
International Journal of Biological, Life and Agricultural Sciences

ISSN: 2415-6612

Vol:12, No:10, 2018

395

A Finite Element/Finite Volume Method for
Dam-Break Flows over Deformable Beds

Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract—A coupled two-layer finite volume/finite element
method was proposed for solving dam-break flow problem
over deformable beds. The governing equations consist of the
well-balanced two-layer shallow water equations for the water flow
and a linear elastic model for the bed deformations. Deformations
in the topography can be caused by a brutal localized force or
simply by a class of sliding displacements on the bathymetry.
This deformation in the bed is a source of perturbations, on
the water surface generating water waves which propagate with
different amplitudes and frequencies. Coupling conditions at the
interface are also investigated in the current study and two mesh
procedure is proposed for the transfer of information through the
interface. In the present work a new procedure is implemented at
the soil-water interface using the finite element and two-layer finite
volume meshes with a conservative distribution of the forces at
their intersections. The finite element method employs quadratic
elements in an unstructured triangular mesh and the finite volume
method uses the Rusanove to reconstruct the numerical fluxes. The
numerical coupled method is highly efficient, accurate, well balanced,
and it can handle complex geometries as well as rapidly varying
flows. Numerical results are presented for several test examples of
dam-break flows over deformable beds. Mesh convergence study is
performed for both methods, the overall model provides new insight
into the problems at minimal computational cost.

Keywords—Dam-break flows, deformable beds, finite element
method, finite volume method, linear elasticity, Shallow water
equations.

I. INTRODUCTION

MODELING of the wave-seabed interaction has been one

of the oldest challenges facing geotechnical engineers,

as it is important to design offshore engineering projects like

pipelines and break waters. In addition to the floating/sinking

of objects on the seabed like mines or wrecked ships, the

design of offshore structures under different environmental

conditions has become more essinitial, challenging and

critical. Experiments [9] and numerical simulations [12] have

been done to try understanding this complicated process.

Analytical models were described the sea response [2]–[4], [7].

However, the majority of these models assume the pressure on

the bed-water interface using the wave theory [8], [10], this

is applicable as initial approximation for many cases if there

is only seabed and water wave interaction,however, the water

flow around any object will be three-dimensional (3D) and it

is not easy to be solved using the wave theory.
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This problem has attracted more and more attentions in

engineering and coastal, many experimental studies have also

been carried out. Authors in [1] carried out a series of

two-dimensional wave tank experiments, to investigate the

relationships through the waves, the dynamic stresses within

the seabed and the pressure on interface. A one dimensional

cylindrical experiment were done to study the wave driven

oscillatory pore pressure in a sandy seabed were carried out

[5]. Although many efforts have been made in the previous

studies, the problem of the bed-wave interaction is still not

completely understood, due to the complicated mechanics of

seabed response under the ocean waves.

In this study we aim to tackle the problems of wave-seabed

interaction, as gaining more accurate results for more complex

beds geometry. To achieve this we utilize a coupled model

to simulate the two layers shallow water induced by elastic

deformations in the bed topography. The perturbation on

the free-surface is assumed to be caused by a sudden

changes in the bottom beds. Attention is concentrated on

the development of a simple and accurate representation of

the interaction between water waves and bed deformation to

simulate practical shallow water waves and bed deformations

without relying on complex differential with free boundary

conditions.

This paper is structured as follows: A brief overview of

the governing equations considered in this study is given in

Section II. A short review of the numerical methods used is

outlined in Section III. In Section IV results of benchmarks

and novel testing are presented. Finally in Section V some

conclusions are drawn.

II. MODELING OF DAM BREAK OVER DEFORMABLE BEDS

In this section a coupled two-dimensional equations of

linear elasticity for the soil bed and the one-dimensional

two-layer shallow water equations for the water flow are

utilized, the governing equations for each system are described

in the next subsections:

A. Equations for Water Flow

In the current study we are interested in solving the

hydraulic flows occuring on the water free-surface, The

one-dimensional two-layer shallow water equations with

different densities, ρ1, ρ2, as ρ1< ρ2 given as:

∂h1

∂t
+

∂

∂x
(h1u1) = 0,
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∂

∂x
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∂
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ρ2

gh2
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∂x

where u1, u2 are the water speed in the first and second layer

respectively, h1,h2 are the water height in the first and seconf

layer respectively, and g is the gravity constant. Fig. 1 shows

the system characterestics for more illustrations.

Fig. 1 Illustration of a coupled system

The main advantage of the above system is the fact, that

the two layers shallow water models avoids the expensive

computational three dimensional Navier-Stokes equations,

and obtains satisfied horizental flow velocities as vertical

velocities are relatively small, on the other hand it avoids

the drawback of single layer shallow water in missing some

physical dynamics in the vertical motion.

B. Equations for Bed Deformations

In solid mechanics the conservation laws produce three

important governing equations, mass, linear momentum

and energy conservations, the linear elasticity and steady

slow incompressible viscous flows governing equations are

summarized as:

The equation of equilibrium, which given by:

� · σ + f = 0 (2)

in which σ is the stress tensor and f the body force. The

displacement vector is denoted by u and the infinitesimal

strain is then defined by:

ε =
1

2

(
�u+ (�u)T

)
(3)

and the constitutive equation reads:

σ =
νE

(1 + ν)(1− 2ν)
(� · u)I + E

1 + ν
ε (4)

In which E is the Youngs modulus and ν is poisson’s ratio.

Interaction between flow and soil domain through the interface

as shown in Fig. 2.

Fig. 2 Interaction between flow and soil domain through the interface

III. NUMERICAL PROCEDURES

The two layers shallow water equations are investigated in

this part, as a non-conservative system compared to the single

layer shallow water model.

For ease the governing equations in the previous model were

re-arranged into vector form:

∂W

∂t
+

∂F(W)

∂x
= Q(W) (5)

where W is the vector of conserved variables, F(W) is the

vector of flux functions Q is the vectors of source terms.

W =

⎡
⎢⎢⎣

h1

h1u1

h2

h2u2

⎤
⎥⎥⎦ , F(W) =

⎡
⎢⎢⎣

h1u1

h1u
2
1 +

1
2gh

2
1

h2u2

h2u
2
2 +

1
2gh

2
2

⎤
⎥⎥⎦ , (6)

Q(W) =

⎡
⎢⎢⎣

0

−gh1
∂h2

∂x − gh1
∂z
∂x

0

−rgh2
∂h1

∂x − gh2
∂z
∂x

⎤
⎥⎥⎦ (7)

With the ratio r = ρ1

ρ2
. For hydraulic applications with

r ≈ 1, and u1 ≈ u2, a first order approximation of the eigen

values can be obtained [6]:

λ1 ≈ Um −
√

g(h1 + h2),

λ2 ≈ Um +
√

g(h1 + h2),

λ3 ≈ Uc −
√

(1− r)g
h1h2

h1 + h2

(
1− (u2 − u1)2

(1− r)g(h1 + h2)

)
(8)
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λ4 ≈ Uc +

√
(1− r)g

h1h2

h1 + h2

(
1− (u2 − u1)2

(1− r)g(h1 + h2)

)
where:

Um = h1u1+h2u2

h1+h2
, and Uc =

h1u1+h2u2

h1+h2
.

The shallow water domain is discretized into group of

control volumes [xi− 1
2
, xi+ 1

2
], with uniform sizes �x and

then divide the temporal domain into subintervals [tn, tn+1]
with step size �t. The previous system was integrated in

space over a control volume and obtain the relation:

dWi

dt
+

Fi+ 1
2
− Fi− 1

2

�x
= Qi (9)

where Wi(t) is the averaged solution W in the control volume

at time t.

Wi(t) =
1

�x

∫ x
i+1

2

x
i− 1

2

W(t, x)dx (10)

Wn+1
i = Wi −�t

Fi+ 1
2
− Fi− 1

2

�x
+�tQi (11)

A. Two Dimensional Linear Elastic Finite Element

The deformations occur in plane strains, where the

fundamental relationship for linear elastic finite element is :

[K][u] = [F] (12)

where F is the load vector, K is element stiffness matrix ,

which is for an arbitrary element is obtained from:

K =

∫
Ω

∫
BT E B j dξ dη (13)

as B is the strain deformation matrix, j is the determinant of

the jacobian matrix, given as J = ∂(x,y)
∂(ξ,η) , u is the displacement

vector. This is typically solved by calculating the stiffness

matrix, inverting it, then solving for displacement. Finally the

stress-strain relationship is given by:

[σ] = [D][ε] (14)

where ε is the strain vector, found from displacement

components, D is the elastic symmetric component.

IV. APPLICATIONS AND NUMERICAL RESULTS

To examine the performance of our system we present

numerical results for several test examples. We illustrate

the accuracy for both two-layer shallow water system

and the linear elastic finite element model. As with all

explicit time stepping methods the time step is specified

according to the Courant-Friedrichs-Lewy (CFL) condition as:

�t = Cr
�x

max | λk | (15)

where λk,k=1,2,3,4 are the approximated eigen values, and Cr

is a constant to be choosen less than unity. In all the examples

presented in this paper the courant number is set to 0.5 and the

time step Δt is adjusted at each step according to the stability

condition.

A. Lock Exchange Problem

The accuracy of the proposed finite element and two

layers shallow water were checked for validation. To test

the two layers shallow water we solve the Lock exchange

problem, where in this example the two layers are initially

seperated-the lighter water is on the left, while the heavier

one is on the right:

(
h1(x, 0), q1(x, 0), h2(x, 0), q2(x, 0)

)
=

{
−Z(x), 0, 0, 0 x < 0

0, 0,−Z(x), 0 x > 0

where the bottom topography is Gaussian-Shape function Z(x)

= e−x2 − 2. The gravitational constant is g = 9.81, and the

density ration r = 0.98. The computational domain is [-3,3],

and the boundary conditions are q1 = −q2 at each end of

the interval. The problem solved using different numbers of

grid points and the L1-error were calculated compared to

very refined (12,800 grid points) mesh and the errors, rate of

convergence and the computational time are shown in Table I.

TABLE I
ERRORS FOR THE LAX-FRIEDRICH ACCURACY TEST PROBLEM USING

DIFFERENT GRIDPOINTS

N Error in H Rate CPU
100 6.55E-2 - 0.15
200 2.2E-2 1.07 0.35
400 7.7E-3 1.07 1.08
800 4.0E-3 1.13 3.22

1600 2.4E-3 1.2 6.22

As from the above table the mesh shows very good rate of

convergence, and the method is fist order. Next we examine

the finite element method by comparing the numerical vertical

and horizental displacements results for a homogenous and

isotropic rectangular domain with 100 m length and 10m hight

to the analytical solution [11] assuming the Young’s modulus

of elasticity is 10,000 Mpa, and the poisons ratio = 0.2, which

can be clearly shown in Fig. 3.

Fig. 3 Finite element displacement compared to the analytical solution
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Fig. 4 Mesh before and after deformation

B. Free-Surface Flows with Raised Bed

In this example a free-surface flows over a rectangular

domain with 100 m length and 10 m hight subjected to 1500 N

tension force, using quadratic six nodes finite element , which

generally provides higher accuracy in simulations as there

are more nodes compared to number of elements. However,

this required a greater memory and approximately doubled

simulation time. It is therefore reasonable to proceed using

the results from the coarse triangular mesh model because

this mesh type tended to have fewer nodes. It can be seen

that the mesh is finer near the load points and where largest

deformations are likely to occur. Fig. 5 represents the mesh

before and after deformation. For the water simulation, a

sudden deformation was introduced at t=0.1 second, the water

waves experiencing a smooth dam break as a response to this

deformations, the water hight keep decreasing till reach the

steady state. Fig. 6 presents the wave propagation at different

time steps, hence the gray portion is the soil deformationa

and the blue portion represents the two layers shallow water

waves.

The two main dialary stresses are shown in Fig. 6, and it

can be clearly shown that the maximum stresses values in the

region of maximum deformation and symmetrical around it.

V. CONCLUSIONS

A simple and accurate approach to couple free-surface flows

with bed deformations has been presented. The governing

equations consist on coupling the nonlinear shallow water

equations to the linear equations for elasticity. The coupling

conditions between the two models is achieved through the

interface between the two bodies and only the updated

bathymetry is required for the free-surface simulations. As

numerical solvers we have considered a conservative finite

volume method for the free-surface flow and a robust finite

element method for the bed deformation. The new method

has several advantages. First, it can solve steady flows

over irregular beds without large numerical errors, thus

demonstrating that the proposed scheme achieves perfect

numerical balance of the gradient fluxes and the source terms.

Second, it can compute the numerical flux corresponding to the

real state of water flow without relying on Riemann problem

solvers. Third, reasonable accuracy can be obtained easily

and no special treatment is needed to maintain a numerical

Fig. 5 Water height at different time steps

Fig. 6 Stresses σ11, σ21
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balance, because it is performed automatically in the integrated

numerical flux function. Finally, the proposed approach does

not require either nonlinear solution of algebraic equations

or special front tracking techniques. Furthermore, it has

strong applicability to various problems in shallow water

flows over deformed beds as shown in the numerical results.

The proposed approach has been numerically examined for

the test example of free-surface flow problems on different

topographies.

REFERENCES

[1] M. Banner and W.Peirson. Wave breaking onset and strength for two
dimensional deep water wave groups. J. Fluid Mech, 585:93–115, 2007.

[2] A. Bermudez, J. Ferrin, L. Savedra, and M. Vazques-Cendon. A
projection hybrid finite volume/element method for low-mach number
flows. J. Comput. Phys, 271:360–378, 2014.

[3] H. Dark and L. Stewart. An analytical model for predicting underwater
noise radiated from offshore pile driving. In Proceedings of the fifth
Asia pacific congress on computational mechanics Conference, pages
2–20, December 2013.

[4] H. Dark and L. Stewart. An analytical model for wind-driven arctic
summer sea ice drift. The cryosphere, 10:227–244, 2016.

[5] U. Drahne, N. Goseberg, S. Vatar, N. Beisiegal, and J. Behrens. An
experimental and numerical study of long wave run-up on a plane beach.
Journal of marine science and engineering, 4:1–23, 2016.

[6] M. Le Gal, D. Violeau, R. Ata, and X. Wang. Shallow water numerical
models for the 1947 gisborne and 2011 tohoku-oki tsunami with
kinematic seismic generation. Coastal Engineering, 139:1–15, 2018.

[7] J. Greenberg and A. Leroux. A well-balanced scheme for the numerical
processing of source terms in hyperbolic equations. SIAM J.Numer.Anal,
33:1–16, 2006.

[8] R. Harcourt. A second moment model of langmuir turbulance. J. Phys.
Oceanogr, 43:673–697, 2013.

[9] C. Liao, Z. Lin, Y. Guo, and D. Jeng. Coupling model for waves
propagating over a porous seabed. Theoritical and applied mechanics
letters, 5:85–88, 2015.

[10] C. Ng. Water waves over a muddy bed: a two-layer strokes boundary
layer model. Coastal engineering, 40:221–242, 2000.

[11] H. Poulos and E. Davis. Elastic solutions for soil and rock mechanics.
The University of Sydney, Australia, 1991.

[12] D. Tong, C. Liao, J. Chen, and Q. Zhang. Numerical simulations of a
sandy seabed response to water surface waves propagating on current.
Journal of marine science and engineering, 6:1–14, 2018.


