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Abstract—This study was designed to find the best stochastic 

model (using of time series analysis) for annual extreme streamflow 
(peak and maximum streamflow) of Karkheh River at Iran. The 
Auto-regressive Integrated Moving Average (ARIMA) model used to 
simulate these series and forecast those in future. For the analysis, 
annual extreme streamflow data of Jelogir Majin station (above of 
Karkheh dam reservoir) for the years 1958–2005 were used. A visual 
inspection of the time plot gives a little increasing trend; therefore, 
series is not stationary. The stationarity observed in Auto-Correlation 
Function (ACF) and Partial Auto-Correlation Function (PACF) plots 
of annual extreme streamflow was removed using first order 
differencing (d=1) in order to the development of the ARIMA model. 
Interestingly, the ARIMA(4,1,1) model developed was found to be 
most suitable for simulating annual extreme streamflow for Karkheh 
River. The model was found to be appropriate to forecast ten years of 
annual extreme streamflow and assist decision makers to establish 
priorities for water demand. The Statistical Analysis System (SAS) 
and Statistical Package for the Social Sciences (SPSS) codes were 
used to determinate of the best model for this series. 

 
Keywords—Stochastic models, ARIMA, extreme streamflow, 

Karkheh River. 

I. INTRODUCTION 

CCURATE simulation and forecasting of water 
availability is a key step in efficient planning, operation, 

and management of water resources. Developing reliable 
surface water flow forecasting methods for real time 
operational water resources management becomes 
increasingly important. Various approaches, including 
physical and mathematical models, have been used for this 
purpose. The problems water resources in a region can check 
by stochastic hydrologic methods, thus this method is very 
important for hydrologists. The most important model of this 
method are time series models (ARMA or ARIMA models) 
that these models were developed extensively since the 1960s 
and were used by many researchers in the world. Time series 
analysis [1] has been widely used in the field of hydrology and 
water resources for simulation and forecasting [3]. 

Time series analysis is effective instrumentations for 
selecting a model that demonstrates the past behavior of 
historical data. With this analysis and select the best model, 
we are able to predict future events such as rainfall. Many 
studies in this subject have specified that stochastic time series 
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models are very useful and effective to predict. References [1], 
[15], [17] have developed around ARIMA models and their 
extensions. Shakeel et al. applied time series to modelling of 
annual maximum flow in River Indus at Sukkur India. They 
found that ARIMA (2,1,1) model was appropriate for this 
series [11]. Srikanthan et al. used time series models to 
analyse annual flow of Australian streams. ACF and PACF 
were applied to determine the appropriate form of Box-
Jenkins time series models [12]. 

Stojković et al. studied stochastic structure of annual 
discharges of large European rivers. They suggested that the 
stochastic flows simulated by the model can be used for 
hydrological simulations in river basins [13]. Huang et al. 
analyzed annual maximum stage readings of three rivers in 
Langat River basin in Malaysia for forecasting of flood using 
stochastic model (ARIMA). They found that ARIMA(1,1,0), 
ARIMA(1,1,0) and ARIMA(1,1,1) are the best models for the 
Dengkil, Kg. Lui and Kg. Rinching series respectively [4]. 
Tian et al. studied extreme value analysis of stream flow time 
series in Poyang Lake Basin, China [14]. During the last 
decades, several studies have developed methods of analyzing 
stochastic characteristics of streamflow time series [2], [5]-
[10], [16], [18]. 

In this study, linear stochastic models known as 
nonseasonal ARIMA models were used to model annual 
extreme streamflow for Karkheh River at Iran. The study area 
is located on latitudes 310 48׳ and 340 58׳ N and longitudes 460 
 E with its elevation ranging 1216 meter. The ׳and 490 10 ׳57
Kakheh River is formed of two main branches of Saymareh 
and Kashkan rivers and is one of the rivers the in southwestern 
of Iran, which flows in the southern of Khuzestan provinces. 
With 900 kilometres in length, it is known as the third long 
river in Iran. In this study, extreme streamflow data for the 
Karkheh River at Jelogir Majin gauging station (upstream of 
Karkheh dam) were obtained from the Iran Water Resources 
Management Organization (IWRMO), covering the period 
1958–2015. It includes a length of 58 years observations. Fig. 
1 showed Karkheh River basin. 

II. METHODS 

A stationary time series data which have constant mean and 
variance, can be modelled in different ways and process: Auto 
Regressive (AR), Moving Average (MA), or Auto Regressive 
and Moving Average (ARMA). When the data are stationary, 
we can use ARMA model but if data are not stationary, we 
need to use differencing on data series. These models are 
called ARIMA models. 
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Fig. 1 The Karkheh River Basin 
 

The general model of the non-seasonal ARIMA family is 
classified by three parameters p,d,q where p and q are degree 
(order) of AR and MA in model. The letter "d" is on dth 
difference of the time series. The amounts of p,d,q can be zero 
or positive in a general non-seasonal ARIMA model. 

 
(𝐵)∇𝑑𝑋𝑡 = (𝐵)𝑡                                                                         (1) 

 

where (𝐵) and 𝜃(𝐵)= Polynomials of order p and q, 
respectively. 
 
𝜙 (𝐵)= 1 − 𝜙1𝐵 − 𝜙2𝐵2 − ⋯ 𝜙𝑃𝐵𝑝                                         (2) 

 
and 
 

(𝐵)= 1 − 𝜃1𝐵 −𝜃2𝐵2 − ⋯ 𝜃𝑞𝐵𝑞                                                 (3) 
 

Four basic stages of ARIMA in identifying patterns in time 
series data and forecasting are model identification, parameter 
estimation, diagnostic checking and forecasting. 

A. Model Identification Stage 

In this stage, the number of auto-regressive (p) and moving 
average (q) parameters necessary to yield an effective model 
of the process is decided. The data are examined to check for 
the most appropriate class of ARIMA processes through 
selecting the order of the regular and nonseasonal differencing 
required to make the series stationary, as well as through 
specifying the number of regular and auto-regressive and 
moving average parameters necessary to adequately represent 
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the time series model. The plots of the series with 
correlograms of ACF and PACF are the major tools for the 
identification phase. Correlograms are plot of auto correlation 
and partial auto correlation verses lag. In a time series, amount 
of linear dependence between data can be expressed by 
plotting of ACF and determinate of auto regressive term for 
manifest of trend, either in the average level or in the variance 
level of the series, by plotting of PACF. 

B. Parameter Estimation Stage 

At the parameter estimation stage, the parameters are 
estimated using by the Maximum Likelihood (ML), 
Conditional Least Square (CLS) and ULS methods. Among 
these methods, ML seems to be the best [1]. The parameters 
should be statistically significant at α=p% and should satisfy 
two conditions, namely stationary and invertibility for auto-
regressive and moving average models, respectively. In this 
stage, several models are tentatively chosen and then compute 
the values of Akaike Information Criterion (AIC). The model 
structure which has the minimum AIC value, among others 
model structures, will be chosen as the best model. Equation 
(4) describes the formula to compute AIC. In this equation, Tp 
is the number of AR, I and MA parameters. 

 

1

2
).(2




p

p

Tn

T
LikelihoodMaxLnAIC                       (4) 

C. Diagnostic Check Stage 

After different models have been fitted to the data, it is 
important to perform diagnostic checks to test the adequacy of 
each model. First test is to check the residuals by using ACF 
and PACF graph. If the selected model is appropriate, the 
residuals graphs of both correlation functions should be white 
noise, indicating no remaining correlation. 

The second test is Port Manteau lack of fit test (5). If the 
values of p-value in this test exceed 5%, it indicates that 
residuals have significant departure from white noise. If the 
selected model fails to pass Port Manteau lack of fit test, the 
modeler returns to select alternative model and follows the 
same procedure until satisfactory model results are obtained. 

 

  t

M

k
k arDSdNQ 




1

2                                                                                     (5) 

 
In (5), rk (at) is the auto-correlation coefficient of the 

residual (at) at lag k, and M is the maximum lag considered 
(about N/4), ARIMA model is considered adequate if p>chi 
square is greater than 0.05 where 0.05 is the level of 
significant. 

D. Forecasting Stage 

At the forecasting stage, the estimated parameters are used 
to calculate new values of the time series and assurance 
periods for forecasted values. The estimation process is 
applied on transformed (differenced) data, hence before 
prediction and production of data series the series needs to be 
integrated to thwart the effect of differencing so that the 

predicts are expressed in values suitable with the input data. 
The letter “I” in ARIMA model represents this automatic 
integration feature. To evaluate the performance of the best 
ARIMA model at each station, coefficient of determination 
(R2) is used to select the best model. R2 gives impartial result 
as it takes mean values of both the observed and predicted 
data. 

In the present study, to identify the best fitted model, the 
predicted values using the several different ARIMA models 
are compared to the observed data of the validation period 
(2006-2015). The SAS and SPSS codes were used for all the 
analytical work. The basic methodology of ARIMA modelling 
is shown in Fig. 2: 

 

 

Fig. 2 ARIMA model development 

III. RESULT AND DISCUSSION 

A. Fitting Box-Jenkins 

 

Fig. 3 Time series of annual peak streamflow of Karkheh River 
(1958–2005) in (m3/s) 

 
The time series model development consists of three stages: 

identification, estimation and diagnostic, see [9]. In the 
identification stage, data transformation is often needed to 
make the time series stationary. During the estimation stage, 
the model parameters are calculated by different method. 
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Finally, diagnostic check test of the model is performed to 
reveal possible model inadequacies to assist in the best model 
selection. 

B. Identification of Representative Models 

Model computation was made with extreme streamflow 
annual data from between 1958 to 2015. The dataset from 
2006 to 2015 was considered in forecasting estimations of the 
model. The time series plot was conducted using the annual 
extreme streamflow data for Karkheh River at Jelogir Majin 
gauge station to assess the stability of the data, and Figs. 3 and 
4 were obtained. The plots show that there is a little increasing 
of the series, and the series are nonstationary. Also, from the 
plot of the ACF and PACF of the annual data, Figs. 5 and 6, it 
has been found that the data must be differenced by one 
nonseasonal degree of differencing to achieve stationary 
(d=0). Differencing for nonseasonal ARIMA was not done 
due to absence of trends in the datasets. Figs. 7 and 8 confirm 

that the ACF and PACF plots for the differenced data (d=1) 
were stable, and the ARIMA model (p,1,q) could be identified 
for further analysis. 

 

 

Fig. 4 Time series of annual maximum streamflow of Karkheh River 
(1958–2005) in (m3/s) 

 

 

Fig. 5 ACF and PACF Plots of natural annual peak streamflow of Karkheh River (d=0) 
 

 

Fig. 6 ACF and PACF Plots of natural annual maximum streamflow of Karkheh River (d=0) 
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Fig. 7 ACF and PACF Plots of annual peak streamflow after one nonseasonal difference (d=1) 
 

 

Fig. 8 ACF and PACF Plots of annual maximum streamflow after one nonseasonal difference (d=1) 
 

C. Parameters Estimation 

After the identification of model using the parameter 
estimation methods such as ML, CLS and ULS are done. The 
values of parameters estimation are shown in Tables I and II. 
The values of these tables showed that all the selected models 
are suitable for entrance to next stage because these selected 
models have two conditional stationary and invertibility. The 
AIC values are shown in Table V. The model that gives the 
minimum AIC is selected as best fit model. Obviously, model 
ARIMA(4,1,1) has the smallest values of AIC, then one would 
temporarily have a model ARIMA (4,1,1). The values of AIC 
for different ARIMA models are shown in Table V 
(AIC=88.87 in CLS estimation method for annual peak 
streamflow and AIC=77.75 in ML estimation method for 
annual maximum streamflow). In this case, the initial 
suggested model structure has the minimum AIC value and 
has been chosen as best model structure for annual extreme 

streamflow time series. 

D. Diagnostic Check 

In the Box Jenkins methodology, after selecting suitable 
model and estimated of parameters, the residuals of the model 
must requires examining to verify that selected model is an 
appropriate one for the series. An appropriate model should 
have uncorrelated residuals. This is the minimal condition for 
select of the best model. For a good predicting model, the 
residuals of the model must satisfy the requirements of a white 
noise process. Two common tests for this purpose are 
summarized briefly in the following paragraphs. 

E. Port Manteau Lack of Fit Test 

The goodness of fit of the selected model was tested using 
the Ljung-Box statistic test. The test is employed for checking 
independence of residual. From Tables III and IV, the 
goodness of fit values for the auto-correlations of residuals 
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from the model up to lag 24 was ≥ 0.05. The result of Port 
Manteau test demonstrates the acceptation of the null 
hypothesis of model sufficiency at the 5% significance level 
and the set of autocorrelation of residuals was considered 
white noise. Since the model diagnostic tests show that all the 
parameter estimates are significant, and the residual series is 
white noise, the estimation and diagnostic checking stages of 
the modelling process are complete. 

F. ACF and PACF of Residuals 

The ACF and PACF of residuals of the model ARIMA 
(4,1,1) are shown in Figs. 9 and 10. Most of the values of the 
RACF and RPACF of residuals of the model lies within 
confidence, and figures do not indicate significant correlation 
between the residuals of model. The results of the ACF and 
PACF plots of the residuals and Port Manteau lack of fit test 
suggested that the residuals are white noise, therefore the 
ARIMA (4,1,1) model is the best model for forecasting of 
study series 

G. Forecasting 

ARIMA model can also be used for forecasting future 
values based on the historical data. The ARIMA (4,1,1) model 
was tested for its validity to forecast ten observations obtained 
for the years 2006−2015 for Karkheh River. The result of 
comparison between forecasted and observation data is shown 
Figs. 11 and 12. The observed streamflow was found to be 
closely aligned to the forecasted values. In order to evaluate 
the performance of the models, ten years ahead forecasts were 
generated for the testing period from 2006 to 2015 in Table 
VI. The hydrograph between observation and forecasted 
streamflow data using ARIMA models is shown in Figs. 11 
and 12. These corresponding observed values are also shown 
in Figs. 13 and 14. The agreement between the observed and 
forecasted values is very good (R2=0.84 for annual peak 
streamflow and R2=0.87 for annual maximum streamflow), it 
is confirmed that the ARIMA (4,1,1) model is adequate. Also, 
this model is better than other models because ARIMA model 
gives low value of error and in good fit with the observed data. 

 
TABLE I 

VALUES OF NONSEASONAL ARIMA MODEL PARAMETERS FOR ANNUAL PEAK STREAMFLOW 
Estimation 

Method 
Type (Order) and Values of 
parameters ARIMA(p,1,q) 

Absolute 
Value of t 

Probability 
of t 

Stationary 
Condition 

Invertibility 
Condition 

ML 
P(1) = -0.48656 

Q(0) 
-3.81 

 
0.0001 

 
Satisfy 

 
 

CLS 
P(1) = -0.48713 

Q(0) 
-3.78 

 
0.0005 

 
Satisfy 

 
 

ULS 
P(1) = -0.49708 

Q(0) 
-3.88 

 
0.0003 

 
Satisfy 

 
 

ML 
P(1) = 0.10744 
Q(1) = 0.93539 

0.66 
10.87 

0.5104 
0.0001< 

Satisfy 
 

 
Satisfy 

CLS 
P(1) = 0.11274 
Q(1) = 0.96723 

0.69 
15.99 

0.4926 
0.0001< 

Satisfy 
 

 
Satisfy 

ULS 
P(1) = 0.12820 
Q(1) = 0.99998 

0.84 
3.35 

0.4072 
0.0001< 

Satisfy 
 

 
Not Satisfy 

ML 
P(4) = -0.3317 
Q(1) = 0.86679 

-2.25 
9.89 

0.0243 
0.0001< 

Satisfy 
 

 
Satisfy 

CLS 
P(4) = -0.33489 
Q(1) = 0.86679 

-2.19 
13.48 

0.0339 
0.0001< 

Satisfy 
 

 
Satisfy 

ULS 
P(4) = -0.36065 
Q(1) = 0.89524 

-2.4 
11.84 

0.0208 
0.0001< 

Satisfy 
 

 
Satisfy 

 
TABLE II 

VALUES OF NONSEASONAL ARIMA MODEL PARAMETERS FOR ANNUAL MAXIMUM STREAMFLOW 
Estimation 

Method 
Type (Order) and Values of 
parameters ARIMA(p,1,q)

Absolute 
Value of t

Probability 
of t

Stationary 
Condition

Invertibility 
Condition 

ML 
P(1) = -0.51759 

Q(0) 
-4.14 

 
0.0001< 

 
Satisfy  

 
 

CLS 
P(1) = -0.49304 

Q(0) 
-3.84 

 
0.0004 

 
Satisfy  

 
 

ULS 
P(1) = -0.52951 

Q(0) 
-4.23 

 
0.0001 

 
Satisfy  

 
 

ML 
P(1) = 0.14873 
Q(1) = 0.92809 

0.86 
8.16 

0.3922 
0.0001< 

Satisfy  
 

 
Satisfy 

CLS 
P(1) = 0.230274 
Q(1) = 0.97512 

1.46 
28.55 

0.1501 
0.0001< 

Satisfy  
 

 
Satisfy 

ULS 
P(1) = 0.17543 
Q(1) = 0.99999 

1.13 
3.35 

0.2631 
0.0016 

Satisfy  
 

 
Not Satisfy 

ML 
P(4) = -0.26820 
Q(1) = 0.74897 

-1.71 
6.36 

0.087 
0.0001< 

Satisfy  
 

 
Satisfy 

CLS 
P(4) = -0.26824 
Q(1) = 0.69253 

-1.7 
5.76 

0.0964 
0.0001< 

Satisfy  
 

 
Satisfy 

ULS 
P(4) = -0.27556 
Q(1) = 0.85681 

-1.66 
8.77 

0.1031 
0.0001< 

Satisfy  
 

 
Satisfy 
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Fig. 9 ACF and PACF Plots for ARIMA (4,1,1) Residuals for annual 
peak streamflow 

 

Fig. 10 ACF and PACF Plots for ARIMA (4,1,1) Residuals for 
annual maximum streamflow 

TABLE III 
RESULT OF AUTOCORRELATION CHECK OF RESIDUALS ANNUAL PEAK STREAMFLOW 

ARIMA Model 
Estimation 

Method 
To Lag Df 

Chi-
Square 

Pr>Chi 
Square 

Adequacy for 
Modelling 

ARIMA(1,1,0) 

ML 

6 
12 
18 
24 

5 
11 
17 
23 

9.99 
11.25 
14.32 
17.26 

0.0754 
0.4228 
0.6447 
0.7962 

Satisfy 

CLS 

6 
12 
18 
24 

5 
11 
17 
23 

9.68 
10.94 
14.02 
16.93 

0.0850 
0.4484 
0.6659 
0.8128 

Satisfy 

ULS 

6 
12 
18 
24 

5 
11 
17 
23 

10.02 
11.29 
14.38 
17.33 

0.0748 
0.4190 
0.6400 
0.7928 

Satisfy 

ARIMA(1,1,1) 

ML 

6 
12 
18 
24 

4 
10 
16 
22 

5.32 
5.93 
9.21 

12.45 

0.2562 
0.8212 
0.9046 
0.9473 

Satisfy 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

4.63 
5.20 
8.26 

10.89 

0.3269 
0.8775 
0.9409 
0.9763 

Satisfy 

ARIMA(4,1,1) 

ML 

6 
12 
18 
24 

4 
10 
16 
22 

1.30 
2.77 
7.46 

10.70 

0.8608 
0.9863 
0.9653 
0.9787 

Satisfy 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

1.36 
2.98 
7.56 

10.41 

0.8504 
0.9818 
0.9610 
0.9822 

Satisfy 

ULS 

6 
12 
18 
24 

4 
10 
16 
22 

1.25 
2.53 
7.61 

11.47 

0.8702 
0.9904 
0.9596 
0.9674 

Satisfy 

  

 

Fig. 11 Comparison of observed data and ARIMA (4,1,1) model 
annual peak streamflow (2006-2015) 

 

Fig. 12 Comparison of observed data and ARIMA (4,1,1) model 
annual maximum streamflow (2006-2015) 
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Fig. 13 Correlation between observation and forecasted values of 
annual peak streamflow 

 

 

Fig. 14 Correlation between observation and forecasted values of 
annual maximum streamflow 

TABLE IV 
RESULT OF AUTOCORRELATION CHECK OF RESIDUALS ANNUAL MAXIMUM STREAMFLOW 

ARIMA Model 
Estimation 

Method 
To Lag Df 

Chi-
Square 

Pr>Chi 
Square 

Adequacy for 
Modelling 

ARIMA(1,1,0) 

ML 

6 
12 
18 
24 

5 
11 
17 
23 

9.63 
10.85 
14.10 
21.24 

0.0866 
0.4559 
0.6602 
0.5665 

Satisfy 

CLS 

6 
12 
18 
24 

5 
11 
17 
23 

8.87 
10.14 
13.26 
20.50 

0.1145 
0.5177 
0.7185 
0.6118 

Satisfy 

ULS 

6 
12 
18 
24 

5 
11 
17 
23 

9.65 
10.89 
14.21 
21.26 

0.0856 
0.4525 
0.6519 
0.5653 

Satisfy 

ARIMA(1,1,1) 

ML 

6 
12 
18 
24 

4 
10 
16 
22 

3.85 
5.64 

10.50 
17.76 

0.4262 
0.8445 
0.8391 
0.7201 

Satisfy 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

4.15 
5.74 

10.06 
16.58 

0.3856 
0.8365 
0.8637 
0.7861 

Satisfy 

ARIMA(4,1,1) 

ML 

6 
12 
18 
24 

4 
10 
16 
22 

1.22 
5.29 

10.91 
15.22 

0.8752 
0.8712 
0.8152 
0.8527 

Satisfy 

CLS 

6 
12 
18 
24 

4 
10 
16 
22 

0.97 
6.01 

11.58 
15.57 

0.9139 
0.8144 
0.7726 
0.8364 

Satisfy 

ULS 

6 
12 
18 
24 

4 
10 
16 
22 

2.15 
6.91 

13.12 
17.33 

0.7077 
0.7338 
0.6638 
0.7449 

Satisfy 

 
IV. CONCLUSION 

In this paper, stochastic model known as nonseasonal 
ARIMA was used to simulate and forecast annual extreme 
streamflow for Karkheh River at Iran. ARIMA model has the 
best fits of the criteria and the requirement. By analyzing of 
the predicted values in future, it was found that use of ARIMA 
model for predicting annual extreme streamflow is very good. 
The stochastic ARIMA models to annual streamflow time 
series could result in a better tool which can be used for water 
resource planning in studied region. ARIMA model has the 
ability to predict accurately the future annual extreme 
streamflow, especially short-term period, for all streamflow 
gauge stations in Karkhe River in Karkheh basin at Iran. The 
choice of model type itself has an important role in stochastic 
hydrology for forecasting and data generation, and each case 

deserves an investigation to determine the most appropriate 
model. 

The significant ACF and PACF plots with high order in 
ARIMA (4,1,1) model (four order) can be caused by factors 
such as the good vegetation of the region and snowmelt. The 
good vegetation of the region and the forest causes water 
retention in the soil surface layer and delay in the rise in 
surface runoff. As well as vegetation reduces the power and 
erodibility destroyed by a severe storm (intense rain events 
happening across the region). Also, runoff from the storm 
drainage system seems to cause significant delays. The 
ARIMA model is suitable for short term forecasting because 
the ARMA family models can model short term persistence 
very well. The auto regressive model is a finite memory 
model, thus it does not fare well in long term forecasting. 
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TABLE V 
GOODNESS OF FIT STATISTIC FOR ANNUAL PEAK AND MAXIMUM 

STREAMFLOW 

Parameter 
ARIMA 
Model 

Estimation 
Method 

Akaikc's 
Statistic 

Annual 
Peak 

Streamflow 

(1,1,0) 

ML 103.4247 

CLS 103.4469 

ULS 103.4316 

(1,1,1) 
ML 95.2824 

CLS 93.1350 

(4,1,1) 

ML 90.8381 

CLS 88.8680 

ULS 91.0387 

Annual 
Maximum 
Streamflow 

(1,1,0) 

ML 84.185 

CLS 84.9952 

ULS 84.1939 

(1,1,1) 
ML 79.7781 

CLS 79.6182 

(4,1,1) 

ML 77.7478 

CLS 78.8943 

ULS 78.1438 

 
TABLE VI 

FORECASTS AND OBSERVATIONS OF ANNUAL STREAMFLOW FROM PERIOD 

2006-7 TO 2015-16 

Period 
Annual Peak Streamflow 

Annual Maximum 
Streamflow 

Forecast Observation Forecast Observation 

2006-7 1451 1300 1235 1161 

2007-8 1385 1323 1177 1163 

2008-9 1092 1175 962 941 

2009-10 984 1004 920 960 

2010-11 1257 1253 1092 1070 

2011-12 1276 1187 1106 1090 

2012-13 1382 1346 1167 1202 

2013-14 1431 1401 1182 1210 

2014-15 1319 1330 1129 1150 

2015-16 1312 1290 1099 1080 
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