 
boundary.  The other Laplace integral operators required in 
this work are defined as follows: 
 

𝑀𝜁 Г 𝒑 𝒑,𝒒  𝜁 𝒒 𝑑𝑆Г  ,                   (6) 

 

𝑀 𝜁 Г 𝒑; 𝒗 𝐺 𝒑, 𝒒  𝜁 𝒒 𝑑𝑆Г  ,           (7) 

 
where 𝒗  is any unit vector.  

In operator notation, the direct integral equation formulation 
(3a) and (3b) can be written in the following form: 

 

𝑀  𝐼 𝜑 𝒑 𝐿𝑣 𝒑       𝒑 ∈ 𝑆  ,         (8a) 

 
𝜑 𝒑 𝐿𝑣 𝑀𝜑       𝒑 ∊ 𝐷 ,               (8b) 

 

where 𝑣 𝒒 𝒒  . Similarly, for the indirect formulation 

(4a) and (4b), 
 

𝜑 𝒑 𝐿𝜎       𝒑 ∊ 𝑆⋃𝐷 ,                   (9a) 
 

𝑣 𝒑 𝑀 𝐼 𝜎       𝒑 ∊ 𝑆 .             (9b) 

III. THE BEM FOR 2D PROBLEMS 

The boundary 𝑆 is assumed to be expressed and 
approximated by a set of panels: 

 

𝑆 𝑆 ∑ ∆𝑆 .                           (10) 
 
Usually the panels have a characteristic form and cannot 

represent a given boundary exactly. The simplest method of 
achieving this is through each ∆𝑆  being a straight line, and 
this is the method that is used in LIBEM2. Fig. 2 illustrates 
this method of approximation on the boundary in Fig. 1. 

 

 
Fig. 2 The boundary represented by a set of straight-line panels [10] 

 
The functions defined on the boundary, that occur in the 

boundary integral equation formulations, are also represented 
or approximated by a simple functional form on each panel, 
for example in the method of collocation. In this work, the 
boundary functions are represented by a constant on each 

panel, with the collocation point at the centre. The element is 
defined by the form of the panel and the representation the 
boundary functions. 

A. Direct and Indirect BEMs 

As stated earlier, the first stage of the BEM involves finding 
further information on the boundary S. For the direct BEM 
solution of the interior Laplace problem, that is developed in 
this section, the initial stage involves solving the boundary 
integral equation (3a), returning (approximations to) both 𝜑 

and  on S. The second stage of the BEM involves finding 

the solution at any chosen points in the domain. The 
substitution of representations for the boundary functions in 
the integral equation reduces it to discrete form. 

The simplifications allow us to re-write (8a) as the 
approximation  
 

∑ 𝑀 𝐼 𝑒 𝒑  𝜑  ∑ 𝐿𝑒 𝒑  𝑣       𝒑 ∊ 𝑆   

 
where e is the unit function (e ≡1).  

The boundary function is approximated or represented by a 
constant located at the central point of each panel (the 
collocation point). Computing the discrete forms of the 
relevant integral operators, with 𝒑 taking the value of all the 
collocation points, results in the following system 
 

∑ 𝑀 𝐼 𝑒 𝒑  𝜑   ∑ 𝐿𝑒 𝒑  𝑣   

                                                      𝒑 ∊ 𝑆  
 

for i = 1, 2, ..., n is obtained, by putting 𝒑 𝒑  in the 
previous approximation.  

This system can now be written in the matrix-vector form, 
 

𝑀 I 𝜑 𝐿 𝑣   (11) 

 
with the matrix components defined by 𝐿 𝐿𝑒 𝒑 ,

𝑀 𝑀𝑒 𝒑 . The vectors 𝜑  and 𝑣  are 

representative or approximate values of φ and 𝑣 at the 
collocation points. In the first stage of the BEM, the system 
(11) is solved alongside the discrete form of the boundary 
condition (2): 
 

𝛼 𝜑 𝛽 𝑣 𝑓   for 𝑖 1,2, … , 𝑛.               (12) 
 
The matrix components in (11) are definite integrals that 

usually need to be computed by numerical integration. On 
solution of (11) and (12), the approximation to the boundary 
data is known at the collocation points. 

Once the approximations to the functions on the boundary 
are known, after completing the initial stage of the direct 
BEM, the domain solution can be found. In the case of the 
interior Laplace problem, equation (3b/8b) will yield the 
domain solution. Similarly, the discrete equivalent of (8b) may 
be derived: 
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𝜑 𝐿  𝑣 𝑀  𝜑   (13) 
 

where 𝐿 𝐿𝑒 𝒑 , 𝑀 𝑀𝑒 𝒑  and 

the 𝒑  are the points in the domain 𝐷, where the solution is 
sought. 

Similarly, for the indirect method, the discrete forms of (9a) 
and (9b), for obtaining the approximation to the boundary 
functions, are as follows 

 
𝜑 𝐿 𝜎 ,                                  (14a) 

 

𝑣 𝑀 𝐼 𝜎  ,                          (14b) 

 
where the 𝑀  matrix is the discrete equivalent of the 
𝑀 operator, defined in a similar way as the matices 𝐿  and 
𝑀  for their respective operators. Equations (14) are solved 
simultaneously with the discrete boundary condition (12) in 
order to compute the approximation to the layer potential  𝜎 . 
The solution at the domain points can then be found using the 
discrete equivalent of (9a): 
 

𝜑 𝐿 𝜎 .                               (14c) 

IV. LIBEM2: THE SOLUTION OF THE 2D LAPLACE EQUATION 

IN EXCEL 

In this section, the Excel spreadsheet LIBEM2 is 
introduced. This spreadsheet solves the two-dimensional 
interior Laplace problem for a domain of any shape and with a 
generalised boundary condition. The Laplace problem is input 
from the first sheet Set Problem; the boundary, boundary 
condition and the interior points (at which the solution is 
sought) are all input from this sheet. The sheet Sketch 
illustrates the boundary and the interior points and hence is 
most useful for visually checking for geometrical errors. The 
spreadsheet allows for internal boundaries, as we will see with 
the test problems, and the sheet Closed Boundaries separates 
these, and this sheet is also useful for checking the geometry. 
The computed solutions are returned to the sheets Direct 
Solution and Indirect Solution. The focus of this paper is on 
using the spreadsheet to teach vector calculus and simulation 
and, for these purposes, the student does not need to go 
beyond these areas of the spreadsheet. 

The computations within the BEM are activated from 
buttons on the Set Problem sheet. These computations are 
carried out using the VBA programming language that 
accompanies Excel. In the previous section, it was shown that 
the BEM involves evaluating matrices and solving the ensuing 
systems of equations. The data corresponding to these are 
placed on identified sheets of the spreadsheet. These are useful 
for students learning the BEM, but they are not required for 
the purposes of this paper. 

The matrices that were introduced in the previous section, 
that are computed when the method is executed, are listed on 
the individual sheets, each labelled with the corresponding 
identifier. The solution of the equations corresponding to the 

direct problem requires a column-exchanging method. Both 
methods require the LU factorisation of the resulting system 
and the data recording this is also stored on various sheets. If 
𝑓 𝒑  is changed in the boundary condition, then these values 
may be placed on the New Condition sheet, and the results 
from this may be computed in a fraction of the time that is 
required to execute a new problem from the Set Problem 
sheet. However, none of the information in this paragraph is 
required for the purposes of teaching and learning vector 
calculus and simulation. 

A. Test Problem 

In order to introduce the spreadsheet, a simple test problem 
is placed on the Set Problem sheet. The problem is illustrated 
in Fig. 3, in which the boundary is a unit square, and the 
Dirichlet boundary conditions φ=10 and φ=20 are placed on 
the left and right sides of the square and the Neumann 
boundary condition of  ∂φ/∂n=0 is set on the upper and lower 
sides. The interior points, at which the solution is sought, are 
also shown in Fig. 3, these are the points (0.25, 0.25), (0.75, 
0.25),(0.25, 0.75), (0.75,0.75) and (0.5, 0.5). 

 

 

Fig. 3 The 2D Test Problem 
 
From the mathematical point of view, the solution is 𝜑

10 𝑥. This can easily be shown to be a solution of Laplace 
equation and satisfying the left and right boundary condition. 

Given the identity  ∇𝜑. 𝒏, it can be shown that the 

Neumann conditions are also satisfied as ∇𝜑 10
0

 and 

𝒏 0
1

 for the upper surface and 𝒏 0
1

 for the lower 

surface. The solutions at the interior points are 𝜑 = 12.5, 15, 
and 17.5. 

In order to motivate the practical application of the 
spreadsheet, the test problem may also be considered in a 
physical or engineering sense, and it is useful to relate the 
physical with the mathematical solution. For example, it may 
be interpreted as a steady-state heat conduction problem, with 
𝜑 as the temperature. The square may be thought of as a metal 
plate (insulated on the planar surfaces or a square prism), with 
the set temperature of 10 °C on the left side and 20 °C on the 
right side. The ∂φ/∂n=0 on the upper and lower sides may be 
interpreted as no heat flow or insulation. The solution is just as 
anyone would expect, with 𝜑 = 12.5 °C, 15 °C, or 17.5 °C at 
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the selected interior points. 

B. Setting up the Test Problem on the Spreadsheet 

The boundary is defined on the spreadsheet by a set of 
nodes and panels that are defined in the Nodes and Panels 
columns of the spreadsheet. The method for describing the 
boundary is illustrated in Fig. 4. The outer boundary must be 
defined in the clockwise direction (if there are any inner 
boundaries then they must be defined in the counter-clockwise 
direction). For the test problem above, with the boundary of 
the unit square, the nodes on the boundary are enumerated 1, 
2, 3, 4, with the first node having coordinates (0,0.000). 

 

 

Fig. 4 The nodes and panels that describe the boundary 
    
If the square is defined by 32 panels of equal size then the 

node 2 has coordinates (0,0.125), as shown in Fig. 4. The 
coordinates of nodes 3 and 4 are also illustrated. 32 nodes are 
required. Each panel is defined by linking two nodes. For 
example the panel ① links node 1 to node 2, panel ② links 

node 2 with node 3. Finally, panel  links node 32 with node 
1. In general, when defining each panel, proceeding from the 
first node that defined the panel to the second node, the 
interior is on the left. On the Set Problem sheet of the 
spreadsheet the boundary is defined in the columns Nodes and 
Panels. For the test problem, there are 32 nodes and panels, 
and this is stated at the top of the respective column. The 
coordinates of each node and the nodes that make up the 
panels are listed. 

The definition of the boundary is the most critical part in 
setting up the problem; errors in this can have a catastrophic 
effect on the accuracy of the answer. The spreadsheet has a 
number of methods for checking the boundary data is 
satisfactory, with appropriate error messages when issues are 
noted. The button <Check boundary data…> on the Set 
Problem sheet enables the user to carry out a check on the 
boundary before executing the BEM. This also creates a 
diagram of the boundary on the Sketch sheet, with the chosen 
interior points plotted within. Below the button is the Panel 
Centres column that is also completed when the button is 
activated. This column is populated with the coordinates of the 
centre of each panel which can be helpful in setting boundary 
conditions, as the 𝑥 and 𝑦 values can be readily substituted 
into an analytic solution of Laplace equation or its derivative 
on the boundary. 

The column following Panels on the Set Problem sheet is 
for setting the boundary condition. The boundary condition is 
applied to each individual panel and so the number of panels 

and their indices are copied from the Panels column and are in 
cells shaded blue. The boundary condition has the discrete 
form (12), with 𝛼 , 𝛽  and 𝑓  defined on the panels for 𝑖
1, 2, … , 𝑛. In general, the functions α 𝐩 , β 𝐩  and f 𝐩  vary 
on each panel and their representative value is determined as 
the value at the centre of the panel. Similarly, in setting up test 

problems with analytic solutions φ 𝐩  and 
𝒑

 are functions 

of x and y, determined at the centres of the panels, that are 
listed in the Panel Centres column. 

The Dirichlet boundary condition φ 10 on the left-hand 
side of the square, for the first eight panels, is achieved by 
putting 𝛼 1, 𝛽 0 and 𝑓 10 for 𝑖 1,2, … , 8. The 
Neumann boundary condition on the upper side on the square 
may be effected by putting 𝛼 0, 𝛽 1 and 𝑓 0 for 𝑖
9,10, … , 16. Similarly for panels 17 to 32, and the values are 
listed in the Boundary Condition column. 

C. Running the Test Problem and Interpreting the Results 

The buttons on the left activate the computation of the 
solution. The button <Form BEM Matrices L_SS, M_SS, Mt_SS, 

L_PS,  M_PS> activates the computation of the matrices 𝐿 , 
𝑀 , 𝑀 , 𝐿  and 𝑀 , introduced in the previous section. 
The buttons <Direct Solution> and <Indirect Solution> activate 
the computation of the solutions via the direct and indirect 
BEM. 

The solutions are listed on the Direct Solution and Indirect 
Solution sheets. The column phi_D lists the solution at the 
chosen interior points and the results from this test are listed in 
Table I. The boundary solution is also listed on the same sheet 
in the column ‘Solution on S’. This echoes the input boundary 

condition, with 𝜑 10 on the first eight panels and 0 on 

the next eight panels etc. The results show the steady increase 
in 𝜑 from 10 to 20, moving right along the upper and lower 

sides. The results also show, for example, that 10 on 

the left side and this can be verified with 𝛻𝜑 10
0

 and 

𝑛 1
0

 and hence, analytically,  𝛻𝜑. 𝑛  10.  

 
TABLE I 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR SQUARE TEST 

Point Exact Direct Indirect 

(0.25,0.25) 12.5 12.4957 12.4838 

(0.5,0.5) 15 15.0000 14.9836 

(0.25, 0.75) 17.5 17.5043 17.4780 

 
With the author’s experience in teaching with this 

spreadsheet, and through guiding students in setting up and 
running their own problems, it is useful to reinforce the 
mathematics of the solution of Laplace equation and the 

calculation of  with this very simple initial test problem. It is 

important that students are aware that the results are 
approximations and to compare analytic with numerical 
solutions. However, there is also a significant opportunity to 
attach physical meaning to the results, as discussed earlier, and 
this also prepares the students in applying the spreadsheet to 
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practical problems in their own work. Returning to the heat 
conduction model, the internal approximations to the 

temperature are as expected. The results for  also indicate 

the flow of heat in and out of the domain, and, since the model 
is at steady-state, the flow of heat in must be equal to the flow 
of heat out. 

V. THE BEM FOR AXISYMMETRIC 3D PROBLEMS AND LBEMA 

In this section, the BEM is developed for interior and 
exterior axisymmetric problems. The implementations of the 
BEM on the LBEMA spreadsheet are outlined and 
demonstrated with test problems. 

A. The BEM for Axisymmetric 3D Laplace Problems and 
LBEMA.xlsm 

In three dimensions, the same operator notation (5-7) is 
used, except with Γ representing a whole or partial surface and 
with 𝐺 as the Green’s function for the three-dimensional 
Laplace equation 

 

𝐺 𝒑, 𝒒                                 (15) 

 
where 𝑟 is the distance between the points 𝒑 and 𝒒, 𝑟
|𝒑 𝒒|. With these changes of definition, the integral 
equation reformulation of the interior Laplace problem is the 
same as those for two-dimensional problems (8) and (9). 

In exterior three-dimensional problems, Laplace equation is 
solved in the domain 𝐸 exterior to a surface 𝑆. The integral 
equation reformulation for exterior problems is similar, but 
with sign changes. In operator notation, the direct integral 
equation formulation (3a) and (3b) are as follows: 

 

𝑀  𝐼 𝜑 𝒑 𝐿𝑣 𝒑       𝒑 ∈ 𝑆 ,       (16a) 

 
𝜑 𝒑 𝑀𝜑  𝐿𝑣     𝒑 ∊ 𝐸                (16b) 

 

where 𝑣 𝒒
𝒒

. The indirect formulation is as follows 

 
𝜑 𝒑 𝐿𝜎       𝒑 ∊ 𝑆⋃𝐸 ,                     (17a) 

 

𝑣 𝒑 𝑀 𝐼 𝜎       𝒑 ∊ 𝑆 .               (17b) 

 
In order to activate the method, the axisymmetric boundary 

is approximated by a set of truncated conical panels. 
Collocation is applied and, with the changes in some 
definitions as described, the discrete equations for the interior 
problem are the same as those for the 2D problem (11)-(14). 

For the exterior problem, the discrete equivalents of 
equation (16a) and (16b) are as follows: 

 

𝑀 I 𝜑 𝐿 𝑣 ,                        (18a) 

 
𝜑 𝑀  𝜑   𝐿  𝑣 .                          (18b) 

 

Similarly, for the indirect method, the discrete equivalent of 
(17a) and (17b) is 
 

𝜑 𝐿 𝜎 ,                                  (19a) 
 

𝑣 𝑀 𝐼 𝜎  ,                          (19b) 

 
𝜑 𝐿 𝜎 .                                 (19c) 

 
In the equations above, for the exterior problem, 𝜑  

represents the approximation to the solution at the selected 
exterior points.  

B. Test Problems and Their Implementation on the LBEMA 
Spreadsheet 

The LBEMA spreadsheet has a very similar format as 
LIBEM2. However, in this case, there are two example sheets 
for setting the problem, the first is an interior problem and the 
second is an exterior problem and these sheets have the titles 
Set Interior Problem and Set Exterior Problem. On the Set … 
Problem sheets the four columns Nodes, Panels, Boundary 
Condition and Interior/Exterior points communicate the test(s) 
to the spreadsheet program in a similar way. The button 
<Check Boundary. Find panel centres and sketch> similarly 
checks the validity of the boundary, completes the Panel 
Centres column and the Sketch sheet. The panels are defined 
in a similar way as in LIBEM2. However, in this case, the 
panels are truncated cones, with the two nodes on the 
generator, with 𝑟, 𝑧  coordinates in Nodes, defining the panel. 
The two nodal indices define the panel in Panels, with the 
interior to the right when the nodes are in order. 

The buttons on the right activate the computation of the 
BEM matrices and calculate the direct and indirect boundary 
element solution on the appropriate sheets. The spreadsheet 
can solve both the interior and exterior Laplace equation and 
on the top left corner of the spreadsheet the value TRUE is 
placed in order to indicate an interior problem and FALSE in 
order to indicate an exterior problem.  

Interior Test Problem 

The interior test problem is set up on the Set Interior 
Problem sheet in LBEMA. The initial test surface is a 
cylinder, with the generator linking the upper centre 𝑟, 𝑧
1,0  to the upper edge 1,1  to the lower edge 1,0  and to 

the lower centre 0,0 .  
The boundary condition that is applied is 𝜑=20 on the upper 

surface, 𝜑=10 on the lower surface and 0 on the curved 

surface. As with the 2D example, there is a straightforward 
heat conduction analogy and the expected interior solutions 
are 12.5, 15 and 17.5. The results from LIBEMA are given in 
Table II. 

Exterior Test Problem 

The exterior test problem is set up on the Set Exterior 
Problem  sheet in LBEMA. The test surface is a unit sphere, 
centred at the origin, defined by 20 panels. In this case, the test 
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problem is set up with the Laplace solution. 
 

𝜑 𝒑  for 𝑟 1 (20) 
 

where 𝑟 is the distance from the origin to the point 𝒑. A 
Dirichlet boundary condition 𝜑 1 is applied on the upper 
hemisphere. A Neumann boundary condition is applied to the 
lower hemisphere: 
 

𝜕𝜑
𝜕𝑛

𝜕𝜑
𝜕𝑟

𝜕𝑟
𝜕𝑛

1
𝑟

 . 1
1
𝑟

1 when 𝑟 1 . 

 
TABLE II 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR CYLINDER TEST 

Point (r, z) Exact Direct Indirect 

(0.25, 0.25) 12.5 12.4990 12.4980 

(0.75, 0.25) 12.5 12.4944 12.4967 

(0.25, 0.75) 17.5 17.5012 17.4993 

(0.75, 0.75) 17.5 17.5060 17.4899 

(0.5,0.5) 15 15.0002 14.9959 

 
The solution is sought at the five exterior points with 𝑟, 𝑧  

coordinates (0,2), (0,-2), (1,1), (1,-1) and (2,0), at which the 
exact solutions are 𝜑 0.5, 0.5, 0.7071, 0.7071 and 0.5 to 
four decimal places. The solutions from the direct BEM are 
listed in Table III. 

 
TABLE III 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR SPHERE TEST 

Point (r, z) Exact Direct Indirect 

(0, 2) 0.5 0.4988 0.4995 

(0, -2) 0.5 0.4987 0.5027 

(1, 1) 0.7071 0.7054 0.7061 

(1, -1) 0.7071 0.7052 0.7111 

(2, 0) 0.5 0.4987 0.5008 

VI. THE BEM ON A SPREADSHEET IN TEACHING VECTOR 

CALCULUS AND SIMULATION 

The spreadsheets LIBEM2 and LBEMA have been used to 
facilitate teaching and learning in vector calculus and 
simulation to undergraduate engineering students at the 
University of Central Lancashire. For both spreadsheets, the 
students were given an assignment to work through under the 
guidance of their tutor. The assignment is therefore formative 
with the student developing their skills and understanding as 
they carry out their work. In this section, the motivation for 
and structure of the assignment work is developed, and 
samples of student work are listed. 

A. Assignment  

The assignment imitated the structure of a typical analysis 
of an applied numerical method and simulation, reported as 
would be expect in a technical report. The students were asked 
to develop a test problem using a non-trivial solution of 
Laplace equation interior to a boundary. Once the test problem 
has been input to the spread-sheet and executed, a comparison 
can be made between computed and analytic solutions. 
Finally, ‘realistic’ boundary conditions, based on a heat 

conduction problem, are applied and students are expected to 
attach a practical understanding to the results. 

1. Vector Calculus 

An important outcome is that students are able to connect 
the analytical mathematical solution with the computed 
solution, are able to develop and input the mathematical 
problem and interpret the output. Trivial solutions of (the 
interior) Laplace equation such as 𝜑 1, 𝜑 𝑥, or 𝜑 𝑦, or 
any combination, should be discouraged. Trivial solutions are 
not significantly testing the software and, more importantly for 
teaching and learning, are too simple for developing skills in 
vector calculus. On the other hand, solutions like 𝜑 𝑥𝑦 or 
𝜑 𝑥 𝑦  are acceptable and these can be combined with 
each other and with the trivial solutions to provide a variety. 
The chosen solution 𝜑 may be applied directly as a Dirichlet 
condition, using the coordinates in the Panel Centres column.  

Using the identity 𝛻𝜑. 𝒏, where 𝒏 is the normal to the 

boundary, the analytic Neumann boundary condition can be 
derived. It is possible therefore to have various Dirichlet and 
Neumann conditions, or to combine them to form the more 
general Robin condition. Clearly, this is more difficult than 
applying a Dirichlet condition on the whole boundary. In order 
to maintain challenge, students may be directed away from the 
easiest route, alternatively students could be asked to verify 

the  data given on the solution sheets, comparing the 

numerical results with the expected mathematical solution. 
In showing that the chosen function 𝜑 is a solution of 

Laplace equation and deriving or interpreting  data, the 

students are demonstrating their skills in vector calculus. As 
the work is in the context of using computers in engineering, 
then students may also be expected to use symbolic 
mathematical calculators to support their analysis. 

2. Simulation 

From a practical point of view, this assignment is about 
engineers building personal or collective confidence in 
software. In carrying out the work of the assignment, the 
students should observe that the method gives approximations 
to the test problems, with convergence to the analytic solution 
as the number of panels increases. Even though the practical 
heat conduction will normally have no analytic solution, the 
results should be as reasonably expected. 

The test boundary, in 2D or axisymmetric 3D could be of 
any shape of the students’ choosing. The freedom reinforces 
the robustness of the underlying method. Various students 
applying the method to various problems, and all achieving 
similar sorts of results, also nurtures confidence. This would 
be much harder to achieve with domain methods (such as the 
finite element method); the ease of creating the boundary 
mesh with the BEM enables the educational experience 
discussed. 

Results from the direct and indirect method are given, 
enabling the comparison of different methods. Different 
meshes can be applied and thus a connection between mesh 
size and accuracy can be established. 
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B. Tests Developed by Students 

In this section, two extracts from the students’ assignment 
work is shown. The first example is by a second year student, 
using LIBEM2 to solve a two-dimensional problem and the 
second is by a tird year student using LBEMA to solve a 
three-dimensional problem. 

1. Two-Dimensional Test 

A two-dimensional test problem using LIBEM2 is carried 
out on the shape illustrated in Fig 5. The solution of Laplace 
equation that forms the basis of the test problem is 𝜑 𝑥
𝑦 . A Dirichlet boundary condition is applied on all sides, 
except the upper and lower sides, where a Neumann boundary 
condition is applied. The computed and exact results are 
compared in Table IV. 

 

 

Fig. 5 Two-dimension test shape 
 

TABLE IV 
COMPARISON OF COMPUTED AND EXACT RESULTS FOR 2D TEST 

Point Exact Direct Indirect 

(3,1.5) 6.75 6.7654 6.7527 

(2,2) 0 0.0043 0.0008 

(2,1.5) 1.75 1.7560 1.7512 

(3.5, 1.5) 10.0 10.0056 10.004 

(2,0.5) 3.75 3.7537 3.7509 

2. Three-Dimensional Test 

In the three-dimensional axisymmetric test using LBEMA, 
the boundary is in the shape of a flask, as shown through a 
diagram of its generator in Fig. 6. Fig. 6 also shows the 
location of the interior points at which the solution is sought. 
In the first test, the exact solution is 𝜑 𝑟 2𝑧  and the 
corresponding Dirichlet boundary condition is applied. The 
results from this test at a few sample points are given in Table 
V. 

 
TABLE V 

COMPARISON OF COMPUTED AND EXACT RESULTS FOR FLASK 

Point Exact Direct Indirect 

2 -12.89 12.888 12.894 

7 -11.5 -11.499 -11.500 

10 5.289 5.290 5.291 

 
Fig. 6 The generator of the flask 

 
Realistic boundary conditions are then applied to the flask 

test problem, in which 𝜑 is interpreted as the temperature in a 
steady-state heat conduction problem. The inside boundary is 
at a temperature of 3° (𝜑 3 , and the outside boundary is at 
a temperature of 20° (𝜑 20 . Results with and without the 

insulated inner cavity (  =0) at selected points are given in 

Table VI. 
 

TABLE VI 
COMPARISON OF RESULTS FOR THE FLASK WITH AND WITHOUT CAVITY 

 without cavity With cavity 

Point Direct Indirect Direct Indirect 

1 10.933 10.933 10.933 10.933 

2 17.157 17.157 17.158 17.158 

3 19.708 19.708 19.713 19.713 

7 5.835 3.002 5.835 3.002 

8 17.172 19.986 17.173 19.987 

9 6.133 3.001 6.133 3.000 

10 17.440 20.000 17.441 20.000 

 
The results show that the direct and indirect method give 

similar answers. The values at points 1 to 3 show a simple 
temperature gradient, as we would expect. Finally, the 
insertion of the cavity has little effect on the results for points 
1 to 3, well away from the cavity, however, for points 7-10, 
either side of it, the results are as we would expect. 

VII. CONCLUSION 

Software, in this case built on spreadsheets, enables us to 
hide complexity. In this case, hiding the complexity of the 
BEM and all the coding enables us to use in the prosaic stated 
ambition of an educational aid in vector calculus and 
simulation. The openness of the spreadsheet environment, 
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combined with the accessibility of the BEM, supports the 
teaching and learning.  

Computing technology is increasingly being harnessed for 
educational purposes. The spreadsheets LIBEM2 and 
LBEMA, considered in this work, are examples of this, 
linking the worlds of engineering, mathematics and 
computing. 
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