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Abstract—In this paper, we study the factors which determine the 

capacity of a Convolutional Neural Network (CNN) model and 
propose the ways to evaluate and adjust the capacity of a CNN model 
for best matching to a specific pattern recognition task. Firstly, a 
scheme is proposed to adjust the number of independent functional 
units within a CNN model to make it be better fitted to a task. 
Secondly, the number of independent functional units in the capsule 
network is adjusted to fit it to the training dataset. Thirdly, a method 
based on Bayesian GAN is proposed to enrich the variances in the 
current dataset to increase its complexity. Experimental results on the 
PASCAL VOC 2010 Person Part dataset and the MNIST dataset show 
that, in both conventional CNN models and capsule networks, the 
number of independent functional units is an important factor that 
determines the capacity of a network model. By adjusting the number 
of functional units, the capacity of a model can better match the 
complexity of a dataset. 
 

Keywords—CNN, capsule network, capacity optimization; 
character recognition, data augmentation; semantic segmentation. 

I. INTRODUCTION 

ECENTLY, deep learning aiming to discover and 
automatically learn good representations from raw data 

with a complex hierarchical model, has attracted great 
attention. The benefits are brought by the high capacity or 
Vapnik-Chervonenkis dimension [1]-[4] of models. Despite the 
improvements in accuracy, there are some major challenges in 
learning with CNNs: the requirement for high computational 
resources, the heavy reliance on training data and the lack of 
theoretical understanding of CNNs. 

The major contribution of this paper is the development of a 
method to partition a CNN layer into independent functional 
units. The partition is based on the similarity among 
convolutional kernels and the Expectation-Maximization 
Algorithm (EM) proposed in [5]. Both conventional CNN 
models and the capsule network proposed in [6] can be 
partitioned into functional units, as is addressed in Section III. 
The contributions of functional units to the overall performance 
are evaluated and only units that are useful for the task are kept. 
The proposed method improves efficiency while maintaining 
the performance. In addition, a method for increasing the 
complexity of the dataset by enlarging variances is proposed to 
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match the datasets with different complexity to the models with 
different capacity. Apart from the reduction in over-fitting and 
the improvement in efficiency, the method also provides a 
novel way to understand CNNs. 

Our previous work on semantic segmentation [7] is based on 
the PASCAL VOC 2010 Person Part dataset [8] and Deeplab 
proposed in [9]. The proposed method for adjusting capacity is 
conducted on the Deeplab model.  

We perform experiments on semantic segmentation using the 
model optimized by the proposed method. The experiments 
reported are conducted on the PASCAL VOC 2010 Person Part 
dataset and the MNIST dataset [10]. Training accuracy and test 
accuracy of models with different numbers of functional units 
are evaluated. Comparisons on the optimized network and 
some benchmark methods have shown that the model with the 
appropriate number of functional units performs the best on a 
specified task. Moreover, experiments are conducted to adjust 
the capacity of the capsule network to match to datasets with 
different capacity. 

The rest of the paper is organized as follows. Section III 
discusses a method for partitioning a conventional CNN into 
functional units. Adjusting the capacity of a conventional CNN 
model or a capsule network by only using the most useful 
functional units is also discussed in this section. In Section IV, 
we propose a method for increasing the complexity of a dataset 
and the way of matching the capacity of a model to the 
complexity of a dataset. Section V reports and discusses our 
experimental results. The concluding remarks are drawn in 
Section VI. 

II. RELATED WORK 

Matching the capacity of deep neural architectures to the 
complexity of tasks has become an area of active research. 

Current work can be grouped into five categories. The first 
category focuses on increasing the capacity of a model by 
increasing the number of trainable parameters. The second type 
of algorithms focuses on enriching the types of operations in a 
CNN model. The methods of the third type focus on computing 
the mutual information among hidden activations in a CNN 
model. Related research topics include developmental learning 
[11]-[13] and lifelong learning [14]-[17]. The fourth category 
involves network pruning [18] and optimization on 
connectivity [19], [20]. The fifth category focuses on designing 
architectures of neural networks with genetic algorithms or 
reinforcement learning [21]. However, the first three methods 
can only increase models’ capacity. Therefore, over-fitting is 
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easy to occur. Also these methods cannot even qualitatively 
evaluate the capacity of a model or match the capacity of a 
model to the complexity of a dataset. There is the need for an 
effective way to find the optimal capacity of a CNN for a 
specific task. The fourth method requires significant 
computational resources during training, and the fifth method 
produces networks that are quite complex and the process of 
designing networks is time-consuming. 

In this paper, we provide a point of view to understand CNNs 
and match the capacity of CNNs to the complexity of tasks. The 
proposed method improves the efficiency of inference, as 
compared to the first three methods. Also the method requires 
less time and computational resources during training, as 
compared to the fourth and fifth methods. 

III. METHODOLOGY 

A. Conventional CNNs 

In this section, we propose to adjust the number of functional 
units to control the capacity of the Deeplab model proposed in 
[9]. In a CNN, different kernels within one layer correspond to 
different clues for the task, while different layers correspond to 
the compositions of clues. The clues and compositions in a 
CNN can be grouped based on similarity. We have developed a 
method to partition kernels into groups based on the EM 
algorithm [5], as is shown in Fig. 1. 

 
 Operation 
1 Initialize K to be 1. Also initialize the means  1 2, ,..., Kμ μ μ μ , 

covariances  1 2, ,..., KΣ Σ Σ Σ  and mixing coefficients 

 1, , K π   with K-means algorithm. 

2 (Outer loop) Increase K  
3 (Inner loop) Perform E step to evaluate the responsibilities using 
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If the convergence criterion (reaching maximum) is not satisfied, 
return to Step 3, else proceed 

6 Evaluate the influence of halving all groups within one layer on the 
performance by comparing the test accuracy before and after halving 
the layer. If the drop in accuracy is below a threshold (3%), stop, else 
return to Step 2. 

Fig. 1 The algorithm of partitioning a CNN into functional units 

The process is carried out layer by layer. The channels are 
grouped based on similarity. Suppose that Layer  , 1L L   has 

M  output feature channels, while Layer 1L   has N  output 
feature channels. The kernels in Layer 1L   are with size 3 3 . 
In this way, there are M  kernels connecting input channels to 
each of the N  output channels in Layer 1L  . We flatten each 
kernel into a 9 1  vector, and concatenate the M  kernels to 
construct a 9 1M   vector. Finally, we model the N  vectors 
with size 9 1M   as a mixture of Gaussians and group the N  
vectors based on similarity. 

Let the number of groups K  increase until all the necessary 
clues can be expressed by different groups. In the beginning, K

= 1. Removing the group will cause a great loss in accuracy. For 
a proper K , these groups cover all K  necessary functional 
units for the task. This method is evaluated on the Deeplab 
model [9]. By keeping the useful functional units only, similar 
performance can be achieved and therefore, the capacity of the 
model matches well to the complexity of the dataset. 
Experimental results will show that a smaller network with a 
right capacity can perform better than a larger network of 
overcapacity. 

B. Capsule Networks 

Different from a conventional CNN, the capsule network 
proposed in [6] represents one identity with one capsule that is 
composed of several neurons. The neurons within each capsule 
form a vector whose norm shows the probability of existing an 
identity and whose angle shows the variance of the identity. All 
capsules in one-layer vote for each capsule in the layer above 
by multiplying their own matrices by transformation matrices. 
Each of these votes is weighted by an assignment coefficient, 
and the coefficients are updated using the EM algorithm. 

Fig. 2 shows the structure of one layer in the capsule 
network. The dimension of each capsule is 16. Convolutions in 
different dimensions are independent, and different feature 
representations are provided by different dimensions. The 
function of a dimension in the capsule network is similar to that 
of a functional unit in the CNN introduced in 2.1. We propose 
to adjust the capacity of a capsule network by adjusting the 
number of dimensions. 

IV. METHOD TO INCREASE THE COMPLEXITY OF A DATASET 

In this section, a method is proposed to increase the 
complexity of a dataset through adding the types of variances in 
each class. The proposed algorithm is based on Bayesian GAN 
proposed in [22]. Different g  are sampled from  g dp    to 

obtain different generators. g  and d  denote the parameters of 

the generator and the discriminator. Different g  can generate 

samples with an approximate level of entropy but with different 
styles. The differences between the images generated by 
different generators are determined by the distances between 
the parameters g  of the generators. 

In our proposed method, we sample from  g dp    to obtain 

different generators and select several generators with their 
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parameters g  that are sufficiently dissimilar. The images 

generated by the generators are added to the training data to 

enrich the variances in all classes. Each time, the generator and 
the discriminator are trained on images of one class. 
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Fig. 2 One layer in the capsule network proposed in [6] 
 

V. EXPERIMENTAL RESULTS 

A. Introduction to the Datasets 

The performance of the Deeplab model proposed in [9] and 
that of our proposed model is evaluated on the PASCAL Person 
Parts Dataset [23]. The dataset contains 3,533 images with 
annotations on Head, Torso, Upper/Lower Arms and 
Upper/Lower Legs, resulting in six person parts classes and one 
background class. The performance evaluation of the capsule 
network is conducted on the MNIST dataset proposed in [10] 
which has 60,000 training examples and 10,000 test examples. 

B. Adjust the Capacity of a Conventional CNN 

Whether a group of functional unit is useful for prediction, it 
is evaluated by comparing the accuracy before and after 
removing these units. The evaluation is conducted on the 
PASCAL Person Parts Dataset [23]. The necessity of a certain 
functional unit is determined by comparing the accuracy before 
and after removing the unit. The removal of a group of channels 
involves dropping the connections between adjacent layers. 
Table I shows the influences on accuracy brought by removing 
each of the eight functional units in layers conv6_2 and 
conv6_3 from the network shown in Fig. 3 which is proposed in 
[9]. 

As is shown in Table I, there is one functional unit in each 
layer whose removal brings no harm to test accuracy as well as 
training accuracy. Removing the 5th functional unit from 
conv6_2 or removing the 4th functional unit from conv6_3 

keeps training accuracy unchanged and increases test accuracy. 
So it can be inferred that the above two functional units are 
over-fitted to features that only appear in training data. 
Moreover, the removal of the 8th functional unit from conv6_2 
and the removal of the 3rd functional unit from conv6_3 keep 
both training and test accuracy unchanged. Re-training with 
5,000 iterations is conducted after removing functional units. In 
comparison, methods based on directly reducing channels, such 
as [18], requires over 15,000 iterations before convergence. 
The process of removing functional units which is followed by 
re-training is repeated until no functional unit can be removed. 

 
TABLE I 

THE CHANGE IN TRAINING AND TEST ACCURACY (%) WHEN DROPPING ONE 

FUNCTIONAL UNIT IN LAYERS CONV6_1, CONV6_2 AND CONV6_3 

 
conv6_1 conv6_2 conv6_3 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Train 
(%) 

Test 
(%) 

Complete 0.00 0.00 0.00 0.00 0.00 0.00 

Remove Unit 1 -0.33 -0.87 -0.14 -0.10 -0.14 -3.03 

Remove Unit 2 -0.02 -0.08 -0.09 -0.97 -0.09 -0.64 

Remove Unit 3 -0.05 -0.01 -1.04 -3.19 +0.00 +0.00 

Remove Unit 4 -0.58 -1.71 +0.00 -0.32 +0.00 +1.02 

Remove Unit 5 -1.11 -4.20 -0.01 +0.18 -0.29 -1.04 

Remove Unit 6 +0.00 +0.00 -0.36 -1.16 -0.03 -0.83 

Remove Unit 7 -0.01 -0.52 -0.01 -0.33 -0.44 -1.31 

Remove Unit 8 -0.14 +0.00 +0.00 +0.00 -0.41 -1.66 
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Fig. 3 Fully-convolutional model for semantic segmentation. Eight parallel filters with different field-of-views are adopted to extract features for 
pixel classification. The Kernel Type refers to the types of the kernels in layers from conv6_1 to conv6_8. The kernels in the eight layers are with 
size 3 3  but differ in the distance between weights in the kernels. The heat-maps generated by the eight parallel convolutional layers are summed 

up to generate the final heat-map. The feature extractor is composed of the first 13 layers shown in [9] 
 

 

Fig. 4 The changes in training and test mIOU (%) versus the reduction in the number of feature channels. The horizontal axis denotes the portion 
of the number of feature channels remained in the model 

 
Fig. 4 shows the influences on mean Intersection Union 

(mIOU, %) brought by reducing functional units from all layers 
in the model shown in Fig. 3. mIOU (%) is the ratio of the 
number of true positives over the sum of true positives, false 
negatives and false positives. The 100 percent in the horizontal 
axes in Fig. 4 corresponds to the original Deeplab model 
proposed in [9]. By continuously reducing channels through 
dropping functional units, the training accuracy keeps 
decreasing, the test accuracy increases first and then drops. 

C. Performance Comparison on Benchmark Datasets 

From Fig. 4, it can be seen that the model with reduced 
feature channels generalizes better than the original model 
shown in Fig. 3. The performance of the original model, the 
optimized model, and other related models is shown in Table II. 

 

TABLE II 
A COMPARISON IN MIOU (%) BETWEEN OUR MODEL AND BENCHMARK 

MODELS 

Method mIOU (%) 
Attention [24] 56.39% 

HAZN [25] 57.54% 
LG-LSTM [26] 57.97% 

Graph LSTM [27] 60.16% 
Deep Lab-V2 [9] 64.94% 

Deep Lab-V3 [28] 68.17% 
Our optimized model 67.43% 

 
TABLE III 

A COMPARISON ON ACCURACY BETWEEN OUR METHOD AND DEEPLAB [9], 
[28] 

Method Accuracy (%) 
Deep Lab-V2 [9] 77.69% 

Deep Lab-V3 [28] 80.79% 
Our optimized model 79.35% 
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The measure in Table II adopted for evaluating segmentation 
performance is mean Intersection Over Union (mIOU) 
proposed in [29], while the measure in Table III is accuracy. It 
is a metric for evaluating semantic segmentation tasks. It is 
calculated by dividing the number of true positive samples by 
the summation of true positive, false negative and false positive 
samples: 

 

 
1

1 N
ii

i i jij i

n
mIOU

N t n 


 

 
(1)

 
 
where jin  is the number of pixels of class j which are predicted 

to class i , and j jii
t n  is the total number of pixels 

belonging to class j . The measure mIOU takes into account 
both false positives and false negatives. The accuracy defined 
as ii ii i

n t   which divides the total number of correctly 

classified pixels by the number of pixels in the image. 
It can be seen from Table II that the proposed framework 

significantly outperforms the existing methods. The 
improvement is about 2.49% over Deeplab-V2. Although 
Deeplab-V3 performs best, the complexity of Deeplab-V3 is 
significantly larger than the proposed model. 

D. Adjust the Complexity of the MNIST Dataset 

The MNIST dataset [10] contains handwritten digits of 
different styles. In Section III, a method was proposed to add 
variances to a dataset using Bayesian GAN. The generator and 
the discriminator were trained for 18,000 iterations in a 
semi-supervised fashion. 4000 images with labels and other 
56,000 images without labels are used for training. The training 
process was conducted for 10 times. Each time, only the images 
of the same character are used for training. The number of g ’s 

sampled from  g dp    is 5 and the number of stochastic 

gradient Hamiltonian Monte Carlo sampling is chosen to be 5 
according to [22]. 

Fig. 5 shows the distribution of original images and the 
generated images. It can be seen that the images generated by 
different generators (in red, green and blue) are sufficiently 

dissimilar, and the generated images are different from the 
original images (in purple). 10000 images including all 
characters were generated to enrich the original training data. 

E. Matching the Capacity of a Model to the Complexity of a 
Dataset 

The MNIST dataset is augmented to a larger dataset 
containing 70,000 training images and 11,600 test images. We 
adjusted independent functional units in the capsule network 
discussed in Section II to make the network better matched to 
the complexity of both MNIST and the augmented dataset. Fig. 
6 shows the test accuracy on both MNIST and the augmented 
MNIST datasets of the three networks with different 
dimensions. It can be seen from Fig. 6 (a) that for the MNIST 
dataset, the network with 16 functional units performs the best; 
the network with nine units suffers from under-fitting; and the 
network with 25 units suffers from over-fitting. As the dataset 
becomes more complex as the augmented MNIST dataset, the 
networks with 9 and 16 units suffer from under-fitting, while 
the network with 25 units performs better (Fig. 6 (b)). In 
conclusion, a model with a larger capacity is matched to a 
dataset that is more complex. The necessary capacity of a 
model is determined by the complexity of the dataset. 

 

 

Fig. 5 The images from the original MNIST dataset (purple points) and 
generated images (in red, green and blue). The figure is based on tSNE 

[30] 

 

 
(a) Test accuracy on the MNIST dataset 
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(b) Test accuracy on the augmented MNIST dataset 

Fig. 6 Test accuracy of networks with 9, 16, and 25 functional units on both MNSIT and the augmented MNIST dataset 
 

VI. CONCLUSION 

In this paper, a method is proposed to adjust the number of 
independent functional units in a conventional CNN to control 
the capacity of the model for better matching to the complexity 
of the task. We also propose a method of adjusting the number 
of functional units in a capsules network to optimize its 
capacity for a training dataset. In addition, an approach for 
enriching the variances of the MNIST dataset is proposed based 
on Bayesian GAN. Experimental results have shown that, by 
adjusting the number of functional units, over-fitting can be 
avoided and the capacity of the model can match better to the 
complexity of the dataset. 
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