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Abstract—In response to widely used wearable medical devices 
equipped with a continuous glucose monitor (CGM) and insulin 
pump, the advanced control methods are still demanding to get the 
full benefit of these devices. Unlike costly clinical trials, 
implementing effective insulin-glucose control strategies can provide 
significant contributions to the patients suffering from chronic 
diseases such as diabetes. This study deals with a key role of two-
layer insulin-glucose regulator based on model-predictive-control 
(MPC) scheme so that the patient’s predicted glucose profile is in 
compliance with the insulin level injected through insulin pump 
automatically. It is achieved by iterative optimization algorithm 
which is called an integrated perturbation analysis and sequential 
quadratic programming (IPA-SQP) solver for handling uncertainties 
due to unexpected variations in glucose-insulin values and body’s 
characteristics. The feasibility evaluation of the discussed control 
approach is also studied by means of numerical simulations of two 
case scenarios via measured data. The obtained results are presented 
to verify the superior and reliable performance of the proposed 
control scheme with no negative impact on patient safety. 
 

Keywords—Blood glucose monitoring, insulin pump, 
optimization, predictive control, diabetes disease.   

I. INTRODUCTION 

VER the past decades, diabetes has received huge 
attention from different treatments perspective as a 

chronic disease. In a standard way, the affected patient 
requires continuous blood glucose monitoring to ensure that 
blood glucose variation is remained within acceptable limits. 
The most common recommendation for type-1 and type-2 
diabetes is careful insulin therapy meaning regularly injection 
of insulin via pump insulin in the subcutis. On the other hand, 
to be able to adjust blood glucose concentration, sufficient 
injected insulin doses are crucial to prevent individuals from 
hypoglycemia and its devastating impacts [1], [2].  

Nowadays, due to the rapid advancement of electronic 
devices, the requirement for efficient glucose monitoring in a 
continuous manner is fulfilled. Although these sensors and 
wearable devices provide the desired data with enough 
accuracy; however, there are still some drawbacks in terms of 
acquired data in longer time for monitoring purposes which 
are limited to several days as discussed in [2], [3]. Therefore, 
it is crucial for diagnostic reasons to be able to predict the 
insulin or glucose profile in a longer horizon.  

As explained in [4], by merging an implanted glucose 
monitor and insulin infusion pump, the system so-called 
artificial pancreas is formed. This concept demands 
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developing an integrated advanced control method comprising 
of both glucose measurement and insulin injection to deal with 
the disadvantages of already deployed approaches in clinical 
trials [5].  

To highlight the reported control techniques in literature 
with the aim of two operational targets mentioned above, we 
can refer to [4]-[7]. These studies proposed a simple 
proportional-integral-derivative (PID) controller only to 
regulate insulin values similar to a lot of researches conducted 
in the past [6], [7]. It is well-known fact that such techniques 
based on PID are vulnerable to uncertainties because of the 
patient’s condition changes, leading to inefficient insulin 
control performance.  

Having compared the advanced and closed-loop control 
methods in this arena, MPC has been pointed out [8]-[10] with 
its promising features to meet the diabetes treatment 
requirements.  

In spite of significant contributions from many researchers 
addressing variety of MPC schemes, majority of the available 
solutions are made up through mathematical representation of 
the biological glucose control processes. In these models and 
controllers, physiological structures are the key core of 
designs without taking crucial constraints like change rate of 
glucose-insulin levels, longer prediction horizon and patient’s 
body properties into consideration.  

This paper tends to develop a two-layer predictive 
controller incorporating main physiological factors into design 
for effectively glucose-insulin regulation, whereby an initial 
controlled variable concerning patient’s characteristics is 
derived via first-layer. The second-layer of the controller is 
devoted to optimization efforts to enhance overall 
performance associated with model unknown factors, for 
instance measurement errors, glucose-insulin dynamics as well 
as insulin pump response capability. To achieve this objective, 
an IPA-SQP algorithm is employed in the cost function tuning 
of the MPC problem, whereas the weighting coefficients are 
updated accordingly. Once the optimum insulin trajectories 
are obtained by the two-level predictive design, the most 
suitable insulin dose pulses are dispatched to the insulin pump 
for satisfactorily performance.  

Two different case scenarios have been simulated using sets 
of blood-glucose measurement to validate the objectives of the 
introduced closed-loop predictive controller. Some illustrative 
results are presented and discussed to conclude this paper.  
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II. PREDICTIVE PATIENT’S BEHAVIOR AND OPTIMIZATION 

CONTROL  

A. Model Predictive Control Design of Blood-Glucose Level 

The developed glucose–insulin model includes control 
states and variables together with control inputs as presented 
in block diagram shown in Fig. 1. It tends to explain insulin 
absorption process and dynamics of the glucose-insulin 
control levels. The wearable medical device provides model 
inputs by taking all the required measurements for patient’s 
blood glucose-insulin values. The introduced glucose-insulin 
mathematical model in [8] followed in this study. The main 
goal of the proposed control scheme here is to take a crucial 
physiological factor into account; patient blood characteristics 
such as glucose-insulin dynamics and meal absorption effects.  

To establish the proposed control scheme, there are several 
patient-specific parameters that should be defined in the scale 
of d (day) and sampling time t as: G(d,t) denotes blood-
glucose for the patient acquired from continuous-glucose 
monitoring device (CGMD).  

Based on predictive control technique, the controlled 
variable G(d,t) is obtained through optimal control steps from 
the sampling instant at t-1, so becomes G(d,t-1) that is the 
blood-glucose level, and in the same manner the computed 
value at prior day represented by G(d-1,t). In addition, the 
patient’s blood is monitored to figure out the safe limits of the 
blood glucose, which are named as preferred blood glucose 
set-points, Gref(t), per each time period. It should be noted that 
this set-point is varied with respect to whether the patient is 
taking a meal, e.g. breakfast or lunch or in the absence of 
meals overnight time. For the control purposes, the generated 
error is regulated by subtracting Gref(t) from variable blood-
glucose function G(d,t). Another important controlled variable 
In(d, t) stands for patient’s insulin value corresponding to d 
(day) and time t. Consequently, the introduced control and 
monitoring system requires to know the difference between 
individual insulin level, at certain day and time, and the 
insulin values in the day before, In(d-1,t). This is shown by 
SI(d,t)=In(d,t)−In(d−1,t) acting as decision index for insulin 
pump calculated from cost function in the optimization 
algorithm to identify the variation profile of the patient’s 
glucose-insulin levels. On the other hand, SI(d,t) determines 
demand dose of insulin that should be injected via pump, 
when patient suffers from very low blood-glucose values 
compared to the target level.  

As illustrated in Fig. 1, the value of intended glucose-
insulin in each time instant that minimizes the cost function J 
is chosen at the end to command the insulin pump injection. 
This is an iterative process involving G(d,t) implying a closed-
loop supervisory system.  

To summarize, the aforementioned different parameters are 
expressed mathematically as: 
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The following quadratic cost function candidate J to apply 

an optimized insulin pump values considering parameters 
constraints can be chosen as 
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where the desired parameters are predicted at sampling instant 
of k. 𝛽  and 𝛽  are the weighting factors defined based on 
SQP optimization solution as revealed by the flowchart in Fig. 
2.  

It is important to indicate that meal is prevalent driving 
factor as a constraint in varying individual’s blood glucose 
trace either upward or downward. Frankly speaking, in 
response to various amount of injected insulin, the reaction of 
blood-glucose system for different patients is distinctly varied.  

To overcome this particular type of constraint in (2), the 
algorithm should compensate the insulin values variations in 
timely manner by incorporating the decision index. Therefore, 
the optimization algorithm chooses the appropriate glucose 
setpoint in each interval as Table I gives these secured values 
in different daily periods.  

 
TABLE I 

VALUES OF PATIENT BLOOD GLUCOSE IN DIFFERENT DAILY PERIODS 

Time Period 
Blood glucose 

variation 
Blood glucose 

setpoint 
7:00 am – 9:00 am 90-198 mg/dL 135 mg/dL 

9:00 am – 11:00 am 90-234 mg/dL 180 mg/dL 

11:00 am – 1:00 pm 162-342 mg/dL 252 mg/dL 

1:00 pm – 5:00 pm 90-198 mg/dL 135 mg/dL 

5:00 pm – 8:00 pm 162-342 mg/dL 252 mg/dL 

8:00 pm – 7:00 am 72-162 mg/dL 108 mg/dL 

A. Proposed Optimization Algorithm with Dose Correction 

In this section, the optimization algorithm based on an IPA-
SQP is described. The goal is to make a use of this 
optimization scheme to deal with the parameters constraints 
and model uncertainties. It is worth mentioning that the types 
of uncertainty in the model to predict insulin dynamics could 
be due to unknown patient’s characteristics and fluctuation of 
glucose values, etc. Thus, to make a robust monitoring and 
performance for the designed control system, the proposed 
framework in this paper considers the correction factor into 
glucose-insulin control approach to prevent severe effects by 
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injecting for example incorrect insulin doses to the patient. As 
shown in Fig. 2, uncertainty during optimization procedures is 
performed by second-level control strategy eliminating an 

extra parameter constraint that is usually in place via 
conventional control methods.  

 

 

Fig. 1 The proposed two-layer prediction structure generating the optimal insulin patterns, Wearable device shown available at [11] 
 

A procedure of needed variables prediction is separated 
from the optimized variables with uncertainty and deriving 
optimal cost function in each sampling time. Through merging 
IPA-SQP approximations, the predictive formulation is 
efficiently achieved, while the weighting coefficients are 
updated respectively. Once the optimum insulin trajectories 
are obtained by the two-layer predictive scheme, the most 
suitable insulin levels are dispatched to the insulin pump for 
acceptable operation considering patient’s physiological 
conditions.  

Primarily, whenever at the point xi(t)+ 𝛿xi(t), in which i 
represents the iteration index, the Hamiltonian expression (3) 
related to the control function u(t) is sufficiently small at 
prediction time k, leads to the iterative process assumes initial 
non-zero state perturbation 𝛿xi(t) 0. The procedure is being 
completed once the iteration satisfies the following condition 
for Hamiltonian function through a weighted sum at given 
threshold value 0.0131. 

 
1

( ) 0.0131
 




t N

u
k t

H k  (3) 

 
where N is the number of measurement taken per each time 
period for the desired parameters. Further reading and 
description of how the IPA-SQP algorithm works are provided 
in [12].  

III. CASE STUDY ANALYSIS 

A simulated model of exemplary two case studies is 
developed to validate the theoretical findings of the proposed 
control strategy with data measurements. The main goal is to 
investigate the accuracy of blood glucose prediction 
monitoring against taken measurements through patient’s 
wearable device. For better analysis, a prediction horizon of 
30 minutes is calculated by applying the discussed optimized 
predictive control process. In addition, the measured blood 
glucose values have deliberately distorted via incorrect insulin 

doses to fairly judge about compensation of unknown effects 
on the predicted glucose profile via optimization part of the 
controller. It is observed from Fig. 3 that the blood glucose 
measurements are plotted against the predicted profile based 
on the designed predictive control method over a period of 24-
hour (1440 minutes). It shows superior blood glucose control 
and robustness to measure without providing additional risks, 
for example overtreatment, due to the side effect of metabolic 
uncertainties.  

In the second case study, the performance of insulin pump 
with respect to allocated response time is desired during a 
whole 24 hours slot. The relation of blood glucose trend and 
insulin values when patient takes a meal is of special interest 
for this assessment.  

To perform the abovementioned case scenario, the acquired 
data in two complete days have been utilized and the insulin 
values for the third and fourth days are simulated. In doing so, 
the blood glucose values for the fifth day have intentionally 
raised as twice as the fourth day. Consequently, insulin values 
on the fourth day are approximately two times of the blood 
glucose values. Furthermore, reduction of the blood glucose 
levels on the third day will result in decreasing the insulin 
values accordingly. Based on the recorded data, an excessive 
rise of blood glucose level denotes a patient’s meal-time.  

Another imposed change is for the values of blood glucose 
on the third day, which are dropped by 50% in comparison to 
that of the fifth day. The insulin profile for the first, third and 
fifth days associated with respective changes are displayed as 
a bar graph in Fig. 4. It is revealed that the insulin values on 
the fifth day (blue-bar chart) are nearly doubled the insulin 
levels of the third day (red-bar chart). Thus, this trace implies 
a linear relationship between blood glucose variations and 
insulin levels.  

This is an important feature of the proposed design in 
particular when there is an insulin overdose status, thus allows 
injecting pancreatic glucagon in efficient manner. As a result, 
the control strategy is enabling to regulate patient’s glucose 
variation in both the normal and critical situations.  
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Fig. 2 A flowchart for iterative optimization of predicted glucose formulation using IPA-SQP technique 
 

 

Fig. 3 A simulated blood glucose profile during 24-hour; Measured blood glucose [mg/dL] (Blue curve) compared to the 30-minutes ahead 
prediction profile (Red curve) 
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Fig. 4 A representative insulin values corresponding to the applied changes in blood glucose on third and fifth day; Green chart: First-day 
measured data for one patient sampled every 30-minute during 24-hour period; Red chart: Insulin levels on third day in response to the halved-
blood glucose simulated data; and Blue chart: Simulated insulin values for the fifth day after increasing blood glucose level as twice as possible 

compared to the fourth day values 
 

IV. CONCLUSION 

An effective optimized model predictive control (MPC) 
methodology has discussed for regulating the blood-glucose 
profile along with its prediction based on measured data 
acquired from wearable medical device. Corresponding design 
principles and control objectives based on various patient’s 
physiological characteristics are explained. Designed control 
strategy is based on an IPA-SQP optimization of the cost 
function in each prediction horizon, which is then applied to 
the control optimization formulation to determine appropriate 
injection level of the insulin pump. The proposed strategy 
includes glucose-insulin interactions for diabetic individuals to 
reduce uncertainties appeared from anthropological features 
and physiologically controlled variables, hence, improving 
overall closed-loop control performance. A simulation 
analysis has performed with respect to 30-minute prediction 
horizon of blood glucose profile based on measured values. 
Additionally, the relationship between glucose level variations 
and insulin deliveries for the full 24-hour period has 
investigated. From the obtained results and findings, initial 
objectives of this study have confirmed and further elaboration 
considering different aspects are the subject of future works.  
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