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Abstract—Quality measurement and reporting systems are used 

in healthcare internationally. In Australia, the Australian Council on 
Healthcare Standards records and reports hundreds of clinical 
indicators (CIs) nationally across the healthcare system. These CIs 
are measures of performance in the clinical setting, and are used as a 
screening tool to help assess whether a standard of care is being met. 
Existing analysis and reporting of these CIs incorporate Bayesian 
methods to address sampling variation; however, such assessments 
are retrospective in nature, reporting upon the previous six or twelve 
months of data. The use of Bayesian methods within statistical 
process control for monitoring systems is an important pursuit to 
support more timely decision-making. Our research has developed 
and assessed a new graphical monitoring tool, similar to a control 
chart, based on the beta-binomial posterior predictive (BBPP) 
distribution to facilitate the real-time assessment of health care 
organizational performance via CIs. The BBPP charts have been 
compared with the traditional Bernoulli CUSUM (BC) chart by 
simulation. The more traditional “central” and “highest posterior 
density” (HPD) interval approaches were each considered to define 
the limits, and the multiple charts were compared via in-control and 
out-of-control average run lengths (ARLs), assuming that the 
parameter representing the underlying CI rate (proportion of cases 
with an event of interest) required estimation. Preliminary results 
have identified that the BBPP chart with HPD-based control limits 
provides better out-of-control run length performance than the central 
interval-based and BC charts. Further, the BC chart’s performance 
may be improved by using Bayesian parameter estimation of the 
underlying CI rate. 
 

Keywords—Average run length, Bernoulli CUSUM chart, beta 
binomial posterior predictive distribution, clinical indicator, health 
care organization, highest posterior density interval.  

I. INTRODUCTION 

UALITY measurement and reporting systems, which 
incorporate CIs, have become more visible in improving 

health care and organizational outcomes [1], [2]. CIs measure 
performance in a clinical setting, including the clinical 
management and outcome of patient care. When analyzed and 
reported correctly, CIs can highlight problems within a 
structure, process or outcomes, allowing for further 
investigation into any apparent issue to achieve quality 
improvement. The appropriateness of CIs is demonstrated 
through their application across the entire health care system, 
from administration to treatment processes to patient 
responses [3], across a broad range of clinical fields [4]. CIs 
are used to assess, compare, and determine the potential to 
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improve care which will bring the long-term benefits of 
established prevention programs, improved health status and 
satisfaction among the general population, better trained 
professionals, and greater accountability within the industry 
[5].  

In Australia, the Australian Council on Healthcare 
Standards (ACHS) has developed a set of CIs which are 
reviewed via collaboration with health care organizations 
(HCOs) and other government bodies. Currently, there are 
over 300 CIs with more than 800 HCOs participating in the 
ACHS CI program. There is growing support for quality 
improvement through CI analysis in Australia, as indicated by 
the increasing number of HCOs providing data to the ACHS. 
It is noted that supplying CI data to the ACHS for key services 
is a requirement of the accreditation process for health care 
providers in Australia as part of the Evaluation and Quality 
Improvement Program [6]. Moreover, it provides a national 
clinical benchmarking service and is comprised of 
comparative information on the processes and outcomes of 
health care. Participating HCOs are able to submit indicator 
data for inclusion in an extensive indicator database. Data are 
aggregated and analyzed six-monthly, and results are provided 
in the form of comparative reports. These reports compare 
results across all contributing HCOs as well as providing a 
comparison with “peer” HCOs based on a number of 
variables. 

An annual report is also released by the ACHS detailing 
industry trends for the previous years, where significant 
differences between public and private HCOs exist, as well as 
the clinical areas that have excessive event of interest 
frequencies compared to the expected proportion of 
occurrences. Expected proportions are obtained from 
documentation of national standards, internal comparison 
within the health care provider and external comparison across 
analogous HCOs and are used to quantify the potential to 
improve [7], [8]. These reports involve retrospective analysis 
which provides insight into where quality improvement is 
required [9]. However, control charts enable HCOs to monitor 
their performance during the 6-months rather than simply 
waiting for the retrospective reports. 

II. METHOD 

There is large variation in the number of admissions at risk 
of the event of interest occurring per HCO, with differences in 
the populations of each HCO depending on demographics and 
clinical specializations, giving rise to both systematic and 
sampling variation. 

For the Beta-Binomial two-stage hierarchical model, the 
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proportions for all HCOs in the system are distributed 
according to Pi~Beta(μM,(1- μ)M), where μ is the overall 
mean CI proportion, and M, M = (μ(1- μ)/σ2)-1, indicates the 
spread of proportions among the HCOs and is inversely 
related to the variance of the proportions between HCOs and 
σ2. The observed number of occurrences within each HCO, Oi, 

is distributed according to Oi~Binomial(Di, Pi), where Di is the 
number of admissions at risk of the event of interest occurring 
in the ith HCO, from which the posterior distribution of the 
proportion for each HCO in the system is obtained (see Fig. 
1).  

 

 

Fig. 1 Two-stage hierarchical model in the health care system 
 

The posterior predictive distribution gives the probability of 
observing a future occurrence, Oi

F, from the total number of 
future admissions, Di

F, and is obtained by combining the 
posterior distribution with the sampling distribution for the 
future number of occurrences of the event of interest at the ith  
HCO, Oi

F~Binomial(Di
F,Pi

*), where Pi* is the posterior 
distribution. The posterior predictive distribution is given as in 
(1). 

 

Pi** ≜ 𝑃 𝑂 |𝐷 , 𝑂 , 𝐷 , μ, M   

         (1) 

A. BBPP Control Chart 

A Bayesian control chart has been proposed for real-time 
monitoring of CI data in the health care system based upon the 
BBPP distribution, and tested for the Australian environment. 
Fig. 2 demonstrates construction of the BBPP chart’s limits. 
Using (1), the control intervals, or limits, are obtained for a 
given Di

F.  
This research investigates two different interval estimates, 

the traditional “central” interval and the HPD interval, for the 
given Type I error rate, . For a given Di

F, the BBPP 
probabilities of Oi

F ⸦ [0, …, Di
F] are obtained via (1). The 

control limits are obtained according to (2)-(6) for a given 
type I error, 𝛼 (5% was applied in this research).  

 

Fig. 2 BBPP-based limits for control chart 
 

Central intervals (based on equal probability in each of the 
two tails of the BBPP distribution): for each Di

F, the lower 
limit, 𝐿𝐶𝐿 , is determined as in (2) and (3).  

 

∑ 𝑝∗∗                              (2) 

 
and 

∑ 𝑝∗∗                           (3) 

 

For each 𝐷 , the upper limit, 𝑈𝐶𝐿 , is determined as in (4) 

and (5). 
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∑ 𝑝∗∗ 1                              (4) 

 
and 

∑ 𝑝∗∗ 1                              (5) 

 
HPD intervals (allowing for unequal probability in the two 

tails of the BBPP distribution, aiming for shortness). For each 
Di

F, find 𝐿𝐶𝐿  and 𝑈𝐶𝐿  such as in (6). 

 

min 𝑈𝐶𝐿 𝐿𝐶𝐿 ∑ 𝑝∗∗ 1 𝛼 (6) 

 
By repeating this procedure for each Di

F, limits for the chart 
are obtained. The control limits provide a range within which 
the HCO is expected to perform in the future if the proportion 
of admissions having the event of interest remains unchanged.   

The control chart provided to an individual HCO for a given 
CI can exhibit both sets of control limits. In order to monitor 
their performance, HCOs will plot the cumulative sum (run) of 
the events of interest for each additional admission in a chart 
with these limits as given in (7). 

 
𝑂 , 𝑂 , 𝑋 ,  where 𝑂 , 0              (7) 

 
For every additional admission, the run is extended 

horizontally by one unit and will rise by one value when an 
event of interest occurs. If the run falls on or outside, the 
control limits the HCO should investigate to determine if this 
was due to natural variation or due to a shift in the underlying 
proportion.   

B. Parameter Space Considered 

In the field of ACHS CIs data, although the BBPP charts 
are widely applicable outside of the health care setting, a 
factorial design experiment was conducted to test the two 
charts over the following set of parameter values, 
1. Overall mean proportion of admissions having the event 

of interest: 
 

𝜇 ∈ 0.01, 0.05, 0.1, 0.15, … , 0.5   
 

2. Overall HCO system variance: 
 

𝜎 ∈ 0.01, 0.05, 0.1, 0.15, … , 0.5  
 

3. Number of admissions at risk of the event of interest 
occurring for the ith HCO: 
 

𝐷 ∈ 10, 20, 30, 50, 100, 200  
 

4. The proportion of admissions having the event of 
interestfor the  ith HCO: 
 

𝑃 ∈ 0.01, 0.03, 0.05, … , 0.49  
 

5. Observed number of occurrences of the event of interest 

in the ith HCO: 
 

𝑂  ~ 𝐵𝑖𝑛 𝐷 , 𝑃  
 

6. Number of future admissions at risk of the event of 
interest occurring for the ith HCO: 
 

𝐷 ∈ 1,2, … ,1000  
 

7. Change in the underlying proportion of admissions having 
the event of interest: 
 

% ∈ 1%, 5%, 10%, 15%, … ,50%  

C. Applying Simulated Data 

Based on the assumption of Bernoulli trials with underlying 
proportion Pi, the in-control and out-of-control data can be 
generated as follows.  
1. Process always in-control: The in-control data are based 

on in-control proportion P0i. 
 

In control data: 
𝑝 𝑋 , 1  𝑃 ;  𝑝 𝑋 , 0  1 𝑃  𝑤ℎ𝑒𝑟𝑒 𝑡 1, 2, 3, … , 𝐷  

 
where t= 1, 2, 3,…, Di

F. 
2. Process immediately out-of-control: The process is 

changed immediately, from the 1st point, and Xt,i follows 
the Bernoulli distribution with out-of-control proportion, 
𝑃 .  

 
Out of control data (proportion changed immediately): 

𝑝 𝑋 , 1  𝑃 ;  𝑝 𝑋 , 0  1 𝑃  𝑤ℎ𝑒𝑟𝑒 𝑡 1, 2, 3, … , 𝐷  
 

where t= 1, 2, 3,…, Di
F. 

We simulated 1000 samples with 1000 Bernoulli trails on 
the same condition. The Bernoulli CUSUM and posterior 
predictive-based control charts were applied to these simulated 
samples in order to obtain run lengths (RLs). From RLs, 
average RLs (ARLs) were obtained. 

D. Evaluation of the Methods 

In order to correctly and quickly detect changes in the 
underlying CI proportion when a change exists, and not detect 
a non-existing change, both in-control and out-of-control 
ARLs were calculated.  

For each combination, there are 1000 RLs (1000 
replications) for each scheme, namely in-control RLs (inRLs) 
and out-of-control immediately RLs (outRLs). Instead of 
regular means, it seemed to be appropriate to use trimmed 
means (5% trimmed) to obtain ARLs (or TARLs).  

Multiple linear and logistic regression models were applied 
to test the effects of the simulated parameters on the paired 
differences in in-control expected ARLs. A saturated model 
was first constructed and stepwise model selection was 
applied. Furthermore, tree based models, including regression 
and classification trees, were applied to explore the 
performance of the charts throughout the parameter space.  

An effective prospective monitoring tool for CI data should 
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operate so as to not be excessively demanding on the 
resources either required to chase a false alarm or being used 
while a true change in the parameters remains undetected. 
Therefore, in judging the performance of charts, a high in-
control ARL and low out-of-control ARL are desired. 

E. Charts in Application 

This study considered 1000 replications (for a given set of 
parameters) to support reliable estimates of the ARLs for each 
chart. In context, practically significant differences are more 
important than statistical significance since with a large 
enough number of replications, even the smallest of 
differences may be identified as statistically significant. 

If one considers a day as the maximum time within which a 
true change should be detected, the equivalent number of 
patients per day for the BBPP chart needs to be identified. 
This will depend upon the number of patients at risk of the 
event of interest at 𝑖  hospital. Assuming that admissions are 
uniformly distributed across the six-month period, daily 
admissions would range from 0.05 ( 10 182.5⁄ ) to 1.10 
(200 182.5⁄ ) due to the range of 𝐷  for the CIs. Given the 
relatively small value for even the upper value of this range, it 
was determined that the practical significance threshold should 
be set at zero for this research.  

III. RESULTS 

A. In-Control ARLs 

Table I shows the in-control expected difference ARLs,  
𝑒𝐴𝑅𝐿𝑠  and 𝑒𝐴𝑅𝐿𝑠 , indicating the BC 
having far greater ARLs than the BBPP charts. However, 
Table II shows the 𝑒𝐴𝑅𝐿𝑠  and 𝑒𝐴𝑅𝐿 , which 
reflect good performance by each.  

All five main effects and almost all two-ways interaction 
terms were important according to the final (logistic) 
regression models.  

The most important factors are the proportion of admissions 
having the event of interest for the ith HCO (Pi), the change in 
underlying proportion of admissions having the event of 
interest (%change) and the number of admissions at risk of the 
event of interest occurring for the ith HCO (Di).  

 
TABLE I 

A SUMMARY OF THE DIFFERENCE IN IN-CONTROL EXPECTED ARLS 

Mean Median SD Min Max IQR 

eARLs  238.5 207.8 351.7 -612.2 993.0 516.2 

eARLs  302.2 276.5 324.3 -516.4 993.0 485.4 

 
TABLE II 

A SUMMARY OF THE INDIVIDUAL IN-CONTROL EXPECTED ARLS 

Mean  Median SD Min Max IQR 

eARLs  452.6 523.4 215.8 7.0 795.9 284.7 

eARLs  388.5 434.3 183.7 7.0 718.3 235.1 

eARLs  691.8 681.7 203.8 153.6 1000.0 301.7 

 
In summary, classification tree analysis showed that the 

BBPP charts have a longer in-control ARL within the 
following parameter space: 

 Medium or larger change in underlying proportion of 
admissions having the event of interest (%change   25%). 

 Medium or higher HCO proportion of admissions having 
the event of interest on 𝑖  hospital (Pi >0.24). 

 Medium or smaller the number of admissions at risk of 
the event of interest occurring (Di 75). 

 Medium or larger overall mean proportion of admissions 
having the event of interest (μ 0.3). 

B. Out-Of-Control ARLs 

Table III shows that the BBPP charts are superior to BC 
chart in the out-of-control expected difference ARLs, 
eARLs  and eARLs .  

 
TABLE III 

A SUMMARY OF THE DIFFERENCE IN OUT-OF-CONTROL EXPECTED ARLS 

Mean Median SD Min Max IQR 

eARLs  167.9 137.4 380.4 -727.1 992.9 550.2 

eARLs  239.3 218.0 352.5 -614.9 993.1 520.9 

 
In summary, classification tree analysis showed that the 

BBPP charts have a shorter out-of-control ARLs within the 
parameter space defined by the following: 
 Medium or smaller change in underlying proportion of 

admissions having the event of interest (%change < 38%). 
 Medium or smaller HCO proportion of admissions having 

the event of interest on ith HCO (Pi<0.3). 
 Medium or larger the number of admissions at risk of the 

event of interest occurring (Di>40). 
 Medium or smaller overall mean proportion of admissions 

having the event of interest (μ<0.32). 

IV. DISCUSSION 

In monitoring of health care data, the non-Bayesian 
CUSUM charts have been widely applied. However, the 
health care system may benefit from utilizing the inherent 
hierarchical nature of the data and thus Bayesian based models 
and charts which account for such.  

Given that neither chart consistently outperforms the other 
at detecting changes in the underlying proportion across the 
entire parameter space explored, it may be feasible to consider 
using a particular chart for a given CI in given the existing 
knowledge about CIs (μ and σ2) and their likely values (Di, Pi 

and %change). In this research, we have identified a parameter 
space in which the BBPP control chart detected changes in the 
underlying proportion more quickly than the CUSUM 
alternative (see section B of results). Moreover, it is 
acknowledged that the HCOs’ future performance is measured 
relative to this previous performance (underlying proportion). 
If the HCO had been performing poorly last period, then 
performing within these limits would indicates a repeated poor 
performance. This implies that the HCO may not realize that 
they were performing poorly, relative to the health care system 
when they fall within the limits. In order to address this issue, 
limits can also be calculated based on the expected level of 
performance for the size of HCO. This enables the HCO to 
consider its performance relative to the average HCO of its 
size. 
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Finally, some CIs may not require such a highly-sensitive 
practical significance threshold. In that case, detecting changes 
within a one-week period may suffice, and the practical 
significance threshold could be set accordingly. In practice, 
HCOs are encouraged to set the practical significance 
threshold according to the targets and timeframes within their 
own organization. 
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