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Abstract—This paper presents an optimization method based
on genetic algorithm for the energy management inside buildings
developed in the frame of the project Smart Living Lab (SLL)
in Fribourg (Switzerland). This algorithm optimizes the interaction
between renewable energy production, storage systems and energy
consumers. In comparison with standard algorithms, the innovative
aspect of this project is the extension of the smart regulation
over three simultaneous criteria: the energy self-consumption, the
decrease of greenhouse gas emissions and operating costs. The
genetic algorithm approach was chosen due to the large quantity
of optimization variables and the non-linearity of the optimization
function. The optimization process includes also real time data of the
building as well as weather forecast and users habits. This information
is used by a physical model of the building energy resources to predict
the future energy production and needs, to select the best energetic
strategy, to combine production or storage of energy in order to
guarantee the demand of electrical and thermal energy. The principle
of operation of the algorithm as well as typical output example of
the algorithm is presented.
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I. INTRODUCTION

THE design of an efficient management of the energy

production and consumption of individual buildings is

a challenge in the perspective of greenhouse gases emissions

reduction. The existing solutions for the optimization of the

local renewable energy production does not allow an energetic

independence with respect to external resources. A major

obstacle to this independence comes from the temporal shift

between the energy production and users demand. In order to

give the energy independency a major focus is increasing the

energy efficiency. Several projects and commercial products

concentrate on the increase of the energetic production

efficiency and the improvement energy regulations methods. In

Fribourg, several projects are dealing with this topic mainly

on the optimization of the energy self-sufficiency: “Carbon

correlation experiment” [1] and “Prototype for predictive,

autonomous and innovative energy management for buildings”
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[2]. There are also commercial products with optimization

algorithms coupled to predictive models like Neurobat [3],

Loxone [4] or Siemens [5]. Products like Gridsense [6]

couple the operating cost with the energy consumption in the

control system of the building. Research projects as “Carbon

correlation experiment” project [1] bring a new approach with

a control systems which has for only purpose the decrease of

the CO2 emissions of the building.

The present project aims at the development of a

regulation which takes into account three pillars of the

sustainable development [12]: the energy independence,

economy (decrease of operating costs) and ecology (decrease

of CO2 emissions) by using genetic optimization algorithm

and a physical model based on weather forecast. Most

commercial products and projects performed in Fribourg use

decisions trees as individual building energy control method

[1], [2], [7]. This work wants to implement a more flexible

strategy of optimization based on in-house algorithm and

weather forecasts [8]–[11].

II. OPTIMIZATION ALGORITHM PRINCIPLE

The algorithm structure is presented in Fig. 1. The initial

input data consist in real time physical parameters of the

building system (room and outside temperatures, electrical

needs, etc.) and the users set values. These data are sent to

the optimization loop. This part simulates different scenarios

for the energetic time evolution of the building based on

weather forecasts and physical models and selects the best

energetic strategy. The optimization method is based on

genetic algorithm. The principle of the genetic algorithm

method consists in trying a set of randomly generated

solutions, sorting them according to a mathematical criteria

called the score function and mixing them to find better

solutions. In our case, a solution is a set of coefficient that

tells the percentage and time of use of the different energy

resources of the building. For example, if the simulation lasts

a total of 48 hours with time steps of 1 hour, the algorithm

will generate 48 random coefficient for each technology. In

addition, the state of the energy resources during these 48

hours is predicted using a physical model of the electrical

and thermal production, storage system and users needs.

The random coefficients are constrained to fulfill the needs

with the available energy at each time. At the end of the

simulation a score is attributed to each energetic scenario

based on a combination of the three optimization criteria :
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energetic independence, CO2 production and costs. At this

state the algorithm generate a new set of scenarios based on

a combination of the previous scenarios and the simulation

is launched again in order to obtain new improved solutions.

The algorithm optimization runs for a given number of loops

and allow to get the best scenario found corresponding to

the best score. At the end, the coefficient of use of the best

scenario is used to regulate the entire building energy system.

By this method, the solution that is used is based on the future

evolution of the global system and will find solutions that are

different from an optimization based on single time system

state.
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Fig. 1 Algorithm structure

A. Genetic Algorithm

The choice of the genetic algorithm method is motivated

by the large number of variables of the optimization function,

and by the non-linearity of the latter. Conventional method use

the function gradient to find the minimum or maximum of a

function but here the gradient is non-linear due for example

to the abrupt change of score when an energy source becomes

empty. In addition, the large number of variables (one for each

energy technology) make the optimization space to be too large

to scan in a pure random way. The optimization algorithm is

written in the Python 3.6 programming language. All functions

used for the genetic algorithm optimization come from the

pyevolve Python framework [13]. The method requires a

so-called score function, given by the user, that allows to

rank different solutions. In this work the score function

is a combination of three criteria: the energy production

costs, the CO2 equivalent ecological impact and the energetic

independence. The score of each criteria can be weighted in

order to favor a particular one. However, for the moment and

in the example presented in this paper, the score function only

minimizes the CO2 equivalent value.

B. Optimization Criteria

The optimization function combines three criteria for the

global energy management. The first criteria is the building’s

self-production and self-consumption. Commercial solutions

are usually dedicated to one specific energy subsystem (for

instance the heat pump). The global approach use in this

work aims at using the thermal and electrical storage to

reduce the use of external energy resources (power grid) and

non-renewable energy resources (wood, gas or oil). The second

criteria is the carbon footprint or the Global Warming Potential

(GWP). When using non-renewable energy sources or the

power grid, the building increases its carbon footprint. As

shown in Fig. 2, the carbon footprint of the swiss power

grid [14] is varies in time, these variation being due to

the electricity production type (nuclear, hydraulic, etc.). The

ecological criteria tends to use the grid when its GWP is the

lowest, and thus store it in advance in batteries.

Fig. 2 Variation of the carbon footprint (GWP) of the power grid [16]. The
GWP value fluctuatation is of the order of ≈ ±20%

The third criteria is the operating costs. The algorithm is

feeded with the selling and purchase prices of energies like the

power grid. This information is included in the optimization

function in order to increase the equipment profitability.

Consequently, as for the ecological criteria, the algorithm

allow to anticipate the purchase/sell of electricity to the power

grid at the best rate. With the opening of the swiss energy

market [15] to the public market, it is essential to take into

account this criterion.

C. Predictions of Future Production and Consumption

In order to anticipate disadvantageous situations, a physical

model of the time evolution of the different energy resources

(for instance, the domestic hot water) is used. This model
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predicts the future state of each energy resource by using the

weather forecast and users habits. The weather forecast is used

to predict the photovoltaic and thermal solar energy production

and the building thermal energy needs and losses. Thanks

to presence sensors and to the building energy consumption

database history, the average users habits are statistically

determined . The algorithm will, for example, anticipate inside

building heat-up before the usual presence of people.

III. EXAMPLE OF ALGORITHM OPTIMIZATION WITH REAL

DATA

This section presents an example of optimization using

real data as inputs. The data comes from the Laboratory of

Renewable Energies Integration (LIRE) [17], located on the

site of blueFACTORY [18] in Fribourg, Switzerland. This

building is equipped with several energy resources devices like

thermal and electrical solar panels, an air-water heat pump, an

electrical battery, etc. These devices are connected to sensors

that deliver real time physical information (temperature,

power, presence, etc.) which is stored in a database. This

data will be used to test the algorithm. The mathematical

functions used to model the time evolution of the state of each

subsystem are simplified in order to deliver a correct physical

behavior but need to be refined in the future for more precise

calculation. In this example there are 5 different subsystems

to optimize : the charge/discharge of the electrical battery,

the heat pump use, the charge/discharge cold of the thermal

storage, the hot thermal storage use and the power grid use.

However in practice however, the number of free parameters

is only 2 because of the dependence between each subsystem.

In the future, more technologies will be added, thus increasing

the number of free parameters.

A. Algorithm Input Data

Fig. 3 Example of algorithm predicted data for 48 hours. The daily variation
of the solar pannel production and outside temperature are determined by

weather forecast and the building energy needs is computed from the
physical model. In this example the users power need is limited to the

devices standby mode (60 W continuously)

Fig. 3 shows an example of the algorithm predicted data

for 48 hours: the photovoltaic pannel power production, the

outside temperature and the building energy demand. The first

data value, at the beginning of the series, are measured in

real-time and the rest of the data are computed from the

physical model for the next 48 hours. The outside temperature

and solar energy comes from weather forecast and are used to

compute the photovoltaic power and building energy demand.

The building energy need varies also with the people presence

(variation between night and day) but, in this example the users

demand consists only in the standby mode of device (60 W

continuously).

B. Algorithm Optimization Results

Fig. 4 The 6 plots show all the 100 strategies tested by the algorithm. The
best strategy is shown by a solid line connecting the coefficient values

The optimization process tries to find the best strategy to use

the different technologies for a given period of time. For the

results presented here, the total prediction duration is 48h with

an hourly rate of use profile allowing thus makes a total of

48 coefficients to optimize for each technology. The genetic

algorithm method starts with a set of random solutions for

the first generation (here 10), and rank them according to

the defined score function. Presently, the score function only

optimizes the CO2 equivalent, but in the future will include

the two others criteria. For the second generation of solutions

the algorithm mixes different solutions of the first generation

with each other and evaluate them with the score function.

For the results presented here the algorithm has performed ten

consecutive generations of results.

All 100 solutions tested by the algorithm are presented

in Fig. 4. On each of the six plots there is a ensemble of

data points. Each data point corresponds to the value of a

given coefficient at a given time during the 48h of simulation.

One strategy for the 48 hours corresponds to 48 points in

two of these plots, i.e. 96 values. All other coefficients can

be computed from these 96 free values. The best strategy
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is indicated by the data points linked with solid lines. A

quick look at the plots reveal that the entire space is not

scanned by the algorithm. The reason for the empty parts of the

plots is the physical constraints included in the algorithm. For

example, when there is a heating demand, the cold thermal

storage discharge is forbidden and the coefficient of cold

thermal storage discharge remains zero. An other example is

the correlation between the coefficient of the electrical battery

charge-discharge (which can take the discrete values -1, 0,

or 1) and the use of the power grid. Since in the previous

example, the user power demand is very low (its value is at

present only the standby demand of devices of ∼ 60 W), the

electrical energy is exchanged between the power grid and

the battery, explaining why the two sets of data have mainly

opposed values. The battery is feeding the power grid and vice

versa.

C. Results of the Best Strategy
Based on the optimization presented in Section III-B a best

strategy is obtained. Fig. 5 shows the 48 hours prediction of a

few building state variables for the best strategy. The internal

temperature follows the user set value of 20 ◦C during the day

when people are present (red line equal to 1) and goes down

below 10 ◦C during the night (when the building is empty

red line equal to 0). In practice the presence is anticipated

and the warming of the room starts in advance. Once the

room temperature has reach the user set value, the temperature

is regulated by a proportional-integral-derivative method or

cooled down by the thermal cold storage.

Fig. 5 Example of the time evolution of the building room temperature and
three parameters for the best strategy found in Section III-B. The variation

of the internal temperature depends on the external temperature, the user set
temperature value and the presence of people in the building. During the

night, the room is naturally cools down and is only heated up when people
comes in

Fig. 6 shows the time evolution of the battery level, the

photovoltaic power, the building energy demand and the use

of the power grid. In this example, the strategy given by the

algorithm suggests to empty the battery gradually to minimize

the purchase of electricity on the grid. Thus, the carbon

footprint (GWP) is decreased (objective fixed to the algorithm

in this case).

Fig. 6 Example of 48 hours time evolution simulation of the photovoltaic
power, the battery level, the power grid use and the user electrical demand

for the best strategy found

IV. CONCLUSION

The research on building energy consumption and

self-production efficiency is crucial for the CO2 emissions

reduction. The current commercial approach is based on the

optimization of individual energy subsystems performances.

This paper proposes an approach which allows to optimize all

energy resources at the same time while taking into account

their couplings/interactions. The algorithm performs a real

time optimization of the production, consumption and energy

storage. The genetic optimization algorithm uses three criteria

to select the best energetic strategy: the energy independence,

the ecology (decrease of carbon footprint) and the economy

(decrease of operating costs). It uses real time data of the

building environment (temperature, people presence, etc.) and

evaluate the best strategy by predicting the future evolution of

the resources based on the users habits and weather forecast

thanks to a physical model. A case study is presented with

focus on GWP which includes the real application on a

test laboratory in Switzerland. This case study allows the

identification of the best scenario for this parameter and

proves the correct excecution of the genetic algorithm. At

present the algorithm uses one criterion (minimization of the

carbon footprint) for the optimization to find the best two

free parameters for a duration of 48 hours. The algorithm

will be tested on the data provided by the Laboratory for

the Renewable Energies Integration in Fribourg (Switzerland)

in order to improve the energy systems modeling. Once the

algorithm completely validated more technologies and energy

systems will be included.
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