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Abstract—The representative volume element (RVE) plays a 

central role in the mechanics of random heterogeneous materials with 
a view to predicting their effective properties. In this paper, a 
computational homogenization methodology, developed to determine 
effective linear elastic properties of composite materials, is extended 
to predict the effective nonlinear elastoplastic response of long fiber 
reinforced composite. Finite element simulations of volumes of 
different sizes and fiber volume fractures are performed for 
calculation of the overall response RVE. The dependencies of the 
overall stress-strain curves on the number of fibers inside the RVE 
are studied in the 2D cases. Volume averaged stress-strain responses 
are generated from RVEs and compared with the finite element 
calculations available in the literature at moderate and high fiber 
volume fractions. For these materials, the existence of an RVE is 
demonstrated for the sizes of RVE corresponding to 10–100 times the 
diameter of the fibers. In addition, the response of small size RVE is 
found anisotropic, whereas the average of all large ones leads to 
recover the isotropic material properties. 

 
Keywords—Homogenization, periodic boundary condition, 

elastoplastic properties, RVE. 

I. INTRODUCTION 

HE prediction of the effective elastoplastic response of 
fibrous composite materials consisting of linear elastic 

fibers and elastoplastic matrix, such as epoxy matrix 
composites reinforced with glass fibers, is an important and 
active research topic (see, e.g., [1]-[3]). Progress in 
computational techniques of the last decade has provided 
powerful tools for the solution of this problem. Commercial 
computational packages like ANSYS and ABAQUS based on 
the finite element method (FEM) allow one to solve the 
homogenization problem on the basis of calculation of the 
detailed stress and strain fields in a RVE of a composite that 
contains tens of fibers of various shapes and properties. The 
result of prediction is often presented in the form of stress-
strain relation under some simple loading, say, simple tension 
or pure shear. 

Existing methods for predicting the elastoplastic response 
of composite materials include the secant homogenization 
method [4], incremental homogenization method based on the 
Mori–Tanaka model [5], the direct approach using RVEs [2], 
and periodic unit cell method [6]. The secant method is limited 
to monotonic and proportional loading. The incremental 
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homogenization method has no such limitation and can be 
applied to load reversal or cyclic load. However, in its original 
form, the incremental approach over-predicts elastoplastic 
stress-strain response and the remedy is to use only the 
isotropic part of the anisotropic elastoplastic tangent stiffness 
tensor [5]. However, the use of only the isotropic part of the 
tangent stiffness tensor, while resulting in much-improved 
prediction, lacks either theoretical or physical basis. In 
addition, fitting parameters may be needed in formulating the 
isotropic part of the tangent stiffness tensor [7]. It is well 
known that for a particulate composite with its matrix material 
characterized by the von Mises yield condition (the theory of 
J2 plasticity), reinforced with homogeneous, isotropic and 
linearly elastic particles, the composite as a whole may yield 
under hydrostatic stress even though the matrix does not [8]-
[10]. 

The direct approach using RVEs gives a rigorous prediction 
of the effective composite elastoplastic response, but is 
computationally expensive, particularly given the nonlinear 
nature of plastic deformation. The unit cell method applies to 
composites with periodic microstructures. It cannot be 
rigorously applied to real composites which in general are not 
periodic. Because of its simplicity, the unit cell method is 
nonetheless often used to approximate the elastoplastic 
behavior of real composites [11], [12]. In addition to the 
aforementioned methods, Sun and Ju [13] applied the 
ensemble averaging approach to the prediction of the effective 
elastoplastic response of particulate composites.  

The primary methods for studying the effective material 
properties of the RVE include approaches based on analytical 
homogenization schemes, mainly restricted to linear cases. 
These techniques (e.g., [14]-[16]) have been used to consider 
different shapes of inclusions and have been useful in some 
situations to determine the effective material properties of the 
RVE with respect to the inclusions’ characteristics. On the 
other hand, some approaches based on numerical methods, 
such as the FEM (e.g., [17]-[20]), use computations on a unit 
cell and allow determining the size of the RVE via statistical 
analyses relying on numerical computations. These techniques 
have been mainly applied in the linear case, and a few recent 
studies involve nonlinear heterogeneous materials. For linear 
composites, determining the size of the RVE can be performed 
by analyzing the statistical convergence of effective material 
parameters with respect to the size of the unit cell. Kanit et al. 
[21] studied the linear thermal and elastic properties of 
random 3D polycrystalline microstructures. Ranganathan and 
Ostoja-Starzewski [22] investigated random polycrystal 
microstructures made up of cubic single crystals. Other 
examples in elasticity can be found in [23]-[27]. In [28], new 
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criteria to determine the size of RVE with random elastic 
matrix have been proposed as well as estimates for RVE sizes. 
In [29], a stochastic homogenization theory has been 
introduced for random anisotropic elastic composites that 
cannot be described in terms of their constituents and for 
which the standard methods cannot be applied, like cortical 
bones or biological membranes. In [30], a method using the 
concept of periodization of random media was used to 
estimate the effective properties of random composites using 
small volumes. 

For nonlinear composites, most of the proposed 
methodologies are based on analyzing the convergence of the 
effective response (e.g., the effective stress), computed 
numerically at one point of the loading curve with respect to 
the size [31]-[33]. More recent studies analyze the 
convergence of identified parameters related to an empirical 
macroscopic model with respect to the unit cell size [34], [35]. 

Although reliable micromechanics models for linear elastic 
composites have been available for a long time, developing 
models approaches for nonlinear composites remains highly 
challenging. The aim of the present work is to develop a 
numerical algorithm which is able to simulate, with reasonable 
accuracy, computer time, and memory the elastoplastic 
behavior of matrix composite materials. The numerical 
estimates of the stress-strain response and their scatter 
obtained on volumes of fixed size but containing different 
realizations of a given volume of the microstructure are 
investigated.  

The present paper is organized as follows. In Section II, a 
plasticity model is presented to show how we simulate the 
mechanical behavior of the matrix, based on available 
experimental evidence, and also, periodic boundary conditions 
and numerical homogenization methods are illustrated. The 
analysis models, computational implementation, and results 
are presented and discussed in Section III. Some concluding 
remarks are given in Section IV. 

II. PLASTICITY THEORY 

The current section provides an overview of the theoretical 
aspects of plasticity. The books [36]-[39] provide a more 
detailed and broader perspective on the general theory of 
plasticity as well as its phenomenological aspects. In this 
thesis, only small deformations will be considered. This 
assumption is justified by the presence of cracking for small 
deformations. Considering only small-strains will also allow 
simplifying the model’s definition and implementation. 

Fig. 1 shows the mathematical idealization of a typical 
stress-strain curve of a uniaxial tensile test on an elastoplastic 
material.  

The segment A − B represents the elastic domain of the 
material behavior. The initial Young’s modulus is given by the 
slope of this segment and remains constant in the elastic 
domain. Under elastic behavior, it is considered that there are 
no permanent deformations, and all strains can be recovered 
upon unloading. This elastic behavior ends when the yield 
stress 𝜎  is met (point B). From this moment on, the material 
begins suffering permanent plastic strains. The material can 

also suffer hardening, i.e. the yield stress increases as the 
plastic strains accumulate. This can be seen in Fig. 1 in 
segment B − F. At point C, for example, the accumulated 
plastic strain is given by 𝜀  and the increase of the yield stress 
from 𝜎  to 𝜎 . This increase continues until the material 
reaches the ultimate strength (point F) and fails. 

 

 

Fig. 1 Mathematical model of uniaxial tensile test 
 

If the material is unloaded from point C, it will recover 
some of the accumulated strain, 𝜀 . In other words, at any 
given point of the loading curve under the plastic domain, the 
strain tensor can be decomposed in two components: one 
elastic (and thus recoverable) component, and one plastic (or 
permanent) component. For the uniaxial example in Fig. 1, the 
recovered elastic strain after unloading (segment C − D) is 
given by: 

 
𝜀 𝜀 𝜀                                     (1) 

 
In the most general case, the strain tensor is decomposed 

according to 
 

𝜀 𝜀 𝜀                                       (2) 
 

where 𝜀  is the elastic strain tensor and 𝜀  is the plastic strain 
tensor. 

In a uniaxial test, the yield stress is nothing but a scalar 
(Fig. 1). However, in a general three-dimensional case, the 
elastic domain is bounded by a yield surface instead. This 
surface is defined in the most general case by: 

 
Φ 𝜎, 𝑞 0                                  (3) 

 
where q represents a set of variables affected by the hardening 
(or softening) process. This scalar function delimits the region 
in the stress space where any point inside the surface, Φ < 0, is 
in the elastic domain and any point on the surface, Φ = 0, 
corresponds to plastic yielding. 

As the hardening variables increase in value (or decrease), 
so will the yield surface expand (or shrink). This effect is 
known as isotropic hardening (or softening). In the most 
general case, the surface can even change its shape or translate 
in the stress space (kinematic hardening or softening). 
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A. Computational Implementation 

In this section, in order to evaluate the effect of the 
variability of the RVE on the mechanical properties of 
composites, stiffness analyses are performed. As done for 
other algorithms [40], [41], the present algorithm is used to 
generate the RVEs of the transverse section of a composite 
lamina. The effective elastoplastic material from the properties 
of their constituents is then evaluated by finite element 
models. 

Various finite element analysis with different fiber volume 
fraction RVEs is generated. For the elastic material behavior 
section, several papers are validated with different material 
behavior, RVE size, Fiber size, etc. 

The overall integration algorithm as it was implemented in 
a UMAT subroutine of commercial finite element software 
ABAQUS [42] is presented in the flowchart of Fig. 2. It 
follows a typical implicit elastic predictor/return mapping 
procedure used by, for example, Souza-Neto [39]. It begins by 
computing an elastic trial stress state and up-to-date hardening 
variables. If the trial stress state is still inside the paraboloidal 
yield surface, then the increment is considered to be fully 
elastic; otherwise, the algorithm for the return mapping is 
executed. Upon convergence of the plastic multiplier, all state 
variables, stress tensor and plastic strain tensor are updated 
accordingly. 

Finite element (FE) analysis was carried out using 
ABAQUS [42] under plane strain condition. In the ABAQUS 
model, both the matrix and the fibers were meshed using 
structured meshing technique with quad-dominated element 
shapes. The two-dimensional 4-node bilinear plane strain 
quadrilateral elements (CPE4) were chosen to mesh the fiber 
and the matrix. There were also a relatively small amount of 
3-node linear plane strain triangle elements (CPE3) due to 
meshing technique used. Since each model has so many fibers, 
it is difficult and time-consuming to generate each RVE 
manually. Therefore, Python scripts have been written to 
generate and distribute fibers in the FE models of the RVEs in 
ABAQUS [42].  

III. ANALYSIS AND RESULTS 

In this paper, the material that has been chosen to study is 
consisting of E-glass fibers and epoxy resin as a matrix. The 
properties have been reported and used by Fiedler et al. [43]. 
Both the matrix and the fiber are treated as isotropic for the 
2D model. The elastic properties of the fiber and the matrix 
are shown in Table I, while Table II summarizes the plastic 
properties of epoxy measured from tensile tests by Fiedler et 
al. [43]. 

 
TABLE I 

MATERIAL CONSTANTS FOR CONSTITUENTS OF THE COMPOSITE 

Constituent Young’s modulus Poisson’s ratio 

Fiber 70 GPa 0.2 

matrix 3.35 GPa 0.35 

Begin

Elastic trial stress and 
hardening variables 

Check consistency 
condition No Elastic increment

Return mapping

Yes

Stress tensor at the end of 
increment

Update plastic strain and state 
variables

End

 

Fig. 2 Flowchart of implicit elastic predictor/return mapping 
algorithm 

 
TABLE II 

THE PLASTIC PROPERTIES OF EPOXY 

𝜀 %  𝜎 𝑀𝑃𝑎  𝜀 %  𝜎 𝑀𝑃𝑎  

0.00 29.0 0.85 81.5 

0.03 37.0 1.02 84.5 

0.06 45.0 1.20 87.0 

0.13 52.0 1.41 89.0 

0.19 58.0 1.62 91.0 

030 65.0 1.81 92.5 

0.39 70.0 2.04 93.5 

0.53 74.0 2.27 94.5 

0.69 78.0 2.50 95.0 

 

 

Fig. 3 Comparison of experimental data [43] with numerical results 
from matrix mesh 
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In order to verify the developed method with other 
solutions, several RVEs with different fiber distributions were 
generated. The elastoplastic constitutive model was 
implemented in a user subroutine UMAT in ABAQUS.  

Two different unidirectional analyses were performed on a 
simple two-dimensional matrix mesh – tension and shear. In 
Fig. 3, the results are compared with the experimental data 
from Fiedler et al. [43]. Considering that tension result is in 
good agreement by default with the experimental data, since it 
is based on these values that the plastic behavior of the matrix 
is modeled. The numerical results for shear agree very well 

with the available experimental data, despite some under-
prediction of the maximum stress. 

For the next step, we tried to calculate the effective 
properties by using the homogenization method. The aim of 
this section is to calculate a relation between stress and plastic 
strain which can be used for introducing the new material in 
ABAQUS software for further analyses. Two methods for 
deriving these relations are used. In the first method, true 
stress and strain are obtained in terms of engineering stress 
and strain by (4) and (5). 

 

 

 

Fig. 4 RVE used to verify the developed method with the experimental data from Fiedler et al. [43] 
 

It is important to note that (4) should only be used until the onset of necking. Beyond maximum load, the true stress 
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should be determined from actual measurements of load and 
cross-sectional area. 

 
𝜎 =𝜎 (1+𝜀 )                            (4) 

 
The true strain 𝜀  may be determined from the 

engineering or conventional strain 𝜀  by 
 

𝜀 =ln(1+𝜀 )                             (5) 
 
Then, the elastic module is obtained from 
 

𝐸=𝜎 (1)/𝜀 (1)                             (6) 
 
And at last, plastic strain is calculated by 
 

𝜀 𝜀                               (7) 

 
Or the second method, the overall plastic strain can be 

derived directly by the homogenization of plastic strain in 
each integration points all over the model. The average plastic 
strain in an RVE is defined by:  

 

𝜀̅ 𝜀 𝑑𝑉                             (8) 
 
These two methods are performed, and the results are 

compared with the input plastic behavior introduced in Table 
II. The results are illustrated in Fig. 5. It is found that the new 
model formulation is capable of providing an accurate 
prediction of the effective elastoplastic response of fiber 
reinforced composites. 
 

 

Fig. 5 Stress-plastic strain relationship for matrix 
 

The next sections present a few examples of RVEs under 
different loading conditions and provide a better insight into 
the matrix material behavior defined by the present 
elastoplastic constitutive model.  

Two loading conditions are presented: transverse tension 
and transverse shear. The elastic properties and plastic 
evolution data from Fiedler et al. [43] were used to model the 
epoxy mechanical behavior.  

Since the goal of the current section is to provide an 
overview of the deduced elastoplastic constitutive model, 
different volume elements are chosen. Thus, the volume 

element has more than 10× the fiber radius in the transverse 
direction. The minimum interval between any two neighboring 
fibers is set to 0.1× the fiber radius, and the fiber volume 
fraction is set to 45%.  

Several different fiber distributions were generated, and the 
different loading conditions mentioned above were applied on 
each distribution independently. Each case will be analyzed in 
detail in the following. 

A. RVE with 45% Fiber Volume Fraction 

Fig. 6 shows a RVE with 45% fiber volume fraction and the 
results obtained by applying transverse tension and shear load 
to it. Figs. 6 (B) and 8 (E) show the spatial distribution of the 
equivalent von-Mises for the generated fiber spatial 
distribution in transverse tension and shear loadings, 
respectively. Moreover, Figs. 6 (C) and 8 (F) illustrate the 
equivalent plastic strain for transverse tension and shear 
loadings, respectively. It can be seen that the regions of the 
matrix where the equivalent plastic strain is greater are located 
between those neighboring fibers aligned with the load 
direction (horizontal, in this case).  

After homogenization is done, the effective material 
properties are calculated and used for analyzing the RVE with 
the homogenized material characteristic.   

 

 

(A)  

(B)  (C)  

 

(D)  (E)  

Fig. 6 RVEs with 45% fiber volume fraction (174 Fibers) under 
normal and shear loading (A) Modeling RVE, (B) Von-Mises stress 
contour under normal loading, (C) Equivalent plastic strain contour 
under normal loading, (D) Von-Mises stress contour under Shear 
loading, (E) Equivalent plastic strain contour under shear loading 
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In Fig. 7, the RVE with homogenized material properties, 
Von-Mises stress and equivalent plastic strain contours are 
presented for both transverse tension and shear loadings. 

For RVEs with random fiber distribution and adequate fiber 
radii, the Von-Mises stress and equivalent plastic are not 
maximum just in a part of RVEs but also became to the 
maximum limit in so many spots. This is a good sign of 
acceptable fiber distribution. 

Fig. 8 shows the transverse stress-strain curves obtained 
after volumetric homogenization for the fiber distribution. It 
can be seen that for the volume homogenization element, there 
is almost no scatter between RVE's and Homogenization 
curves.  

In the next step, the true stress and strain relations described 
in the previous section are used to introduce the overall 
equivalent plastic strain and true stress relation. By this 
equivalent plastic strain and true stress relation, we can model 
the homogenized material instead of modeling an RVE with 
45% fiber volume fraction which is used for the homogenized 
RVE in this section. Fig. 9 shows the relationship between 
equivalent plastic strain and true stress for an RVE with 45% 
fiber volume fraction. The relation between stress and plastic 
strain is obtained in a good agreement with the input data 
shown in Table II. 

 

 

(A)  

  

(B)  (C)  

 

(D)  (E) 

Fig. 7 RVEs with homogenized material properties under normal and 
shear loading (A) Modeling RVE, (B) Von-Mises stress contour 
under normal loading, (C) Equivalent plastic strain contour under 

normal loading, (D) Von-Mises stress contour under Shear loading, 
(E) Equivalent plastic strain contour under shear loading 

 

Fig. 8 The transverse stress-strain curves obtained after volumetric 
homogenization 

B. RVE with 45% Fiber Volume Fraction and a Central 
Hole 

In this section, we explore the size of RVE for different 
fiber arrangements and radius sizes. First, we analyzed the 
response of RVE of fibrous composites with an elastoplastic 
matrix and elastic fibers, subject to transverse normal and 
shear loadings. The numerical results obtained by analyzing 
the 2D RVEs generated with non-uniformly dispersed fibers 
and fully periodic boundary conditions, for various fiber 
arrangements and radius sizes, are presented subsequently.  

In order to highlight the deformation of the generated RVEs 
and use of periodic boundary conditions for both normal and 
shear loading conditions, corresponding Von-Mises stress and 
equivalent plastic strain contours for all RVEs with non-
uniform fiber dispersion are shown in Figs. 10-13. The applied 
strain for all normal and pure shear loading cases was 0.5%. 
The deformation of the RVEs reveals the accuracy of the 
applied PBCs and meshing scheme for both normal and shear 
loadings. The Von Mises stress contours reveal the expected 
variability of stress concentrations at the fiber/ matrix 
interfaces within the RVE resulting from the non-uniform 
fiber dispersion, while similarly, stress contours corresponding 
to shear loading simulations reveal the degree of non-
uniformity. As it is shown in the figure, the Von-Mises stress 
and equivalent plastic strain contour maximize in many parts 
of RVE simultaneously, and that is because of both the high 
number of fibers in the RVE and the acceptable randomness of 
distributions. Furthermore, since there is a stress concentration 
in the each RVEs, the maximum values start in the vicinity of 
the central hole. 

Computed volume averaged in-plane elastoplastic behaviors 
are compared for all the RVEs in both normal and shear 
loadings in Figs. 12 and 13. Fig. 12 shows a homogenized 
model in which only the fibers are omitted during the 
homogenization process, and the central hole still exists. 
Another homogenization step is done to eliminate the central 
hole (Fig. 13). In each homogenized model, different material 
properties are calculated in spite of the central hole. 

Fig. 14 presents the equivalent plastic strain that defines 
effective material properties by homogenizing fibers and 
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central hole.  
Figs. 15 and 16 present a comparison among computed the 

graphs of stress-strain values with five randomly generated 
non-uniform fiber dispersion morphologies and two RVE with 
two homogenized material properties, for 45% fiber volume 
fraction under transverse tension and shear loading. A 
negligible (e.g., 1%) standard deviation for different 
morphologies existed, demonstrating an excellent conversion 
in numerical results. The response of random microstructures 
converges well for large volume element size and predicts a 
more gradual transition from elastic response to plastic 
collapse than the simulations conducted on periodic RVEs.  

 

 

Fig. 9 Equivalent plastic strain and true stress relation for an RVE 
with 45% fiber volume fraction 

 
We find that the plastic response of the composite is more 

sensitive to the geometry of the microstructure analyzed than 
the elastic response. So, a larger RVE is needed to investigate 
the elastoplastic response of fiber reinforced composite than 
elastic behavior. 

 

 

(A) 

 

(B) (C) 

(D) (E) 

Fig. 10 RVEs with central hole and 45% fiber volume fraction (176 
Fibers) under normal and shear loading (A) Modeling RVE, (B) Von-

Mises stress contour under normal loading, (C) Equivalent plastic 
strain contour under normal loading, (D) Von-Mises stress contour 

under Shear loading, (E) Equivalent plastic strain contour under shear 
loading 

 

 

(A)  

(B)  (C)  

 

(D)  (E)  

Fig. 11 RVEs with central hole and 45% fiber volume fraction (5718 
Fibers) under normal and shear loading, (A) Modeling RVE, (B) 
Von-Mises stress contour under normal loading, (C) Equivalent 

plastic strain contour under normal loading, (D) Von-Mises stress 
contour under Shear loading, (E) Equivalent plastic strain contour 

under shear loading 
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(A)  

 

(B)  (C)  

 

(D)  (E)  

Fig. 12 RVEs with central hole and homogenized material properties 
under normal and shear loading, (A) Modeling RVE, (B) Von-Mises 

stress contour under normal loading, (C) Equivalent plastic strain 
contour under normal loading, (D) Von-Mises stress contour under 

Shear loading, (E) Equivalent plastic strain contour under shear 
loading 

 

 

(A)  

 

(B)  (C)  

 

(D)  (E)  

Fig. 13 RVEs with homogenized material properties under normal 
and shear loading, (A) Modeling RVE, (B) Von-Mises stress contour 

under normal loading, (C) Equivalent plastic strain contour under 
normal loading, (D) Von-Mises stress contour under Shear loading, 

(E) Equivalent plastic strain contour under shear loading 
 

 

Fig. 14 Validation of the homogenization material properties with 
input data  

 

 

Fig. 15 Stress-strain relationship under tension loading 

IV. TIME CONSUMPTION (COMPUTATIONAL 

HOMOGENIZATION OF ELASTOPLASTIC COMPOSITES) 

Using such numerical calculations on RVE requires very 
large memory and time spending. Fig. 17 shows the evolution 
of the required time as a function of the number of fibers 
involved in the calculations for a personal computer with core 
i7 CPU and 8 GB RAM. The worst analysis corresponding to 
the higher values in time is clearly pointed out (number of 
fibers=5718). Fig. 17 described the time consumption of 
micromechanical analyses due to the number of fibers in the 
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RVEs. 
 

 

Fig. 16 Stress-strain relationship under shear loading 
 

 

Fig. 17 Time required in hours as a function of the number of fibers 

V. CONCLUSION 

The present work investigates the effective properties and 
the microscopic deformation of the fibrous composite 
material. The effective material properties are calculated by 
the homogenization method, and the microscopic deformation 
is modeled by the FEM for RVEs with arbitrarily fiber 
distribution and fiber volume fractions. The conclusions can 
be summarized as follows: 

1. For validation, an RVE with resin properties is 
considered. Different analyses are done under normal and 
shear loadings and after homogenization, the effective 
material properties are derived and compared with other 
literature. The results were in a good agreement. 

2. In the next step, some investigations on effective material 
properties of an RVE with 45% fiber volume fraction 
with arbitrarily fiber distribution is done. The results 
obtained by analyzing the model with homogenized 
material properties are in a good agreement compared to 
the original micromechanical RVE. 

3. A new RVE with a central hole which represents stress 
concentration is considered next. The effect of stress 
concentration is investigated with RVEs with different 
fiber arrangements and radius sizes. Two types of 
homogenization are done. The first homogenization level 
is utilized to introduce new material properties instead of 
fiber and matrix. In the following, the second 
homogenization level is developed to eliminate the central 

hole. In this case, new effective material properties are 
calculated that replies fiber reinforced composite and also 
a central hole. In another word, it means a new RVE with 
only one material can model instead of the RVE with 
many fibers and a hole. 

4. The same procedure is proposed for RVE with several 
holes to investigate the effect of several stress 
concentrations. Similar to the previous section, two levels 
of homogenization are successfully implemented to 
introduce an RVE with new effective material properties 
to omit the fibers and holes. 
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