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State Estimation Based on Unscented Kalman Filter
for Burgers’ Equation

Takashi Shimizu, Tomoaki Hashimoto

Abstract— Controlling the flow of fluids is a challenging problem
that arises in many fields. Burgers’ equation is a fundamental
equation for several flow phenomena such as traffic, shock waves,
and turbulence. The optimal feedback control method, so-called
model predictive control, has been proposed for Burgers’ equation.
However, the model predictive control method is inapplicable to
systems whose all state variables are not exactly known. In practical
point of view, it is unusual that all the state variables of systems are
exactly known, because the state variables of systems are measured
through output sensors and limited parts of them can be only
available. In fact, it is usual that flow velocities of fluid systems
cannot be measured for all spatial domains. Hence, any practical
feedback controller for fluid systems must incorporate some type of
state estimator. To apply the model predictive control to the fluid
systems described by Burgers’ equation, it is needed to establish
a state estimation method for Burgers’ equation with limited
measurable state variables. To this purpose, we apply unscented
Kalman filter for estimating the state variables of fluid systems
described by Burgers’ equation. The objective of this study is to
establish a state estimation method based on unscented Kalman filter
for Burgers’ equation. The effectiveness of the proposed method is
verified by numerical simulations.

Keywords—State estimation, fluid systems, observer systems,

unscented Kalman filter.

I. INTRODUCTION

CONTROLLING fluid dynamics is a challenging problem

that arises in many fields such as physical, biological,

and chemical systems. Burgers’ equation is known as the

fundamental partial differential equation that can be used to

model various flow phenomena. Burgers’ equation consists

of the advective and diffusive terms, which can be used to

represent fundamental properties of flow phenomena. Hence,

using Burgers’ equation can be regarded as a natural first step

towards developing a method for controlling flows.

Model predictive control (MPC) is a well-established

control method that optimizes control performance over a finite

future horizon, and its performance index has moving initial

and terminal times. In recent years, several MPC methods

have been proposed for fluid systems [1]-[5], spatiotemporal

dynamic systems [6]-[10], Schrödinger systems [11], [12],

stochastic systems [13]-[15], and probabilistic constrained

systems [16]-[18]. In particular, the MPC method for Burgers’

equation has been proposed in [2]. However, the MPC method
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proposed in [2] is inapplicable to systems whose all state

variables are not exactly known.

In general, it is usual that the state variables of systems are

measured through output sensors, hence, only limited parts of

them can be used for designing control inputs. In fact, it is

unrealistic that the flow velocities of fluid systems are exactly

known for all spatial domains. Hence, it should be supposed

that the flow velocities of limited parts of spatial domain can

be only used for designing control inputs.

In order to apply the MPC method proposed in [2] to

the fluid systems described by Burgers’ equation, we need

to establish a state estimation method for Burgers’ equation

with limited measurable state variables. The objective of this

study is to establish a state estimation method for Burgers’

equation. For this purpose, we introduce an observer system

for estimating the state variables of Burgers’ equation.

Kalman filter is a well-known optimal estimation method

that enable us to minimize the estimation errors with taking

the process noise and sensor noise into consideration. The

application of the Kalman filter to nonlinear systems has been

studied in several decades. The simple approach is to use the

Extended Kalman Filter (EKF) [19] which simply linearize all

nonlinear models so that the traditional linear Kalman filter can

be applied. However, it is difficult to implement the EKF to

high-dimensional nonlinear systems because the computation

of linearization is impracticable. Also, the EKF is only reliable

for systems which are almost linear on the time scale of the

update intervals. On the other hand, the different approach is

to use the Unscented Kalman Filter (UKF) [20] which uses

a set of appropriately chosen weighted points to parameterize

the means and covariances of probability distributions. Using

UKF, the estimator yields performance equivalent to the

Kalman filter for linear systems yet generalizes to nonlinear

systems without the linearization steps required by the EKF.

In fact, Burgers’ equation is a partial differential equation

that can be discretized into the high-dimensional nonlinear

systems. Therefore, we apply the UKF to the state estimation

method for Burgers’ equation. The objective of this study is

to propose a state estimation method based on the UKF for

Burgers’ equation.

This paper is organized as follows. In Section II, we

define the system model and notations. In Section III, we

consider the state estimation problem of Burgers’ equation. In

Section IV, we provide the results of numerical simulations

that verify the effectiveness of the proposed method. Finally,

some concluding remarks are given in Section V.
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II. NOTATION AND SYSTEM MODEL

For a matrix A, the transpose of A is denoted by AT.

Let s = [s1, s2]
T and t denote a spatial vector and temporal

variable, respectively. Let v(t, s) denote the flow velocity. Let

ν be the constant parameter that denote the kinematic viscosity.

These system parameters are listed in Table I.

In this study, we restrict our attention to the range 0 ≤ si ≤
� for i = 1, 2. Let Ω be the set defined by

Ω :=
∏2

i=1
{si|0 ≤ si ≤ �}.

Then, we consider the following system of two-dimensional

Burgers’ equation:

∂v1
∂t

(t, s) = −
(
v1

∂v1
∂s1

(t, s) + v2
∂v1
∂s2

(t, s)

)

+ ν

(
∂2v1
∂s21

(t, s) +
∂2v1
∂s22

(t, s)

)
(1a)

∂v2
∂t

(t, s) = −
(
v1

∂v2
∂s1

(t, s) + v2
∂v2
∂s2

(t, s)

)

+ ν

(
∂2v2
∂s21

(t, s) +
∂2v2
∂s22

(t, s)

)
(1b)

TABLE I
SYSTEM PARAMETERS

t temporal variable
s spatial vector

v(t, s) flow velocity
ν kinematic viscosity

The boundary conditions are considered as follows:

v = 0 for s1 = 0 (2a)

v = 0 for s1 = � (2b)

v = 0 for s2 = 0 (2c)

v = 0 for s2 = � (2d)

A schematic view of system model is shown in Fig. 1.

Fig. 1 A schematic view of system model

Next, the output function y(s, t) are introduced as follows:

y(s, t) = c(s)x(s, t). (3)

Note that c(s) is a space-dependent coefficient that is

introduced to account for restrictions on the allocation of

sensors.

It is well known that Burgers’ equation can be discretized

into finite difference equation using the Crank-Nicolson

finite-difference approximation method.

Let s ∈ Ω be divided into n grid points, where n is a positive

integer. Let s̄ := [s̄1, s̄2, · · · , s̄n]T denote the spatial vector

obtained by the discretization of s. Likewise, let τ denote the

discrete-time obtained by the sampling time Δt. Consequently,

the discretized state can be obtained using s̄ and τ . Let x̄ be

defined by

x̄(τ) =

⎡
⎢⎢⎢⎣

x̄1(τ)
x̄2(τ)

...

x̄n(τ)

⎤
⎥⎥⎥⎦ :=

⎡
⎢⎢⎢⎣

x(s̄1, τ)
x(s̄2, τ)

...

x(s̄n, τ)

⎤
⎥⎥⎥⎦ .

Applying the Crank-Nicolson method and using the

discretized state x̄, we obtain the following discretized system

model:

A(x̄(τ))x̄(τ + 1) = B(x̄(τ)), (4a)

ȳ(τ) = Cx̄(τ), (4b)

where A, B, and C are system coefficient matrix.

The objective of this study is to propose a state estimation

method for system model (4).

III. ESTIMATION BASED ON UNSCENTED KALMAN FILTER

In this section, we propose a state estimation method based

on the UKF for system model (4). First, we introduce the

following observer system:

A(x̂(τ))x̂(τ + 1) = B(x̂(τ)) + z(τ), (5a)

ŷ(τ) = Cx̂(τ) + w(τ), (5b)

where x̂ and ŷ denote the estimated state and output of x̄ and

ȳ, respectively. Moreover, z and w denote the process noise

and the observation noise, respectively, which can be caused

by disturbances.

In the minimum mean-squared error sense, the optimal state

estimate is given by the conditional mean.

Let x̂(i|j) be the mean of x̂(i) conditioned on all of

the observations up to and including time j, i.e., x̂(i|j) =
E
[
x̂(i)|Yj

]
, where Yj := {ȳ(1), ȳ(2), · · · , ȳ(j)}.

It is assumed that the means of z(τ) and w(τ) are zero for

all time τ . Let Qz(τ) and Qw(τ) be the covariances of z(τ)
and w(τ), respectively.

The UKF [20] first predicts the mean and covariance of
a future state using the process model and weighted sigma
points as follows:

A(χi(τ))χi(τ + 1|τ) = B(χi(τ)), (6)

x̂(τ + 1|τ) =
2n∑

i=0

W iχi(τ + 1|τ), (7)

Qx̂(τ + 1|τ) = Qz(τ + 1)

+
2n∑

i=0

W i
(
χi(τ + 1|τ)− x̂(τ + 1|τ)) (χi(τ + 1|τ)− x̂(τ + 1|τ))T,

(8)

where W i and χi denote the weight and sigma point,

respectively. The definitions of W i and χi can be found in

[20].
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χi(τ + 1|τ) can be determined from (6). Then, x̂(τ + 1|τ)
and Qx̂(τ+1|τ) are determined form (7) and (8), respectively.

After we redraw a new set of sigma points χ̄i to

incorporate the effect of the additive process noise, the

predicted observation is calculated by

ŷ(t+ 1|t) =
2n∑
i=0

W iC(χ̄i(τ + 1|τ)). (9)

Moreover, the cross covariance P and innovation covariance

R are determined by

P(τ + 1|τ) =
2n∑
i=0

W i
(
χi(τ + 1|τ)− x̂(τ + 1|τ))

× (
C(χ̄i(τ + 1|τ))− ŷ(τ + 1|τ))T (10)

R(τ + 1|τ) =
2n∑
i=0

W i
(
C(χ̄i(τ + 1|τ))− ŷ(τ + 1|τ))

× (
C(χ̄i(τ + 1|τ))− ŷ(τ + 1|τ))T

+Qw(τ + 1) (11)

Consequently, the state estimate at time τ + 1 is obtained
by updating the prediction by the linear update rule:

K(τ + 1) = P(τ + 1|τ)R−1(τ + 1|τ), (12a)

x̂(τ + 1|τ + 1) = x̂(τ + 1|τ) +K(τ + 1) (ȳ(τ + 1)− ŷ(τ + 1|τ)) ,
(12b)

Qx̂(τ + 1|τ + 1) = Qx̂(τ + 1|τ)−K(τ + 1)R(τ + 1|τ)KT(τ + 1).
(12c)

Note that the UKF is easier to implement than an EKF, because

UKF does not involve any linearization steps, eliminating the

need to derive of the Jacobian matrix of A−1(x̂)B(x̂).

IV. NUMERICAL SIMULATIONS

In this section, we provide numerical simulation results to

verify the effectiveness of the proposed method.
The two-dimensional square domain is set as Ω := [0 1]×

[0 1]. Here, we set the initial state and the initial estimated

state as follows:

x(0) =

[ − cos(πs1) sin(πs2)
sin(πs1) cos(πs2)

]
, (13)

x̂(0) =

[
0.1
0

]
. (14)

Furthermore, we choose c(s) so that the state variables at the

points (x1, x2) = (0, 0), (1, 0), (0, 1), (1, 1) can be measured

from the outputs.
Other parameters employed in the numerical simulations are

as follows: Δt = 0.01, n = 225, ν = 0.05. z and w are set

as zero-mean Gaussian noises with covariances Qz = 0.001I
and Qw = 0.01I, respectively, where I is the identity matrix.

The results of numerical simulations by the proposed method

are shown below.
In Figs. 2-19, the solid blue and dashed red arrows show

the time histories of the real state x and the estimated state x̂,

respectively. We can see that the estimated state x̂ converges to

the real state x. Fig. 20 shows the time history of the estimate

error. These figures reveal the effectiveness of the proposed

method.

Fig. 2 Flow velocity at t = 0

Fig. 3 Flow velocity at t = 0.2

V. CONCLUSION

The model predictive control method proposed in [2] for

Burgers’ equation is inapplicable when all state variables are

not exactly known. In general, the state variables of systems

are measured through output sensors, hence, only limited parts

of them can be directly known. Thus, it is unrealistic that

the flow velocities of fluid systems are exactly known for

all spatial domains. Hence, it should be assumed that the

flow velocities of limited parts of spatial domain can be only

known.

To apply the MPC method proposed in [2] to the fluid

systems described by Burgers’ equation, we need to establish

a state estimation method for Burgers’ equation with limited

measurable state variables. In this study, we established a

state estimation method for Burgers’ equation. We proposed

a state observer system using the unscented Kalman filter for

estimating the state of Burgers’ equation. The effectiveness of

the proposed method was verified by numerical simulations.

It is known that time delays may cause instabilities of

the state observer system and lead to more complex analysis

[21]-[26]. The state estimation problem of the systems with

time delays is a possible future work.
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Fig. 4 Flow velocity at t = 0.4

Fig. 5 Flow velocity at t = 0.6

Fig. 6 Flow velocity at t = 0.8

Fig. 7 Flow velocity at t = 1.0

Fig. 8 Flow velocity at t = 1.2

Fig. 9 Flow velocity at t = 1.4

Fig. 10 Flow velocity at t = 1.6

Fig. 11 Flow velocity at t = 1.8
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Fig. 12 Flow velocity at t = 2.0

Fig. 13 Flow velocity at t = 2.2

Fig. 14 Flow velocity at t = 2.4

Fig. 15 Flow velocity at t = 2.6

Fig. 16 Flow velocity at t = 2.8

Fig. 17 Flow velocity at t = 3.0

Fig. 18 Flow velocity at t = 3.2

Fig. 19 Flow velocity at t = 3.4
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Fig. 20 Time history of state estimation error
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