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 
Abstract—This paper presents a prediction performance of 

feedforward Multilayer Perceptron (MLP) and Echo State Networks 
(ESN) trained with extended Kalman filter. Feedforward neural 
networks and ESN are powerful neural networks which can track and 
predict nonlinear signals. However, their tracking performance 
depends on the specific signals or data sets, having the risk of 
instability accompanied by large error. In this study we explore this 
process by applying different network size and leaking rate for 
prediction of nonlinear or chaotic signals in MLP neural networks. 
Major problems of ESN training such as the problem of initialization 
of the network and improvement in the prediction performance are 
tackled. The influence of coefficient of activation function in the 
hidden layer and other key parameters are investigated by simulation 
results. Extended Kalman filter is employed in order to improve the 
sequential and regulation learning rate of the feedforward neural 
networks. This training approach has vital features in the training of 
the network when signals have chaotic or non-stationary sequential 
pattern. Minimization of the variance in each step of the computation 
and hence smoothing of tracking were obtained by examining the 
results, indicating satisfactory tracking characteristics for certain 
conditions. In addition, simulation results confirmed satisfactory 
performance of both of the two neural networks with modified 
parameterization in tracking of the nonlinear signals. 

  
Keywords—Feedforward neural networks, nonlinear signal 

prediction, echo state neural networks approach, leaking rates, 
capacity of neural networks.  

I. INTRODUCTION 

EURAL networks methodology is an artificial 
computational approach developed based on the 

biological neuronal function and structure. These networks 
have nodes or neurons that are expressed by differential 
equations in discrete form. There are different kinds of neural 
networks some of which are used and developed in the 
machine learning field, while others are employed in the 
neuroscience and bioengineering fields.  

The notion of Recurrent Neural Networks (RNNs) is a 
specific and important type of neural network owing its 
abilities to those of the biological neural networks [1], [2] and 
is used in many practical applications like detection of human 
diseases [3], [4], characterizing human control of dynamical 
systems [5], [6], agriculture [7], [8], and many other fields. 
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ESN is known as a certain type of RNN. An interesting feature 
of ESN is its high feedback structure, leading to its rich 
inherent memory. In signal processing, there are different 
potential applications for ESN algorithm. In many 
physiological signal processing applications, different 
simultaneous sources of noises or interferences are mixed and 
contaminated the original signals like fetal electrocardiogram 
(ECG) [9], [10] or adult ECG [11]. 

Features of the original signal are classified or extracted by 
the ESN or by a combination of ESN and other computational 
algorithms [12]-[14]. Since this algorithm has the ability for 
tracking the predefined signals like gait recognition, in 
different mode and context of tasks for hip, ankle and knee 
joints, it can be used for saving and then tracking the various 
patterns of CPG networks by considering the different 
frequency shapes and synchronization inside the network [15], 
[16]. In recent years, various ESN and feedforward neural 
networks have been applied for time series prediction and 
optimization of systems [17]. 

In some applications involving investigation of temporal 
characteristics of dynamic systems, echo estate network and 
MLP networks are proposed. For the analysis of temporal 
dynamics of signals or systems, RNN or time delayed neural 
networks have practical features, but training of this type of 
networks is developed in recent years [18], [19].  

Some references are used in the backpropagation through 
time for training of networks, but this learning approach 
suffers from slow learning process and may make a network 
causing instability which depends on topology of networks 
[20]. Another approach, known as reservoir computing 
method, for learning of RNN is developed in [21]. In this 
approach one recurrent topology is first created. Then by 
defining predetermined initial weights or functions for the 
hidden layer, its dynamics are driven by the input layer. The 
training phase in this approach consists of linear methods like 
regression and pseudo inverse approach, so a training phase 
has very low computational cost.  

While in the learning phase of the neural network, if the 
input and output of the network data are available, the training 
approach is supervised. Yet, the choice of the free parameters 
as well as the network structure used in the learning algorithm 
must be chosen carefully. Reference [22] used the fixed point 
algorithm for the prediction of nonlinear and chaotic signal, 
leading to a fast rate of learning. Also [23] compared the 
performance of feedforward and ESN with Mackey-Glass 
nonlinear chaotic time series. Regressive moving average 
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filter is applied to the hidden layer of the network and it 
enhances the prediction performance of both networks. 

Generally, for tracking and prediction of nonlinear signals, 
estimator of algorithm and weights in networks should have 
features like minimum variance criterion and EKF approach is 
usable and practical for this index. For applying EKF, a priori 
distribution and statistical characteristics of measurement and 
process noise is needed. In other conditions when the process 
noise of system is large subsequently KALMAN gain is 
increased accordingly. This subject makes algorithm more 
sensible to noise of measurement and leads to abrupt changes 
in weight of networks. For improving EKF approach for 
estimating the statistical noise characteristics, different 
methods like adaptive updating covariance of process and 
measurement noise are proposed in literature [24]. These 
references used different manual control parameters that can 
control amount of the weights of variance and also is suitable 
for basis and input function selection for layers of network 
during the computation and can enhance the tracking 
performance as well. In this paper, noise statistical 
characteristic does not vary by time; and EKF approach is 
used to train feed forward and ESN neural networks in order 
to predict or track nonlinear signal and minimize error 
between model and prediction.  

This paper is structured as follows: Section II gives an 
overall structure of algorithm in both ESN and feed forward 
network with training by EKF approach. Next, in Section III 
simulation of ESN neural network at different conditions are 
discussed and finally, in Section V simulation results for MLP 
neural networks with training of EKF approach for tracking 
chaotic signal are investigated. 

II. FORMULIZATION AND DESCRIPTION OF DYNAMICS OF ESN 

AND TRAINING WITH EKF APPROACH 

In this section, overall structure of training with EKF 
approach is explained and then dynamics of the ESN network 
and major parameters for controlling performance of 
algorithm are explained. In this section the overall structure of 
algorithm for training of neural networks is organized to the 
state space dynamical form. This representation can be defined 
as (1): 

 
ℎ௞ାଵ ൌ ℎ௞ ൅ 𝜂௞ , 𝑦௞= 𝑔௞(ℎ௞, 𝑥௞ሻ ൅ 𝑧௞                        (1) 

 
In (1), k denotes discrete sampling time and 𝑧௞ is 

measurement noise that corrupted measurement signal and 𝜂௞ 
is process noise. In this algorithm 𝑧௞ is modeled as an 
uncorrelated Gaussian distribution with associated covariance 
of 𝑁௞ and 𝜂௞ is a stochastic component of unknown input 
signal in our modeling, and it is related to covariance which is 
represented by𝑄௞. In this algorithm, 𝑔௞ is an approximation 
mapping during computation that is obtained and tracked by 
neural networks and then appropriate weights of network are 
calculated. This calculation can be formulized by hypothesis 
space that probability of each term in formulization can be 
obtained and computed by Bayesian approach. Generally, this 
computation is formulated as in (2): 

P (𝑁௞ାଵ, 𝑄௞ାଵ|𝑦௞ାଵሻ ൌ ௣ሺ௬ೖశభ|௬ೖ,ேೖశభ,ொೖሻ

௣ሺ௬ೖశభ|௬ೖሻ
𝑝ሺ𝑁௞ାଵ, 𝑄௞|𝑦௞ (2) 

 
For having smooth tracking and also benefit to choosing 

estimation of neural weights, EKF approach is usable and 
beneficial. This algorithm uses Taylor series expansion around 
previous estimation and consequently terms of bays rule are 
defined as in (3), (4): 

 
Prior=p (ℎ௞ାଵ|𝑦௞, 𝑄௞, 𝑁௄ሻ         (3) 

 
 likehood ൌ pሺy୩ାଵ|h୩ାଵ, N୩ାଵ, 𝑄௞ሻ     (4) 

 
High order terms of series are ignored in this approach so 

EKF is an approximate method but it has better and faster 
performance like second order statistical or gradient descent 
approaches. Also, posterior density function is computed as in 
(5): 

 
Posterior=p (ℎ௞ାଵ|h୩ାଵ, N୩ାଵ, 𝑄௞ሻ     (5) 

 
where weights, KALMAN gains parameter and covariance 
parameter are formulated as (6)-(8): 

 
ℎ௞ାଵ

∧ =ℎ௞
∧+ 𝑘௞ାଵ(𝑦௞ାଵ െ 𝑔ሺℎ௞, 𝑥௞ାଵ)          (6) 

 
𝑝௞ାଵ ൌ 𝑝௞ ൅ 𝑄௞ െ 𝑘௞ାଵ𝑔௞ାଵሺ𝑝௞ ൅ 𝑄௞ሻ      (7) 

 
𝑘௞ାଵ=ሺ𝑝௞ ൅ 𝑄௞ሻ𝑔௞ାଵ

் ሾ𝑁௞ାଵ+𝑔௞ାଵሺ𝑝௞ ൅ 𝑄௞ሻ 𝑔௞ାଵ
் ሿ^ െ 1 (8) 

 
In addition to consider the above formulation, the gain of 

the filters is tuned in respect to different noises and the effects 
of the measurement on the performance of the filter, which are 
investigated before, are applied in the modelling as well [25]. 
Finally, by back propagating output error to equations in each 
sampling time, a weight vector for neural networks is 
computed. 

In the ESN the layers consist of input, hidden layer and 
output layer that are represented as in (9)-(13): 

 
U (n) = (𝑢ଵ(n)…𝑢௞ሺ𝑛ሻሻ′                 (9) 

 
X (n) = (𝑥ଵ(n)…𝑥௞ሺ𝑛ሻሻ′               (10) 

 
Y (n) = (𝑦ଵ(n)…𝑦௞ሺ𝑛ሻሻ′               (11) 

 

𝑊௜௡= (𝑊௜௝
௜௡௣௨௧), w = (𝑤௜௝)          (12) 

 

𝑊௢௨௧௣௨௧= (𝑊௜௝
௢௨௧௣௨௧),  𝑊௕௔௖௞= (𝑊௜௝

௕௔௖௞)       (13) 
 

𝑊௢௨௧௣௨௧ and 𝑊௜௡ are its associated connection weights for 
output and input layer. The activation function for neurons in 
hidden layer or updating cycle for these nodes is defined as in 
(14): 

 
X (N+1) =H (𝑊ூே𝑈ሺ𝑁 ൅ 1ሻ ൅ 𝑊𝑋ሺ𝑁ሻ ൅ 𝑊஻஺஼௄𝐷ሺ𝑁ሻሻ (14) 

 
where N=1, …, T is a neuron number in hidden layer and h= 
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(h1… hn) are basis activation function for each neuron. In 
these simulations we considered hyperbolic tangent function 
computed as in (15): 

 

Hyperbolic tangent function=
௘ೣି௘షೣ

௘ೣା௘షೣ                 (15) 

 
Then output of network is calculated as: 
 

Y (n+1) = 𝑛௢௨௧(𝑤௢௨௧(u (n+1), x (n+1), y (n))     (16) 
 
where 𝑛௢௨௧ ൌ ሺ𝑛ଵ

௢௨௧…𝑛௡
௢௨௧) are basis output function. 

Generally, the summary of dynamics of neurons in hidden 
layer can be written as in (17)-(19): 

 
𝑥௜௡௣௨௧ ൌ 𝑊𝑥௧ ൅ 𝑊ூே௉௎்𝑈௧             (17) 

 
𝑥௧ାଵ ൌ tanhሺ 𝑥௧ାଵሻ                        (18) 

 
𝑦௧=𝑊௢௨௧௣௨௧𝑥௧                            (19) 

 
Finally, outweights are calculated by applying pseudo 

inverse matrix of M as in (20) and then these systems of 
equation during the teaching period are solved simultaneously. 

 

W୓୙୘ ൌ ሺMାTሻ୘                           (20) 

III. SIMULATION RESULTS FOR ESN NEURAL NETWORK 

APPROACH 

Dynamical computational models need the feature vector 
for access and storing the time history for their input signals 
and related outputs. In ESN network, input signal dynamics is 
stored in hidden layer and this historic of input is processed by 
recurrent weight matrix in the hidden layer. Then by 
combination of different responses of neurons in hidden layer, 
an output response is obtained. ESN does not necessarily 
apply gradient learning approach and most of the time training 
approach in hidden layer of network does not take place and 
only assigned weights to neuron in this layer are added during 
computation time for reaching to the desired output signal. In 
this and next sections, some signals are used which are highly 
chaotic or are added by noise disturbance. 

First structure of ESN network is as follows: Number of 
neuron in hidden layer is 1000 and internal weights of network 
are considered randomly in range of one to negative one value 
and spectral radius of network is defined as 0.79 and finally 
output layer has one node. Input nonlinear and chaotic signal 
for inputting to network is plotted in Fig. 1. Then, ESN is 
trained by 1000 time steps that 100 of it are regarded to 
damping the initial conditions.  

In the first simulation the coefficient of activation function 
in hidden layer is considered 0.99 and tracking performance 
by network is plotted in Fig. 2. Then value of this susceptible 
and important parameter is changed to 0.01 and 0.3 
respectively and corresponding simulation results are plotted 
in Figs. 3 and 4. This parameter has features like the control 
ability on dynamic activity of neurons in hidden layer and has 
role such as influencing of input and history of input during 

the computation. So as evident parameter t in Fig. 3, this 
parameter makes network lose the history of input and as a 
result, network cannot track and follow the input. Normalized 
square error (NSE) and different value of activation function is 
explained in Table I. 

 

 

Fig. 1 Input nonlinear and chaotic signal to ESN network 
 

TABLE I  
COEFFICIENT OF BASIS FUNCTION IN HIDDEN LAYER AND NSE ERROR 

Error of tracking Coefficient of activation
function in hidden layer

NSE = 0.047689 A=0.01

NSE = 0.0044617 A=0.3

NSE = 1.7066e-06 A=0.99

 
Finally, the associated variation of weights for ESN 

network for each simulated case is plotted in Fig. 5 and 
amplitude and variation of weights in second simulation is 
more than others. 

 

 

Fig. 2 Target and tracking signal by ESN networks with applying 
A=0.99 at first simulation 

 

 

Fig. 3 Target and tracking signal by ESN networks with applying 
A=0.01 in second simulation 
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Fig. 4 Target and tracking signal by ESN networks with applying 
A=0.3 in third simulation 

 

 

 

 

Fig. 5 Output weight variation during the computation according to 
simulation cases 

 
For manifesting the role of activation function in former 

simulation in this section, we chose value of 0.01 for 
activation function while adding to noise and nonlinearity of 
input signal. In this case, tracking cannot be done at 450 time 
step by networks despite of enough neurons and initialization 
of network and this result is plotted in Fig. 6. Also neuronal 
responses of some nodes in hidden layer of network are 
plotted in Fig. 7 and associated weight variation during 
computation is plotted in Fig. 8. 

 

 

Fig. 6 Teacher and tracking signal for Lorentz signal and applying 
large noise 

 

 

Fig. 7 Neuronal responses variation for some nodes in hidden layer of 
network 

 

Fig. 8 Output weight variation during the computation 
 

In this section, input signal is divided to 700 time steps that 
350 of it are considered for training and others for testing. 
Value of input signal are normalized and scaled to 0.1. Firstly, 
we chose spectral radius to value of 0.5 and other defined 
characteristics is explained in Table II. The training results for 
this simulation are plotted in Fig. 9 and then testing process of 
network is plotted in Fig. 10.  

 
TABLE II 

DEFINED CHARACTERISTIC FOR FIRST AND SECOND SIMULATION 
0.5(first)   spectral radius of 

network for first and 
second simulation  

2  
Number of 

neurons in input 
layer   (second) 0.1 

tanh=
𝒆𝒙ି𝒆ష𝒙

𝒆𝒙ା𝒆ష𝒙 
Activation function 

for hidden layer  

20(first)  Number of 
neurons in 

hidden layer  
30 

(second)  

Error mean 
squared 

Method of 
calculating of error 

in network  
1  

Number of 
neurons in 

output layer  

350  
Time step 

For training  0.1  
Value of 

normalizing 
input signal  350 Time step for testing 
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Fig. 9 Teacher and tracking signal for network during training 
process at first simulation 

 

 

Fig. 10 Teacher and tracking signal for network during testing 
process at first simulation 

 
TABLE III  

DIFFERENT TRACKING OF NETWORK IN DIFFERENT SIMULATION RESULTS 
NSE 

during 
testing  

NSE 
during 
training  

Input 
span to 
network 

NSE 
during 
testing  

NSE 
during 
training  

Input 
span to 
network 

0.48579  0.46845  1040  0.52817  0.50035  900  

0.60161  0.55745  1060  0.3338  0.29102  920  

0.36255  0.32492  1080  0.77473  0.7251  940  

0.27945  0.27872  1110 0.60396  0.53705  960  

0.67306  0.647  1120  0.43435  0.44059  980  

0.45841  0.43074  1140  0.74189  0.69436  1000  

0.51461  0.44298  1200  0.4848  0.41532  1020  

 
Generally, choosing the initial and spectral radius of hidden 

layer is identified as the role of input signal compared to the 
eigenvalue of weight matrix in network. By choosing low 
value of this number the sensibility of network to input noise 
is increased. In the second simulation section, spectral radius 
of network is reduced to 0.1 and value of number of neuron in 
hidden layer is increased to value of 30. Teacher and tracking 
signals network for training and testing step are plotted in 
Figs. 11 and 12, respectively. The rate of convergence in ESN 
network is defined as in (21): 

 
D (ℎ௧,𝑦௧) <=a𝜆௧                            (21) 

 
where λ is lower of one and parameters of a is defined by 
matrix of W in network. This implies convergence rate of 
network that is obtained by exponential rate. Network size and 
leaking rate are important factors for both increasing capacity 
of network and evolving the neuron weight over running the 
algorithm time. From the second simulation results, it is 
evident that despite of increasing of neurons in hidden layer, 
an influence of spectral radius is more vital in noisy and 

nonlinear input condition. For showing this subject, we 
increased the span of input from 900 to 1200 and error of 
tracking in different training and testing processes is obtained 
and explained in Table III. 
 

 

Fig. 11 Teacher and tracking signal for network during training 
process at second simulation 

 

 

Fig. 12 Teacher and tracking signal for network during testing 
process at second simulation 

IV. SIMULATION RESULTS FOR MLP NEURAL NETWORK 

APPROACH 

In this section, different input and output signals are used 
for evaluating EKF training approach for MLP neural 
network. For first simulation, we proceed with MLP neural 
network with having 10 and one sigmoid neurons function and 
also linear basis function for hidden and output layer of 
network, respectively. For updating p(k) in KALMAN filter, 
back propagation error for updating is used. Also, in this 
section for comparing the performance of different set up for 
networks, the NSE criterion is used and it can be defined as in 
(22): 

 

NSE=ඥ∑ ሺ𝑦௞
ଵ଴଴
௄ୀଵ െ 𝑔௞

∧ሺℎ௞, 𝑥௞ሻ                (22) 
 
These nonlinear signals elationship for input and output 

signals of network in first and second simulation is as in (23), 
(24) also for third and fourth simulation is according to (25), 
(26): 

 
H (t, 1) =0.5ൈh (t-1, 1) +12ൈcos (9.2(t-1) + 𝜂௞      (23) 

 

Y (t, 1) = ௛ሺ௧,ଵሻమ

ଶ଴
൅ 21 ൈcos (9.2(t-1) + 𝑧௞      (24) 

 

h( t,1)= 0.5ൈh(t-1,1)+ 
ଶହൈ୦ሺ୲ିଵ,ଵሻ

ଵା௛ሺ௧ିଵ,ଵሻమ+8ൈcos(1.2(t-1)+ 
௛ሺ௧,ଵሻమ

ଶ଴
+ 𝜂௞ (25) 
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Y (t, 1) = ௛
ሺ௧,ଵሻమ

ଶ଴
+20 ൈcos (1.2(t-1) + 0.5ൈh (t-1, 1) + 𝑧௞ (26) 

 
h (t) denotes input signal and y (t) denotes output signal over 
100 time samples. The first related input and output signal for 
(23) and (24) are plotted in Figs. 13 and 14, respectively and 
the first related input and output signal for (25) and (26) are 
plotted in Figs. 20 and 21, respectively. In these simulations 
the Gaussian noise distribution with variance deviation of 0.1 
for process noise signal and periodical deviation distribution 
with amplitude of 4 is considered for measurement noise 
signal. These results are plotted in Fig. 15 for first and second 
simulation and then for third and fourth simulation are plotted 
in Fig. 22. Next simulation result for true and tracking signal 
by neural networks at different simulation steps are plotted in 
Fig. 16 for first simulation, Fig. 18 for second simulation, Fig. 
23 for third simulation and Fig. 25 for fourth simulation. 
Finally, covariance computation with algorithm during 
computation is plotted for first simulation in Fig. 17, for 
second simulation in Fig. 19 and for third simulation in Fig. 
24, respectively. 

In tracking measurement with different noise distribution, 
KALMAN filter is an estimator with having feature of 
minimum variance minimization. So this approach leads to 
lower tracking error and better weight for network, so 
balancing between tracking and reducing error in network can 
be gained. In simulation when periodicity behavior of 
measurement and process noise in second simulation is largely 
corrupted then, tracking performance of network does not 
change substantially but when the irregularity and nonlinearity 
of signal in input and other sources signals to network are 
increased, the performance of network is reduced. EKF errors 
are explained in Table V for these conditions. In these 
simulations it is evident that tracking measurement signal, 
when variance is suddenly varied, is reduced and network 
cannot track signals. In this condition due to the local accuracy 
of EKF model, the increasing of neural node in hidden layer 
cannot enhance performance of the neural network. Also no 
smoothness pattern of covariance in simulation by increasing 
the nonlinearity is evident in simulation results and this is a 
disadvantage of EKF approach in nonlinear and chaotic 
conditions that convergence cannot be obtained. Totally, in the 
first and second simulations, when input and output signal has 
periodical pattern regardless of measurement and process 
noise, the tracking performance is smoother and can enhance 
the training of MLP neural networks for prediction. In 
addition, having artificial patterns or data series with having 
more uncertainties like irregular variances, chaotic features 
and high input dimensions or distribution can cause reducing 
the desired performance and limitation of the approaches to 
track these zones [26], [27]. So, in these circumstances, the 
iteration of algorithm should be increased or new criteria or 
other robust approaches should be combined with algorithm in 
effort to enhance the identification or tracking in these noisy 
zones [26].  

 
 
 

TABLE V 
DIFFERENT TRACKING OF NETWORK IN DIFFERENT SIMULATION RESULTS 

 EKF error 
Neurons in the 
hidden layer 

SIMULATION I 1.909493e+01 10 

SIMULATION II 3.930239e+01 10 

SIMULATION III 9.609864e+01 10 

SIMULATION V 1.145457e+02 50 

 

 

Fig. 13 Input signal for neural network at first and second simulation 
 

 

Fig. 14 Output signal for neural network at first and second 
simulation 

 

 

 

Fig. 15 Different predefined signal for MLP neural network consists 
of measurement and process noise 
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Fig. 16 Simulation result for true and tracking signal by neural 
networks at first simulation 

 

 

Fig. 17 Covariance computation with algorithm at first simulation 
 

 

Fig. 18 Simulation result for true and tracking signal by neural 
networks at second simulation 

 

 

Fig. 19 Covariance computation with algorithm at second simulation 
 

 

Fig. 20 Input signal for neural network at third and fourth simulation 
 

 

Fig. 21 Output signal for neural network at third and fourth simulation 
 

 

 

Fig. 22 Different predefined signal for MLP neural network consists 
of measurement and process 

 

 

Fig. 23 Simulation result for true and tracking signal by neural 
network at third simulation 
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Fig. 24 Covariance computation with algorithm at third simulation 
 

 

Fig. 25 Simulation result for true and tracking signal by neural 
networks at fourth simulation 

V. CONCLUSION 

Many engineering and physical modeling leads to the 
nonlinear and chaotic signal so prediction of these signals is 
vital. In this study the performance of ESN and MLP neural 
networks for tracking nonlinear signal is proposed and 
developed. Different simulation results for both neural 
networks are designed and error of tracking in conditions 
when key parameters of modeling are changed is investigated 
as well. With these simulations, limitations and increasing the 
ability of neural network for tracking is discussed in detail 
according to the results. 
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