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Real-Time Data Stream Partitioning over a Sliding
Window in Real-Time Spatial Big Data
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Abstract—In recent years, real-time spatial applications, like
location-aware services and traffic monitoring, have become more
and more important. Such applications result dynamic environments
where data as well as queries are continuously moving. As a result,
there is a tremendous amount of real-time spatial data generated
every day. The growth of the data volume seems to outspeed the
advance of our computing infrastructure. For instance, in real-time
spatial Big Data, users expect to receive the results of each query
within a short time period without holding in account the load
of the system. But with a huge amount of real-time spatial data
generated, the system performance degrades rapidly especially in
overload situations. To solve this problem, we propose the use of
data partitioning as an optimization technique. Traditional horizontal
and vertical partitioning can increase the performance of the system
and simplify data management. But they remain insufficient for
real-time spatial Big data; they can’t deal with real-time and
stream queries efficiently. Thus, in this paper, we propose a novel
data partitioning approach for real-time spatial Big data named
VPA-RTSBD (Vertical Partitioning Approach for Real-Time Spatial
Big data). This contribution is an implementation of the Matching
algorithm for traditional vertical partitioning. We find, firstly, the
optimal attribute sequence by the use of Matching algorithm. Then,
we propose a new cost model used for database partitioning, for
keeping the data amount of each partition more balanced limit and
for providing a parallel execution guarantees for the most frequent
queries. VPA-RTSBD aims to obtain a real-time partitioning scheme
and deals with stream data. It improves the performance of query
execution by maximizing the degree of parallel execution. This affects
QoS (Quality Of Service) improvement in real-time spatial Big Data
especially with a huge volume of stream data. The performance of
our contribution is evaluated via simulation experiments. The results
show that the proposed algorithm is both efficient and scalable, and
that it outperforms comparable algorithms.

Keywords—Real-Time Spatial Big Data, Quality Of Service,
Vertical partitioning, Horizontal partitioning, Matching algorithm,
Hamming distance, Stream query.

I. INTRODUCTION

THe demand of real-time spatial data has been increasing

recently. Nowadays, we are talking about a real-time

spatial Big Data that process a large amount of heterogeneous

data (may be in the size of terabyte). As a result, the real-time

spatial Big Data can be overloaded and many transactions may

miss their deadlines because data retrieval processes are time

consuming. In order to speed up query processing, several

works have proposed many optimization techniques as data

partitioning. Therefore, breaking a large table into several

smaller units is a necessity.
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Data partitioning [24] is a fragmentation of a logical

database into distinct independent units. It is applied in

large-scale databases to improve responsiveness, scalability

and availability of data. Several works have showed the

importance of this approach. But traditional partitioning

approaches are not a real time process. Thus, in real-time

spatial Big Data, the traditional partitioning technologies have

encountered many problems as:

• Traditional partitioning technologies are based on known

table structure. They don’t have the ability to partition

for unknown database in real-time spatial Big Data;

• Traditional partitioning technology can only deal with

persistent and stable workload. But the real-time spatial

Big Data can be overloaded and many transactions may

miss their deadlines, or real-time spatial data can be

violated.

• Traditional partitioning technologies are unable to adapt

to high-throughput in real-time spatial Big Data.

In this paper, we research on the limitations of traditional

partitioning technologies. Then, we propose a novel approach

to process stream queries in real-time spatial Big Data. This

contribution is an implementation of the matching algorithm

for traditional vertical partitioning. It uses Hamming distance

to produce clusters.

The remainder of this paper is organized as follows: In

Section II, we introduce some related works. In the Section

III, we introduce the our contribution. The simulation model

and the results of simulation experiments are given in Section

IV. The last section consists of conclusion and some future

research directions.

II. RELATED WORKS

In this section, we give an overview of real-time spatial

Big Data and we discuss pertinent works related to data

partitioning approaches.

A. System Overview

Real-time spatial applications have a great importance.

Such applications continuously receive a huge amount of

heterogeneous data from mobile objects (e.g., moving vehicles

in road networks). The streaming nature of real-time spatial

data poses new challenges that require combining real-time

spatial Big Data and data stream management systems.

In this section, we give an overview of heterogeneous

real-time spatial data model and transaction model.
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1) Heterogeneous Real-Time Spatial Data Model: Stored

data in real-time spatial applications are from heterogeneous

sources and are maintained under heterogeneous formats and

structures. These data can be divided into two types: the

structured data and unstructured data:

• Structured data: can be processed automatically by

machines.

• Unstructured data: no common pattern can be used to

process for this type of data which come from different

sources and have a different format as text, pictures,

multimedia content or numeric traces, etc.

Real-time spatial data must be integrated. Structured data

and unstructured content are simultaneously accessed via

an integrated user interface. The issue of real-time and

heterogeneity is extremely important for taking effective

decision. As a solution we propose the use of ETL

(Extract-Transform-Load) process as follows:

• Data extraction: extracts data from heterogeneous data

sources.

• Data transformation: transforms the data for storing it

in the proper format or structure for the purposes of

querying and analysis.

• Data loading: loads it into the final target (data

warehouse).

A real-time spatial data stream distinguishes itself from a

traditional real-time data stream in the following: real-time

spatial data have the ability to change their locations

continuously. Thus, the arrival of a new location information

about the data, say p, at some time t2 (t2 >t1) may result in

expiring the previous location information of p at time t1. This

is in contrast to traditional data where data are expired only

after its deadline as it becomes in the system [11].

2) Transaction Model: Spatial real-time transactions can

be classified into two classes: update transactions and user

transactions.

• Update transactions: update the values of real-time spatial

data in order to reflect the state of the real world.

• User transactions (continuous queries): user requests

arrive aperiodically and may read real-time data and

non-real-time data. This type of transaction can be

executed several times or continuously during a period

as required by the user.

B. Data Partitioning Approaches

Several surveys on data partitioning algorithm classify them

into horizontal and vertical data partitioning methods:

• Horizontal partitioning [17], [2], [20], [15] divides

a table into disjoint sets of rows. There are three

techniques of horizontal partitioning based on values of

data sets (Round-Robin partition, Range partition and

Hash partition). Range partitioning is the most popular

approach specially when there is a periodic loading of a

new data.

• Vertical partitioning [5], [21], [22], [3], [8], [27] divides

a table into vertical and disjoint sets of columns. There

are two major classes of vertical partitioning:

– cost-based approach [16], [26], [12], [23]: During

this approach, a cost model is constructed to

predict the performance of the system for any given

configuration. Then, an algorithm enumerating the

configuration space is used.

– procedural approach [28], [22], [9]: During this

approach, there is not a cost model. Procedural

approach proposes some kind of a procedure which

will result in a good configuration.

Both of these strategies (horizontal partitioning and vertical

partitioning) have a significant impact the performance of

the database systems specially with respect to responsiveness,

storage and processing cost. But, they still static (they are not

able to adapt to dynamic environments) i.e. a configuration

is selected once. In case of changes in the workload (new

transaction) or the data (new data ) the algorithm has to be

re-run. Our goal is to adapt the partitioning scheme to a

constantly changing workload in real-time spatial Big Data.
Curino et al., in [2], proposed a workload-driven approach

named Schism for database partitioning. Schism creates a

graph and uses a method called METIS [6] to divide this

graph into K balance parts. Schism has a significant impact

the performance of the database systems. But it can’t deal with

the large volume of stream data and with large-scale dynamic

queries.
To solve the problem associated with dynamic data

partitioning, Miguel Liroz-Gistau et al. in [13], have

proposed a dynamic workload-based partitioning algorithm

for continuously growing databases (like databases used in

scientific applications where the data is continuously growing

to the database). This algorithm defines a mathematical model

of dynamic partitioning. This definition is designed with

heuristic that considers the affinity of data with queries and

fragments. In fact, this approach is quite interesting because

the execution time of this algorithm depends only on newly

arrived data and not on entire size of the database. But, it is

not able to get real-time result after every query.
In this paper [1], Alekh Jindal et al. have presented

an efficient O2P (One-dimensional Online Partitioning)

algorithm. The main idea of this algorithm is computing the

affinity between every pair of attributes and clustering them

[7], [21], [4], [5]. Then, it uses a greedy strategy to calculate

the cost of every possible split line to get the best partitioning

scheme. Actually, the importance of this approach appears

clear. But, it must know the table structure in advance which

is not available in real-time spatial Big Data. Besides, it cant

deal with stream queries and cant get real-time result after

every query.
In this paper [10], Mengyu Guo et al. present a

workload-driven stream partitioning system named WSPS to

solve the above problems by the integration of partitioning

technology and streaming framework. WSPS constructs a

dynamic data model, cluster and merge nodes according to

the node affinity, then get the optimal partitioning scheme

according to a cost model. WSPS can deal with stream

data and obtain real-time partitioning scheme. But, it uses

distributed queries; a query accessed attributes on different

partitions and on several nodes. This costs more resources and



International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:12, No:10, 2018

907

the transactions risk to miss their deadlines while waiting for

its validation.

III. A DATA PARTITIONING APPROACH FOR REAL-TIME

SPATIAL BIG DATA

In this section we describe our contribution. We propose

a novel data partitioning approach for real-time spatial Big

data; the implementation of the Matching algorithm [14] for

vertical partitioning. This algorithm uses Hamming distance

to produce clusters.

This approach is divided into three steps that are detailed

in the following sections:

• Data model initialization

• Implementation of Matching algorithm

• Data Partitioning.

A. Data Model Initialization

Given a query workload Wt which is a stream of queries

seen till time t Wt={q0, q1, q2, .., qt}.

Step 1 : Assuming that the query q accesses the attribute a,

we begin by the definition of the access function as follow:

Access(q, a) =

{
1 q access a
0 otherwise

}
(1)

Then, we define a matrix M . Rows in the matrix are the

attributes accessed by query q (0<i<t) in the workload Wt and

columns are the queries. Each element in the matrix M [i, j]=
Access(qi, aj) where i ∈ [1, t],j ∈ [1, m] and m is the

number of attributes accessed by t queries.

Let us consider an example. Suppose that we have five

queries accessing six attributes:

q1: SELECT a FROM T WHERE a = 10;

q2: SELECT b, f FROM T WHERE b = f;

q3: SELECT c, d FROM T WHERE a ≥ c;

q4: SELECT f FROM T WHERE f ≤ 100;

q5: SELECT e FROM T;

In this case,Wt={q1, q2, q3, q4, q5} and

M=

a b c d e f
q1 1 0 0 0 0 0
q2 0 1 0 0 0 1
q3 0 0 1 1 0 0
q4 0 0 0 0 0 1
q5 0 0 0 0 1 0

When the sliding window continues, some existing

transactions are deleted from the sliding window and some

new transactions arrive. Thus, M is dynamically updated at

every window. If a new query accesses to attributes already

exist in M , only a new row will be added on the end. If the

query accesses to new attributes not exist in M , a new row

will be added on the end and new columns will be added to

the matrix on the right. If an existing query is deleted from

the sliding window, the row of this query and the attributes

acceded only by this query have to be deleted.

B. Implementation of Matching Algorithm

This algorithm is developed to reorganize data and to

identify clusters [14]. We start with mentioning the different

steps of the Matching algorithm:

Step 1: From an m x t matrix array M compute the m x m
array B=MT ∗M
Step 2: Select one of the m rows of MT ∗M arbitrarily;

set i= 1.

Step 3: Select j = i + 1.

Step 4: Try placing the jth row in each of the (i + 1)

positions. Compute the sum φ =
∑m−1

i=1 bi,i+1.

Step 5: j = j + 1 and repeat Step 4 until j = m.

Step 6: Place the row k in the position where maximum value

of φ is obtained , i + 1 ≤ k ≤ m,

Step 7: i = i + 1 and repeat steps 3,4, 5, 6 and 7 till i=m

We use the same matrix M in our previous example and we

apply the different steps of the Matching algorithm as follow:

B =

q1 q2 q3 q4 q5
a 1 0 0 0 0
b 0 1 0 0 0
c 0 0 1 0 0
d 0 0 1 0 0
e 0 0 0 0 1
f 0 1 0 1 0

a b c d e f
q1 1 0 0 0 0 0
q2 0 1 0 0 0 1
q3 0 0 1 1 0 0
q4 0 0 0 0 0 1
q5 0 0 0 0 1 0

=

a b c d e f
a 1 0 0 0 0 0
b 0 1 0 0 0 1
c 0 0 1 1 0 0
d 0 0 1 1 0 0
e 0 0 0 0 1 0
f 0 1 0 0 0 2

Initially, φ =
∑5

i=1 bi,i+1 =1

The final reordering given through the application of the

algorithm is:

B =

d c f b a e
d 1 1 0 0 0 0
c 1 1 0 0 0 0
f 0 0 2 1 0 0
b 0 0 1 1 0 0
a 0 0 0 0 1 0
e 0 0 0 0 0 1

φ =
∑5

i=1 bi,i+1 =2

The optimal attribute sequence Oas={d, c, f, b, a, e}. Every

time a new query comes, the matrix M is calculated, then the

new OaS is dynamically created.

C. Data Partitioning

The main objective of vertical partitioning approach in

real-time spatial Big Data is to improve the performance

of query execution and the system throughput. The high

performance of query execution is related to minimizing the
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access cost of data partitions. Especially that the frequency

of accessing data on different partitions is a major factor to

affect the query execution cost. Thus, it is very important to

minimize this frequency for the high performance of query

execution.
The improvement of the system throughput can be achieved

by maximizing the degree of parallel execution. We can

improve this degree if we can minimize the frequency of

interfered accesses between data queries.
As a result, we can define the cost model that reflects both

objectives of vertical partitioning mentioned above as follow:

Cost(qi, P (Wt, Oast)) = |∑L(qi)⊆L′(αC(qi) + I(qi)) ×
|L′| −∑

L(qi)⊆L−L′(αC(qi) + I(qi))× |L−L′|| (2)

where:

• P (Wt, Oast) is a partitioning scheme over OaS of

workload W on the time t.
• L(qi) is a collection of attributes the query q visited.

• A partition line split the OaS into two sets L’ and L-L’.

• C(qi) is the access number of qi.
• I(qi) is the interfered access number of qi.
• α is a proportional constant between C(qi) and I(qi),

α > 1.

Our objective is to find the split vector SV that minimize

the execution cost, which is defined as follows:

SV = argmin(Cost(qi, P (Wt, Oast)) (3)

D. Algorithm Analysis
The characteristics of V PA−RTSBD:

• it deals with stream data; there is no need to have all

queries before partitioning.

• it improves the performance of query execution.

• it improves the system throughput by maximizing the

degree of parallel execution.

• it can get real-time result after every query: a real-time

partitioning scheme.

We compare the following properties: best time complexity,

worst time complexity, real-time processing, workload type,

table structure of V PA − RTSBD with WSPS, Schism
and O2P as shown in Table I.

IV. SIMULATION RESULTS

In this section, we give our simulation model. Then, we

compare the result of VPA-RTSBD and the result of the

traditional partitioning approaches like WSPS,Schism and

O2P .
Although VPA-RTSBD is the best in its comparison with

WSPS, Schism and O2P , the split vector calculation

becomes time-consuming especially when the number of

partitions grows.

TABLE I
ALGORITHM COMPARISON

VPA-RTSBD WSPS Schism O2P

Real-time processing Yes Yes No No

Stream processing Yes Yes No No

Workload type Dynamic/

Static

Dynamic/ Static Static Static

Table structure Unknown/

know

Unknown/ known Known Known

Best time complexity O(n) O(n) - O(n)

Worst time complexity O(n) O(n) - O(n2 )

Optimize queries processing Yes Yes - -

Optimize system throughput Yes No - -

A. Simulation Model

In order to access the performance of real-time analytics

on big data, new several systems have appeared. Well-known

systems and prototypes include: Hadoop Online, Storm,

Flume, Kafka and S4. But, these systems lacks the most

important database properties ACID (Atomicity, Consistency,

Isolation, Durability) and data warehousing without the ACID

requirement in place within a given system, reliability is

suspect. Databases with ACID properties are guaranteed

to achieve successful database transactions. Meanwhile,

we focus on interactive analytic in a data warehouse,

rather than continuous analytic over streams. Thus, we

have implemented a simulator in Java which describes the

architecture FCSA-RTSBD (Feedback Control Scheduling

Architecture for Real-Time Spatial Big Data) [18] as shown

in Fig. 1.

In our system, a transaction Ti is associated with a deadline

Di, period Pi, start time Ri, end time Ei and Execution Time

Estimation ETEi. Update transactions arrive periodically and

the arrival of user transactions is defined using the Poisson

distribution given by the following formula:

Fx(t) =

{
e−t x > 0
0 otherwise

}
(4)

Ti is continually evaluated for stream data belonging to a

window whose size is defined by either the period Pi or

number of the data received most recently.

Real-time spatial transactions have scheduled transactions,

according to the Earliest Deadline First (EDF) algorithm.

Transaction handler consists of a concurrency controller (CC)

by the use of the algorithm SCC-2S-P-IC [19], a freshness

manager (FM) and a basic scheduler. A transaction can be

aborted and restarted by CC. Freshness manager (FM) checks

the freshness of real-time data before the initiation of a user

transaction. If the accessing data is currently stale, FM blocks

the corresponding transaction will be transferred from the

block queue to the ready queue as soon as the corresponding

data is put up to date.

Simulation results are measured by the monitor periodically.

Miss ratio Controllers and precision control compute the miss

ratio and utilization control signals based on the obtained

results.
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Fig. 1 Simulation model

B. Experiments

1) Experiment 1: Partition Time Evaluating: We compare

the partition time of V PA−RTSBD with WSPS, O2P and

Schism. We use 5 workloads of size 10M (6000 queries),

100M (60,000 queries), 500M (3 million queries), 1G(6

million queries) and 2G (12 million queries) of TPC-DS

[25]; a decision support benchmarka for comparing big data

processing systems, containing 25 tables, 429 columns and 99

query templates.

Fig. 2 Partition Time of TPC-DS

By analyzing the result in Fig. 2, we can find, firstly, that

when the workload size is increasing, the partition time is

increasing also for all algorithms. In other hand, although

V PA − RTSBD keeps a query window which means

partitioning is done after every N queries contrarily WSPS
partitioning is done after every query, V PA − RTSBD and

WSPS have the same computing complexity and the partition

time of our approach is significantly lower than WSPS.

Schism and O2P can’t deal with the large volume of stream

data and with large-scale dynamic queries. So, they have the

worst partition time.

2) Experiment 2: High-Throughput Adaption: We use a

workload size of 500M and we generate data at different rates

(from 0.5G/s to 5G/s). The objective of this experiment is to

evaluate the ability of the high-throughput adaption. The result

is as shown in Fig. 3.

Fig. 3 High-throughput Control

By analyzing the result, we can find that the rate of

generating data affect the partition time for both algorithms

WSPS and V PA − RTSBD. But our approach has the

ability to adapt to high-throughput better than WSPS. So,

the importance of V PA−RTSBD appears clear; it can deal

well when facing with large-scale stream queries.
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Fig. 4 Evaluation on all queries using 1TB data

Fig. 5 Success ratio evaluating

3) Experiment 3: Total Running Time Evaluating: Fig.

4 presents the total running time of our simulator on

all 20 queries of the benchmark TPC-DS with a dataset

size fixed to 1 TBytes. On all queries, FCSA-RTSBD

with partitioning approach outperforms FCSA-RTSBD with

partitioning approach for all types of queries. The importance

of our partitioning approach appears clear because partitioning

algorithm improves responsiveness, scalability and availability

of data.
4) Experiment 4: Success Ratio Evaluating: Fig. 5 shows

that If we increase the number of accepted transactions in

the system, the number of validated transactions is increasing

also. Moreover, the number of valid transactions (user and

update) using our partitioning approach is the best. This is

explained by the fact that our approach maximizes the degree

of parallel execution. Thus this policy allows a large number

of transactions to complete their execution before achieving

their deadlines.

V. CONCLUSION

In this paper, we have researched on the limitations of

traditional partitioning technologies. Then, we have proposed

V PA − RTSBD a novel approach to process stream

queries in real-time spatial Big Data. This contribution is

an implementation of the Matching algorithm for traditional

vertical partitioning. It uses Hamming distance to produce

clusters. V PA−RTSBD is divided into three steps : first, we

find automatically the optimal attribute sequence by the use

of Matching algorithm. Secondly, we keep the data amount

of each partition more balanced limit by the use of a cost

model. Finally, we provide a parallel execution guarantees for

the most frequent queries.

A simulation study is shown to prove that V PA−RTSBD
can achieve a significant performance improvement in terms

of success ratio, high-throughput adaption and total running

time compared to WSPS, O2P and Schism. The importance

of our partitioning approach appears clear because partitioning

algorithm improves responsiveness, scalability and availability

of data. This affects QoS improvement in real-time spatial Big

Data especially with a huge number of data and transactions.

As follow, we have to find more policies for QoS

improvement in a large-scale real-time spatial data. The most

important requirements for these data structures are the ability

of providing fast access to the large volumes of data. Thus, we
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shall find new techniques for the data indexing. Another future

work consists of relaxing transaction real-time constraints

(ACID) by allowing the loss of some invocations.
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