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Abstract—In recent years, waste tyre problem is considered as 

one of the most crucial environmental pollution problems facing the 
world. Thus, reusing waste rubber crumb from recycled tyres to 
develop highly damping concrete is technically feasible and a viable 
alternative to landfill or incineration. The utilization of waste rubber 
in concrete generally enhances the ductility, toughness, thermal 
insulation, and impact resistance. However, the mechanical properties 
decrease with the amount of rubber used in concrete. The aim of this 
paper is to develop artificial neural network (ANN) models to predict 
the compressive strength of rubberised concrete (RuC). A trained and 
tested ANN was developed using a comprehensive database collected 
from different sources in the literature. The ANN model developed 
used 5 input parameters that include: coarse aggregate (CA), fine 
aggregate (FA), w/c ratio, fine rubber (Fr), and coarse rubber (Cr), 
whereas the ANN outputs were the corresponding compressive 
strengths. A parametric study was also conducted to study the trend 
of various RuC constituents on the compressive strength of RuC. 

 
Keywords—Rubberized concrete, compressive strength, artificial 

neural network, prediction. 

I. INTRODUCTION 

OLYMERIC waste is non-biodegradable which should be 
treated to minimise the negative effects on the 

environment. Polymeric waste can be recycled to save raw 
material resources. Elastomeric waste accumulation problem 
has become a global issue due to high consumption of raw 
polymer materials without recycling [1]. This research 
research focuses on recycling industrial elastomeric waste into 
vibro-acoustic and thermal products that could be used in 
buildings, domestic goods, automotive and as insulation 
cladding around pipes.  

The waste tyre problem is a direct form of pollution that 
constitutes negative effects on health. One possible solution is 
to replace the natural aggregate in concrete with rubber [2]. 
Using rubber in concrete reduces concrete strength. In the past 
two decades, ANN has been one of the major interests in 
structural engineering, environmental and water resources 
engineering, traffic engineering and geotechnical engineering. 
ANNs represent a class of robust, non-linear models 
applicable for solving a wide variety of problems. Engineering 
problems that involve highly nonlinear functional 
approximations could be solved using ANNs. The first 
computationally trained neural network was developed by [3] 
and [4]. The aim of this paper is to present ANN model that 
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predicts the compressive strength of RuC in order to save 
computational effort. For this purpose, data for developing 
ANN models were obtained from the literature, which 
suggested that all applications that predict the compressive 
strength of RuC use small number of dataset, less than 100. 

II. BASIC PRINCIPLES OF ANN 

 ANN is defined as a soft computing technique that imitates 
the biological neural system of the human brain [5]. It consists 
of at least three layers of neurons: An input layer, one or more 
hidden layers, and an output layer. All hidden layers are 
connected by weight, transport function and bias, while there 
is no link between nodes in the same layer [5]. A schematic 
representation of the neuron is shown in Fig. 1.  

Each input is multiplied by a weight and it is then given an 
independent term or bias. The result of the linear combination 
is applied to a function that may be either linear or non-linear, 
which is called the activation function or transfer function that 
provides the neuron’s output [6]. Determining the number of 
hidden layers and the number of nodes in each hidden layer 
depends on the problem under investigation [7]. The 
difference between network output and the target is called an 
error function. 

The error is propagated backward and both the biases and 
weights are fixed using specific optimization methods that 
minimizes the error. The entire process called training is 
repeated for a number of epochs. The training process can 
occur in a supervised or unsupervised manner. Supervised 
training means that the network is provided with sets of 
training data that include the expected output for each set of 
input. This means that the network is trained to learn specifics. 
However, in unsupervised learning, the learner has to learn 
from a set of inputs only, that is, to extract meaningful features 
from input data [8].  

The validation step is used during the training of ANN to 
monitor the over-fitting of the NN and also act as an index to 
stop the training of the NN when validation error starts to rise 
[9]. This process can be expressed as a mathematical model in 
(1): 

 
𝑌 𝑓 ∑ 𝑤 . 𝑥 𝑏 ,       𝑖 1, 2, 3, … , 𝑛          (1) 

 
where, Y is the output, 𝑓 is the transfer function, wi is weight 
of input xi and b is a bias. 

III. CONSTRUCTION OF ANNS 

ANNs are a family of massively parallel architecture that 
can solve complex problems by collaborating with highly 
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interconnected but simple computing. Most research is based 
on back-propagation neural networks (BPNNs) [4]. 

 

 

   bwx ii     bwx iif

 

Fig. 1 Artificial neuron model 
 

To train the network, the weights of connections are 
modified according to the information it has learned. The 
difference between the output of the trained network and the 
target is called error. The error is propagated back and the 
weight and biases are adjusted to minimise the error. This 
process is repeated for a number of epochs until a desired 
accuracy in output is achieved. 

To test the accuracy of a trained network, the correlation 
coefficient R is adopted. The coefficient is a measure of how 
well the independent variables considered account for the 
measured dependent variable. The higher the R value, the 
better the prediction relationship. Moreover, the mean squared 
error (MSE) was used to monitor the network performance for 
training the current NNs. The closer the value of MSE to zero, 
the better the prediction is. MSE can be obtained by the 
following standard formula: 

 

            MSE
∑                          (2) 

 
where Ti and Ai are the target and actual network, 
respectively, and n is the total number of training dataset. The 
training process stops when any of the following conditions 
are satisfied: 
 The maximum number of epochs is reached; 
 The MSE of validation data set starts to increase for a 

specified number of epochs;  
 The performance gradient falls below a minimum value. 

IV. DATA SET COLLECTION 

The main purpose of this study is to develop an ANN model 
to predict the compressive strength of RuC. All applications 
from previous research predicted the compressive strength of 
RuC with a small number of dataset, less than 100 [10]. The 
data were obtained from different sources available in the 
literature and used for training and testing the ANN model 
[10]-[25]. To construct this model, a total number of 287 
different experimental data were collected. Table I shows the 

range of various concrete ingredients available in the database. 
 

TABLE I 
RANGE OF INPUT PARAMETERS OF THE DATABASE USED TO TRAIN THE ANN 

Range 
CA 

Kg/m3 
FA 

Kg/m3 
W/C 

Kg/m3 
Fr 

Kg/m3 
Cr 

Kg/m3 
min 115 58.6 0.35 0 0 

max 1650 1256 0.66 473 870 

 
The input data are divided randomly into three phases, 

namely; 70% for training phase, 15% for validation phase, and 
15% for testing phase. The testing phase for assessing the 
network employs test specimens from the database, which 
should be used once only after training is complete. The main 
purpose of the validation phase is to arrest training when 
generalization stops improving. The frequency distribution of 
each variable element used in this study for training and 
testing are shown in Figs. 2-6.  

 

 

Fig. 2 Frequency distribution of CA 
 
The data used in the proposed neural networks model are 

arranged in a format of five input parameters, these are CA, 
FA, water cement ratio (W/C), Fr and Cr. 
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Fig. 3 Frequency distribution of FA 
 

 

Fig. 4 Frequency distribution of W/C ratio 
 

 

Fig. 5 Frequency distribution of Fr 
 

 
Fig. 6 Frequency distribution of Cr 

 

V. NORMALISATION OF DATA 

Preprocessing steps can be made in the network input data 
and targets to enhance the efficiency of neural network 
training. Raw input data can be prepared to be suitable for the 
training when the normalisation process is used for such data. 
There are many types of data normalisation [26], [27]. It will 
scale the data values to be at the same range to minimise bias 
within the neural network. Normalized data can also speed up 
training time by starting the training process for each feature 
within the same scale. The sigmoid transfer function is 
sensitive to input values in the range -1 to +1, thus the input 
data should be scaled to match this range. That was done 
according to (3): 

 

𝐼  1                        (3) 

 
where Iscaled the scaled input variable, Iactual the value of the 
variable to be scaled, Imin the minimum value of the variable 
used in the training set, Imax the maximum value of the 
variable used in the training set. It should be noted that any 
new input data should be normalized before it is simulated by 
the network and the corresponding predicted values should be 
de-normalized before use. 

VI. TRAINING AND TESTING STAGE OF NNS 

The ANN was developed using the popular MATLAB 
software package (MATLAB R2015a). All the networks were 
trained using Levenberg–Marquardt algorithm. This algorithm 
is suitable for training small- and medium-sized problems. The 
training parameters of Levenberg–Marquardt algorithm 
include: the maximum number of iterations, target 
performance which specifies the tolerance between the neural 
network prediction and actual output, the maximum run time 
and the minimum allowed gradient. 

The most popular technique used for training the network 
for complex non-linear relationships is a back-propagation 
algorithm [28]. Generally, the input data are divided into three 
sets; training, validation, and testing sets. The training set is 
used to reduce the ANN error. During the training process, it 
is important to monitor the error in the validation set. The 
error of the validation and the training sets will normally 
reduce during the initial stage of training. However, when the 
network begins to over-fit the data, the error on the validation 
set will typically begin to rise. When the validation set error 
increases for a specified number of epochs, the training is 
stopped.  

The testing phase checks the network and employs test 
specimens from the database, which have not been used in the 
training process. In the present work, training data set includes 
201 data entries, and the remaining 86 data entries are equally 
divided between the validation and testing sets. The division 
was done randomly between the three sets and each dataset 
has been examined manually to ensure that it covers the range 
of input parameters. 
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VII. TOPOLOGY OF THE ANN 

The optimal architecture of the neural network depends on 
the complexity of the problem and the input/output variables. 
It was determined that there are five input and one output 
parameters. However, even with the same input variables, the 
solution for compressive strength might differ, and thus would 
require different neural network topologies. Research shows 
that one hidden layer is enough for predictions of concrete 
strength based on mix composition [29]-[31]. Therefore, one 
hidden layer structure was adopted for the development of the 
ANN model used in this study.  

Up to date, there are no certain rules to determine the 
architecture of a BPNN that best suits a certain problem. 
Reference [32] stated that the numbers of hidden layer neurons 
are 2/3 of the size of the input layer. Also, [33] mentioned that 
the number of nodes should be equal in the first and second 
hidden layers. Hence, the network can be easily trained. Many 
researchers have tried to find the optimal procedure for 
calculating the number of neurons that should be in the hidden 
layer, however, no success was found. Therefore, the choice of 
the number of neurons in the hidden layer is determined 
experimentally and it depends on the complexity of the 
problem. Consequently, five models are constructed for each 
parameter to be modelled. These networks had 3, 5, 8, 10, and 
12 neurons in the hidden layer. Afterwards the most accurate 
model was chosen by identifying the one with the smallest 
prediction error. 

VIII. PERFORMANCE OF THE DEVELOPED NEURAL NETWORK 

A total of 5 different NNs with different architectures were 
created and tested as shown in Table II. Their performance 
was monitored during the training process as the mean 
absolute error (MAE) over all training data. The difference 
between the NN compressive strength output and the 
experimental compressive strength was an error estimated for 
each point. The MSE was used to monitor the network 
performance for training the current NNs. The lesser the MSE, 
the better the estimates were. 

Table II shows different statistical parameters for the 
measurement of the performance of NN. It also shows the 
mean and standard deviation (SD) of the ratios of 
experimental values of compressive strength of RuC to the 
corresponding NN prediction values for different modelling 
techniques, the correlation coefficient (R) and the mean 
absolute percentage error (MAE %). The 5*10*1 NN was 
selected as the best network due to the statistical parameter 
shown in Table II.  

A comparison between the experimental and predicted 
values of the compressive strength of RuC for the selected NN 
model is shown in Figs. 7 and 8 for the training and testing 
data sets, respectively. It can be concluded from Figs. 7 and 8 
that, the ANN was successful in learning the relationship 
between the input and output data. All the NN models have 
correlation coefficient almost equal to one. This shows that the 
NN models have high degree of fitness to the actual values. 
The R was 0.956 and 0.989 for the training and testing data 

sets, respectively. 
 

TABLE II  
PERFORMANCE OF DIFFERENT ANNS DEVELOPED 

NN 
architecture 

Mean SD 
C.O.V 

(%) 
MAE 
(%) 

MSE R 

5*3*1 1.0026 0.249 24.84 24.30 41.39 0.912 

5*5*1 1.0103 0.221 21.90 15.83 24.61 0.931 

5*8*1 1.0290 0.293 28.50 13.92 18.91 0.948 

5*10*1 1.0058 0.172 17.08 9.85 14.89 0.954 

5*12*1 1.0140 0.254 25.08 18.02 28.30 0.930 

 
The average ratio of experimental compressive strength to 

predicted compressive strength of the training and testing data 
sets is 1.00 and 1.028, respectively. The mean absolute 
percentage of error is 10.06% and 10.25% for the training and 
testing data sets, respectively. This MAE is reasonable 
considering the noisy nature of the experimental results of 
compressive strength in the database. 

 

 

Fig. 7 Performance of training set of compressive strength prediction 
with ANNs model 

 

 

Fig. 8 Performance of testing set of compressive strength prediction 
with ANNs model 

IX. PARAMETRIC STUDY  

The trained 5*10*1 NN was applied to conduct a parametric 
study to investigate the effect of different input parameters on 
the compressive strength of RuC. The parametric study 
quantifies the effect of one parameter on compressive strength 
of RuC when all other parameters are fixed by using the model 
of NN. 

A. Influence of W/C Ratio  

W/C was changed from 0.35 to 0.50 while all other 
parameters were held constant according to database 
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frequency. Fig. 4 illustrates the influence of W/C ratio on 
compressive strength of RuC. As shown from Fig. 9, the 
increase in W/C ratio caused a decrease in the compressive 
strength from 14 MPa to 20 MPa for w/c ratio 0.35 to 0.55. 
Results obtained from literature [34], [21], [22] were plotted in 
the Fig. 9 to compare to the prediction values. 

 

 

Fig. 9 W/C ratio effect on the compressive strength 

B. Influence of Fr  

Fr content changed from 0 to 50 kg/m3 while all other 
parameters were held constant according to database 
frequency as shown in Table IV. W/C ratio change was 
repeated three times for different vales; 0.37, 0.40 and 0.50 
respectively. Fig 10 shows the influence of changing Fr 
content on the compressive strength. It shows that 
compressive strength decreased by increasing Fr content. 

 

 

Fig. 10 Effect of Fr on the compressive strength 
 

 

Fig. 11 Effect of Cr on the compressive strength 

C. Influence of Cr 

Table V shows that the amount of Cr varied from 0 to 50 

kg/m³, while other materials were held constant. This change 
was repeated three times with different w/b; 0.37, 0.4 and 0.5 
respectively. As shown in Fig. 11, increasing Cr results in 
decrease of compressive strength. Also, increasing w/c, the 
compressive strength decreases for the same volume of CA. 

X. CONCLUSION 

In this paper, a NN model for the prediction of the 
compressive strength of RuC was developed. The developed 
ANNs and observations from the parameters studied are valid 
for a range of data sets documented in Table I. Based on the 
parametric study conducted using the trained ANNs, the 
following conclusions may be drawn:  
• The performance of the 5 *10 * 1 architecture was better 

than other architectures. This means that, there are five 
neurons in the input layer; one hidden layer with six 
neurons and one neuron in the output layer, with an 
acceptable degree of accuracy (R = 0.954, MSE = 
14.894).  

• ANN models reasonably predicted the compressive 
strength of RuC. 

• ANN method can be used as an accurate and quick tool 
for estimating the compressive strength of any RuC. 

• Compressive strength prediction decreases with 
increasing W/C ratio for both fine and Cr.  

• For better training of developed ANNs, the database 
should be increased.  

For future works, more data could be collected. Some 
experimental will be carried out and the results will be added 
to the database, with focus on some input parameters. Finally, 
future training and testing of ANNs model will be carried out. 
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