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On the Efficiency and Robustness of Commingle
Wiener and Lévy Driven Processes for Vasciek

Model
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Abstract—The driven processes of Wiener and Lévy are known
self-standing Gaussian-Markov processes for fitting non-linear
dynamical Vasciek model. In this paper, a coincidental Gaussian
density stationarity condition and autocorrelation function of the
two driven processes were established. This led to the conflation
of Wiener and Lévy processes so as to investigate the efficiency
of estimates incorporated into the one-dimensional Vasciek model
that was estimated via the Maximum Likelihood (ML) technique.
The conditional laws of drift, diffusion and stationarity process
was ascertained for the individual Wiener and Lévy processes as
well as the commingle of the two processes for a fixed effect
and Autoregressive like Vasciek model when subjected to financial
series; exchange rate of Naira-CFA Franc. In addition, the model
performance error of the sub-merged driven process was miniature
compared to the self-standing driven process of Wiener and Lévy.

Keywords—Wiener process, Lévy process, Vasciek model, drift,
diffusion, Gaussian density stationary.

I. INTRODUCTION

DYNAMICAL systems are mathematical objects used to

model physical and non-physical phenomena whose state

(or instantaneous description) changes over time according

to a fixed rule as discussed in [1], [2]. Dynamical system

has been a vital modeling in fields such as engineering,

and physics, financial statistics (e.g. stock market, exchange

rates), and environmental statistics with two realistic traits that

are of great interest – the stochastic term that is made-up

of the observational outputs that are noisy function of the

inputs such that the dynamics itself will be galvanized by

some unobserved noise processes. The second distinct trait

is the finite-dimensional states that are indirect observable

but synopsize at any time for all information about the traits

of the process relevant to prediction [3]. The understanding

of physical process that evolved with time is limited by the

ability to model a dynamical system. Generally, dynamic is the

ability of a process or a system to change [4]. In other words,

dynamic is a stochastic or random process of mathematical

object usually defined as a collection of random variables

associated with both linear and non-linear characteristics.

The dynamics of a system may be expressed either as a

continuous-time or as a discrete-time-evolutionary process,

that is, dynamics is a time-evolutionary process of either a

deterministic or a stochastic process. The associated random

variable(s) is with or indexed by a set of random numbers,

usually viewed as points in time, giving the interpretation of
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a stochastic process representing numerical values of some

system randomly changing over time such as growth of a

bacterial population, price fluctuation of a commodity etc. [5],

[6].

The non-linear dynamical systems provide the mathematical

language describing the time dependence of deterministic

systems from the modeling point; stochasticity is paramount

to the model for small number of parameters to generate a

rich variety of time-series outputs. The non-linear dynamic

based models such as Kalman Filter; Ornstein–Uhlenbeck

(Vasicek); Laguerre stochastic processes; Gaussian Process

Approximations of Stochastic Differential Equations etc.

are stochastic processes that range from discrete-time to

continuous-time dynamical systems with jumps and some

other properties of Gaussian and Markov processes [7], [8].

All but one of these aforementioned processes are Ordinary

Differential Equation (ODE) process base expect for Vasicek

that is based on two other processes for low-filtered white

noise as stochastic error (error term subjected to time series

models). The two processes rely on the introduction of Wiener

process (otherwise known as Brownian motion) and Lévy

processes that are functions of Gaussian process that unveil

and incorporate jumps as well as diffusion rates.

Reference [9] started the theoretical comparison of

non-linear dynamic via Kullback-Leibler (KL) divergence

between approximating posterior process and the exact

one (i.e., between probability measures over paths) which

makes the computation non-trivial. In a similar vein, [10]

affirmed that system is a set of behavioral variables, namely

heading direction and velocity, defines a state space in

which a dynamics of robot behavior described as path

planning governed by a non-linear dynamical system that

generates a time course of the behavioral variables. They

subjected behavioral variables of non-linear to represented

the dimensional corresponds to agent behavior via Wiener

process. However, in the field of data, the non-linear dynamic

behavioral setting of variables has some work done for

computing approximate predictions via Vasicek process [11],

[12]. In extension, [13] modeled stock prices via Vasicek

that was driven by Lévy process. The Bergdorf-Nielsen and

Shephard (BNS) stochastic volatility model was used to cater

for the volatility parameter in order to be a self–decomposable

distribution that allowed flexible. For this reason, the Inverse

Gaussian-OU model by calibrating moments of Lévy process

was used in fitting the model to a financial as well as a

simulation study. In this regard, the Wiener and Lévy driven
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processes for Vasicek model will be examined individually

to ascertain their density stationary condition, autocorrelation

function including their first and second density moments. The

Wiener and Lévy driven processes will be meld to a single

driven process to drive a one-dimensional level of the Vasicek

model, then the Maximum likelihood Estimation (MLE)

technique will be adopted in estimating the transition density

parameters involved to investigate the robustness, efficiency

and higher process estimates in comparison to the self-standing

processes. The Vasicek process at one-dimensional level,

which is Autoregressive of order one like will then be applied

to Naira to CFA exchange rate from 2012 to June 2018.

II. NOTATION AND DEFINITION OF RELATED TERMS

According to [14], [5], a stochastic process, say Y =
{Y (t)} is said to be a Vasicek process if it satisfies the

homogeneous linear stochastic differential equation of:

Y =

{
∂Y (t) = −δY (t)∂t+ s ∂B(t)

Y (0) = Y0,
(1)

where δ and s are strictly positive intensity parameters and

Y is a random variable independent of the Wiener process

(standard Brownian motion) B = {B(t)} . The B(t) is the

Gaussian process such that B(t) ∼ N (0, ts) . Additionally,

B = {B(t)} could also emerge from a Lévy process such that

it could be referred to as Background Driving Lévy Process

(BDLP) of the Vasicek or OU model type [15].

Reference [16] described a Weiner Process to be a

macroscopic picture of a particle emerging in random system

or particle of liquid suspension such that the continuous time

stochastic process {B (t) : t ≥ 0} describing the particle of

liquid suspension incurred by a random walk traits. These

traits are for the time events 0 ≤ t1 ≤ t2 ≤ ... ≤ tn,

β (tn) − β (tn−1) , β (tn−1) − βtn−2) ; ..., (βt2) − β (t1) are

independent (that is independent decrements); the distribution

of the increment β(t+h) − β(t) does not depend on ”t”

that is stationary increments (Lévy process) and the process{
β(t) : t ≥ 0

}
has continuous paths. A process {Yt} with these

mentioned traits could be represented by:

β(t) = β(0) + μt +
∑

β(t), for t ≥ 0 (2)

where β(0) is the initial distribution, μt is the drift vector

μ , and
∑

β(t) been referred to as is the diffusion matrix.{
β(t) : t ≥ 0

}
is being referred to as Standard Brownian

Motion (SBM) when the drift vector is nothing but a zero

term and the diffusion matrix is the identity for a macroscopic

picture emerging from random walk.

Reference [16] defined the Lévy process as a continuous

time stochastic processes (Kt)t≥0 with

1. Kt = 0
2. Stationary increments, for all t > 0, Kt+a − Ka has the

same distribution as Ka

3. Independent increments, for all 0 ≤ t0 ≤ t1 ≤ · · · · · · ≤ tn,

Kt+a − Ka (i = 0, 1, 2, · · · · · · , n) are independent and

a continuous path such that the sample paths of the Levy

process are right continuous and left limits.

III. METHODOLOGY

A non-linear dynamical Gaussian Vasciek process of a

single dimensional Gaussian-Markov stochastic process via

Lévy and Weiner processes, respectively, can be achieved

separately. Parameter estimation of the influx processes with

one random effect (fixed effect) is succinctly to be focused.

A. Driven of the Vasicek Model via Weiner Process.

A one-dimensional Gaussian Vasciek process (that is an

AR (1) like Markov-Gaussian could be defined as the solution

to the stochastic differential equation in (1).

∂Y (t) = −δY (t)∂t+ s ∂B(t)

If the interest is at time “t” and “k” is a reference value for

the rate,

∂Y (t) = −δ(Y (t)− k)∂t+ s ∂B(t); Y0 = yo (3)

with σ > 0 and δ > 0 . Setting Y (t) = X(t)− k , we have

∂Y (t) = ∂X(t) = −δY (t)∂t+ s ∂B(t) (4)

Hence,

exp(δt)∂Y (t) + δ exp(δt)Y (t)∂t = s exp(δt)∂B(t) (5)

Consequently, ∂ (exp(δt)Y (t)) = s exp(δt)∂B(t),
By changing of variable technique, setting Zt =

exp(δt)Y (t) (Z0 = x0 − k). So obtaining,

Zt = (x0 − k) +

t∫
0

s exp(δs)∂B(t) (6)

X(t) = Y (t) + k = exp(−δt)Zt + k (7)

= exp(−δt)

⎛⎝(x0 − k) +

t∫
0

s exp(δs)∂B(t)

⎞⎠+ k (8)

= k+exp(−δt)(x0 − k)+σ exp(−δt)

t∫
0

exp(δs)∂B(t) (9)

X(t) is a unique Markov solution of (1) with

X(t) ∼ N

(
k + exp(−δt)(x0 − k),

s2

2δ
(1− exp(Zδt)

)
(10)

This implies that the distribution as “t” approaches infinity

to the stationary distribution of N
(
k, s2

2δ

)
. That is, the

stationary distribution has a density function. Therefore, the

time change Brownian motion is

X(t) = k+exp(−δt)(x0− k)+ exp(−δt)B(
exp(δt)−1

2δ

) (11)

So the correlation of X(t)
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Corr(X(t), X(t+ k)) =
exp(−δk)√

(1− exp(−δk))(1− exp−2δ(t+ k))
(12)

As “t” approaches infinity

corr (X(t), X(t+ k) = exp(−δt) (13)

B. Driven of the Vasicek Model via Lévy Process.

From (1) {
∂Y (t) = −δY (t)∂t+ s ∂B(t)

Y (0) = Y0,

Integrating with respect to “t”

t∫
0

[∂Y (t) = −δY (t)∂t+ s ∂B(t)] (14)

Y (t) = exp(−δt)

⎡⎣Y0 + σ

t∫
0

exp(δt)∂B(s)

⎤⎦ (15)

For ”s” of the standard Brownian motion that is a

Markov-Gaussian process With auto-covariance function

V (s, t) = E (Ys, Yt).
Y is continuous in probability Markov process with mean,

variance and covariance functions as:

E (Y (t)) = E

⎡⎣exp(−δt)

⎡⎣Y0 + s

t∫
0

exp(δt)∂B(s)

⎤⎦⎤⎦
(16)

E (Y (t)) = exp(−δt)E (Y0) (17)

V ar (Y (t)) =
s2

2δ
+

(
V ar(Y0)− s2

2δ

)
exp(−2δt) (18)

and

Cov (Y (s), Y (s+ t)) =

=

(
V ar(Y0) +

s2

2δ
(exp(−2δt)− 1)

)
exp(−δ(2s+ t)) (19)

If Y0 ∼ N(0, s2

2δ ), Y becomes a strictly stationary Gaussian

process with Covariance function and autocorrelation of Y

being:

c(t) = Cov (Y (s), Y (s+ t)) =
s2

2δ
exp(−δt) (20)

ρ(t) = Cov (Y (s), Y (s+ t)) = exp(−δt) (21)

Equation (21) approximately concedes with autocorrelation

of X(t) of Vasciek Process driven Weiner in (13) as a process

that satisfies the consistent property of a good estimator, that

is as the sample size “n” increases n → ∞ , the true estimate

approaches its true parameter.{
∂Y (t) = −δY (t)∂t+ s ∂B(δt)

Y (0) = Y0,
(22)

IV. PARAMETER ESTIMATION

From (10), Z(t) ∼
(
0, σ2

2

)
connotes that associated

stationary distribution is normal with mean zero and variance
σ2

2 . Relieving of Z(t) to be a Lévy process such that

Y (t0), Y (t1), Y (t2), · · · · · · , Y (tn) be a sample of stationary

process defined by (22) y0, y1, y2, · · · · · · , yn their observed

values and xt = θ1yt−1. Then the transition density of the

Vasciek model at one-dimensional (that is, at autoregressive

of order one) is via Markovian – Gaussian probability density

function as

f(y, t/x, s, σ2) =

exp−

⎛⎜⎜⎝
(
yt−xe

− (t−s)
δ

)2√
σ2δ

(
1−e

− 2(t−s)
δ

)
⎞⎟⎟⎠

√
π2 σ2δ

(
1− e−

2(t−s)
δ

) for −∞ < yt < ∞

(23)

f(y, t/θ1, yt−1, s, σ
2) =

exp−

⎛⎜⎜⎝
(
yt−θ1yt−1e

− (t−s)
δ

)2√
σ2δ

(
1−e

− 2(t−s)
δ

)
⎞⎟⎟⎠

π

√
σ2δ

(
1− e−

2(t−s)
δ

)
(24)

The likelihood function of sample parameters via Markovian

– Gaussian density Θ =
{
θ1, σ

2, δ
}

L(Θ) = fY (t0)(y0)
n∏

i=1

fY (tk)(ytk−1) (25)

=
1√
πσ2

exp−
(
y20
σ2

) n∏
i=1

exp−

⎛⎜⎜⎝
(
yt−θ1yt−1e

− (t−s)
δ

)2√
σ2δ

(
1−e

− 2(t−s)
δ

)
⎞⎟⎟⎠

π

√
σ2δ

(
1− e−

2(t−s)
δ

)
(26)

Minimizing the observed the maximum likelihood via

log-likelihood function

l(Θ) = logL(Θ) = − (n+ 1)

2
log(πσ2)− y20

2
−

1

2

n∑
i=1

(
δ

(
1− exp(−2(t− s)

δ
)

))
−

n∑
i=1

(
yt − θ1yt−1e

− (t−s)
δ

)
(
δσ2

(
1− e−

(t−s)
δ

))
(27)
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∂l(Θ)

∂θ1
= 2yt−1e

− (t−s)
δ

n∑
i=1

(
yt − θ1yt−1e

− (t−s)
δ

)
(
δσ2

(
1− e−

(t−s)
δ

)) (28)

Equating
∂l(Θ)
θ1

to zero

2yt−1e
− (t−s)

δ

[
n∑

i=1

yt − θ1e
− (t−s)

δ

n∑
i=1

yt−1

]
(
δσ2

(
1− e−

(t−s)
δ

)) = 0

θ̂1 =

n∑
i=1

yt

e−
(t−s)

δ

n∑
i=1

yt−1

(29)

∂2l(Θ)

∂θ21
= −2

(
yt−1e

− (t−s)
δ

) e−
(t−s)

δ

n∑
i=1

yt−1(
δσ2

(
1− e−

(t−s)
δ

)) (30)

∂l(Θ)

∂(σ2)
= − (n+ 1)

2
× π

σ2

Equating
∂l(Θ)
∂σ2 to zero

⇒ σ̂ =

√
2π

n+ 1
(31)

∂2l(Θ)

∂(σ2)
2 =

(n+ 1)

2
× π

σ3
(32)

∂l(Θ)

∂δ
= −

n

2

[
1 −

(
e
− 2(t−s)

δ + δ

(
2(t − s)

δ2

))]

−
[ 1

σ2δ2

(
1 − e

− 2(t−s)
δ

)−1

+

(t − s)

(
1 − e

− (t−s)
δ

)−2

δ3σ2

×
(

2θ1yt−1(t − s)

δ2

) n∑
i=1

(
yt − θ1yt−1e

− (t−s)
δ

)]

=
n

2

[
1 − e

− 2(t−s)
δ −

(
2(t − s)

δ

)]
−
[
−

1

σ2δ2

(
1 − e

− 2(t−s)
δ

)−1

+

(t − s)

(
1 − e

− (t−s)
δ

)−2

δ3σ2

(
2θ1yt−1(t − s)

δ2

) n∑
i=1

(
yt − θ1yt−1e

− (t−s)
δ

)]
(33)

Since e(0) ∼ 1 and as δ → ∞

∂l(Θ)

∂δ
≈ n

2

∂2l(Θ)

∂δ2
= n

(t− s)

δ
e−

(t−s)
δ +n

(t− s)

δ
−
[

2

σ2δ3

(
1− e−

2(t−s)
δ

)−1

+
2(t− s)

σ2δ3

(
1− e−

2(t−s)
δ

)−2

+
(t− s)

σ2δ4

(
1− e−

2(t−s)
δ

)−2

×
(
2θ1yt−1(t− s)

δ2

) 2θ1(t− s)
2

n∑
i=1

yt−1e
− (t−s)

δ

δ3

⎤⎥⎥⎦ (34)

Constructing a gradient vector of the partial derivatives with

respect to each parameter and adopting the Newton-Raphson

iterative technique:

γ(m+1) = γ(m) +

⎡⎢⎢⎣−E

⎛⎜⎜⎝
∂2l(Θ)
∂θ2

1

∂2l(Θ)
∂δ2

∂2l(Θ)

∂(σ2)2

⎞⎟⎟⎠
⎤⎥⎥⎦
−1

×

⎛⎜⎜⎜⎜⎜⎝
2yt−1e

− (t−s)
δ

n∑
i=1

(
yt−θ1yt−1e

− (t−s)
δ

)
(
δσ2

(
1−e

− (t−s)
δ

))
∂l(Θ)
∂σ2

− (n+1)
2

π
σ2

⎞⎟⎟⎟⎟⎟⎠ (35)

γ(m+1) = γ(m) +
[
I
(m)
(n)

]−1

S(m) (36)

where I
(m)
(n) and S(m) are the Fisher information and Score

matrixes respectively to be evaluated by via iterative procedure

with model performance criteria of Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC).

AIC = 2l(Θ) + 2dim(Θ) (37)

BIC = 2l(Θ) log(n− p) + 2 dim(Θ) (38)

where “n” is the sample size and “p” is the number of

estimated parameters.

V. APPLICATION TO FINANCIAL MARKET

The monthly exchange rate of Nigeria-Naira to CFA franc

was subjected to the solution of the conflated processes. The

CFA franc is the ISO currency of eight francophone West

African countries, such that the currency does maintain the

same value in each of those countries. The exchange rate was

between January 2012 and June 2018.

Fig. 1 Change-Point of the Naira to CFA exchange rate
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Fig. 2 Weiner and Lévy processes of the Naira to CFA exchange rate

From Fig. 1, the time change-point plot unfolded the

evolution of a steady rising in the rate from 2012 to late

2013 before a constant rate was maintained from early 2014

until late 2015. A drastic time change-point occurred in at the

beginning of first quarter of 2016, the red strike line unveiled

2016 as the year of change point. The change-point led to a

continuous downward rate of exchange (jumps) from 2016 to

June 2018.

TABLE I
ASCERTAINED CONDITIONS OF THE COMMINGLE LÉVY AND WEINER

PROCESSES FOR VASCIEK MODEL

Conditional law Lévy driven Weiner driven Commingle driven

Drift coefficient -0.3011 -0.3012 -0.30010

Diffusion coefficient
√
2s 0.0790 0.0787 0.0748

Stationary coefficient s
r 0.0006 0.0006 0.0006

Distribution function 0.0003 0.0004 0.0037
Quantile function 0.0024 0.0028 0.0046

TABLE II
ESTIMATED PARAMETERS OF THE COMMINGLE LÉVY AND WEINER

PROCESSES OF VASCIEK MODEL

Parameters Lévy driven Weiner driven Commingle driven
θ1 0.04971 0.04972 0.05620
δ 0.00167 0.00165 0.00169
s 0.00312 0.00310 0.0028
r 5 5 5

AIC 78.4756 78.2095 76.7209
BIC 74.0264 74.3090 73.0264

Comparing the variational parameters in the varied

processes in Tables I and II, the diffusion rates of 0.0789,

0.0787 and 0.0748 were estimated for the Lévy, Weiner and

commingle driven processes for the non-linear dynamical

Vasciek model respectively with fixed effect. Among the

diffusion rates, the merged driven processes of the Lévy and

Weiner rates yielded a robust and accommodated lower rate.

The evolutions of solution y(t) descent continuous after five

years move at 2016 after a steady undulated exchange rate

from 2013 to 2016. Additionally, the three driven processes

ascertained the density stationary condition of the Vasciek

model via an approximated value that is 0.0006 < 1 as

well as approximately the distributional functions of 0.0004.

The Autoregressive like coefficients (one-dimensional Vasciek

model) of θ1 s (0.04971, 0.04972 and 0.05620 < 1) for the

three driven process of the Vasciek respectively collaborate the

stationary condition of the density stationary with fixed effect.

However, the model performance (AIC & BIC) variability

among the driven processes of the non-linear dynamical

Vasciek model was not far apart but lesser in the meld driven

process of the Vasciek model with 76.7209 and 73.0264

respectively with indication of a lesser performance error.

VI. CONCLUSION

Having introduced a commingle driven process of Lévy

and Weiner to carve-out the Vasciek model, individuality and

conflate driven processes were subjected to the conditional

laws of the non-linear dynamical Vasciek model. The Vasciek

models of the three driven processes ascertained density

stationary process, diffusion rate estimate and drift coefficient

via application to Naira-CFA exchange rate. The applicability

of the driven processes of the non-linear dynamical Vasciek

models with Gaussian-Markov as the white noise revealed that

the influx driven processes of the Lévy and Weiner possessed

a lesser miniature performance error.
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