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Abstract—One of the major shortcomings of widely used
scientometric indicators is that different disciplines cannot be
compared with each other. The issue of cross-disciplinary
normalization has been long discussed, but even the classification
of publications into scientific domains poses problems. Structural
properties of citation networks offer new possibilities, however, the
large size and constant growth of these networks asks for precaution.
Here we present a new tool that in order to perform cross-field
normalization of scientometric indicators of individual publications
relays on the structural properties of citation networks. Due to the
large size of the networks, a systematic procedure for identifying
scientific domains based on a local community detection algorithm
is proposed. The algorithm is tested with different benchmark
and real-world networks. Then, by the use of this algorithm, the
mechanism of the scientometric indicator normalization process is
shown for a few indicators like the citation number, P-index and
a local version of the PageRank indicator. The fat-tail trend of the
article indicator distribution enables us to successfully perform the
indicator normalization process.

Keywords—Citation networks, scientometric indicator, cross-field
normalization, local cluster detection.

I. INTRODUCTION

UNBIASED evaluation of scientific quality and impact of

an article, researcher or journal is critical to scientific

progress. During the last years many efforts have been made to

find methods for evaluating research. While the gold standard

is to obtain evaluation through peer-review, orchestrating fast

and unbiased review is a serious burden for referees, editors

and committees. Therefore, simple bibliometric indicators

such as the impact factor [1], eigenfactor [2], [3], article

influence score [4] or h-index [5] are increasingly used.

These indicators commonly use citation as an element that

indicates a positive review by another author. One of the major

shortcomings of the simple bibliometric indicators is that their

usage can not assure direct comparison of different disciplines
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with each other [6], because the publications typically get

higher or lower number of citations in different fields. This

can result in strong disadvantages for some scientific fields,

especially with respect to allocation of public research funding.

Accordingly, this is an old topic in scientometrics field,

and there have been proposed two major approaches. The

cited-side or target normalizations [6], [7] are realized by

calculating the citation impact of a publication relative to all

publications in the same field. On the contrary, the citing-side

or source normalizations [8]–[10] are realized taking into

account the referencing behavior of citing publications. It has

to be noted, that both approaches may have many pros and

cons, and there are a few other ways to realize cross-field

normalizations [11].

When evaluating individual publications one can choose to

consider the value of the journal, looking for example at its

impact factor. However, the distribution of citation numbers of

articles appearing in the same journal are strongly asymmetric,

so journal indicators cannot give a good prediction about

the value of individual articles [12]–[14]. Besides, the impact

factor itself has been strongly criticised in the last years [1],

[12], [13].

As a result, the most basic way of evaluating individual

articles has been to look at the citation number. Citation

numbers have been shown to present a fat-tail distribution that

depends strongly on the scientific domain (e.g. citations in

biology are generally much higher than in mathematics) and

the year of publication [7]. A simple cited-side normalization

procedure was suggested in [7] where it was shown that

citation distributions for publications in different scientific

fields can be rescaled to the same universal curve. However,

the proposed normalization process supposed to have (1)

articles classified into scientific domains, and (2) the average

citation number of all articles in each domain. Classification

information can be obtained for instance from a priori

journal classifications, like scientific categories defined by

Journal Citation Report of Web of Science [15]. Then, the

average citation number can be arbitrary calculated. However,

classifying articles in scientific domains is an ambiguous

process, especially as more and more interdisciplinary fields

appear [16].

More recently citation networks and their structural

properties have been used to define scientometric indicators.

In citation networks each node represents a publication and

each directed link corresponds to a citation. While the citation
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number is simply the in-degree of a node (number of incoming

links), more complex measures such as the PageRank [17] or

the P-index (h-index of individual articles) [18] are possible to

use for evaluating articles. These measures also exhibit strong

dependency on scientific domain and time of publication. In

this context, several attempts exist for creating classification

systems based on large-scale clustering of publications based

on citation networks [19]–[22].
Here, considering a further development of the

cross-disciplinary target normalization of Radicchi et al.

[7] we suggest a procedure that avoids the use of pre-defined

domains or any key-word based classification of articles. A

systematic procedure for identifying scientific domains based

on the structural properties of citation networks is presented.

In this procedure the most important technical challenge

arises due to the large size of networks. Accordingly, to

identify the scientific domain an article belongs to, a local

cluster detection algorithm is proposed.
Normalization will be performed in a way that indicators

show similar distribution in different domains/clusters.

The mechanism of the individual scientometric indicator

normalization process is shown for a few article indicators,

like the citation number, the P-index [18], and a local version

of the PageRank [17] indicator (PageRank calculated on the

sub-graph corresponding to a specific domain). Then, using

several databases, such as the condensed matter archive at

arXiv [23], or the Web of Science database [15] the indicator

distributions in different scientific domains are compared

to each other and, as a result, a simple article indicator

normalization procedure is proposed.

II. MATERIALS AND METHODS

A. Local Cluster Detection Method
In order to perform the normalization of scientometric

indicators one needs to identify scientific domains based on

the structural properties of citation networks. The betweenness

centrality cluster detection algorithm [24] performs well

within a variety of networks but it is costly to compute.

Many clustering methods are applied regularly in the

bibliometric literature [19]–[22] adopted from the existing

large number of community detection algorithms [25].

However, citation networks are constantly changing and

increasing, so identifying scientific domains as structural

clusters of these huge networks needs to be frequently

repeated. This is a technical challenge even for cluster

detection algorithms that, in general, can deal with large

networks.
This constraint puts into focus local cluster detection

methods that have low computational costs and can be used

in a parallelized fashion [26]. One option to identify the

scientific domain an article belongs to would be the use the

Local Cluster Detection (LCD) method that consists of a

shell spreading outward from a starting vertex. The algorithm

is local in the sense that communities can be detected

without requiring the partitioning of the entire network. It

is based on the idea of Bagrow and Bollt [26]. However, a

few improvements have been introduced in order to have a

smoother mapping of the studied citation networks.

The proposed algorithm consists of a shell Sl
j spreading

outward from a starting vertex j. The shell is a set of vertices

that contains the starting vertex j and another l vertices closest

to it according to a specific distance measure. During the

shell expansion one node is added in each step: Sl−1
j ⊂ Sl

j .

The algorithm works by expanding the shell outward from

the starting vertex j and comparing in each step the relative

number of external edges to a threshold β. External edges are

those ones that have one end inside and the other end outside

the shell. On the contrary internal edges are those having both

ends inside the shell.

The links of citation networks are inherently directed from

the citing article to the cited one. However, in case of cluster

detection this character of the network may be neglected

because a citation means a kind of common idea relationship

of the connected articles. In this sense there is meaningless

to talk about the direction of this relationship. Accordingly,

the shell expansion process will not respect the orientation of

the edges, the algorithm will be applied on undirected citation

networks.

The relative number of external edges κl
j of the shell Sl

j

is defined by the ratio of its total external degree Kl
j and its

total edge number M l
j . The M l

j includes the total number of

edges inside the shell and the number of external links, as

well. Accordingly, this measure can be defined as κl
j =

Kl
j

M l
j

.

Example values of these shell-parameters for a small sample

network are shown in Fig. 1.

Example parameters
of the shell S6

0 :

K6
0 = 7; M6

0 = 19

κ6
0 = 7

19

Sample distance measure:

d0,11 = d0,6 + d6,11 =

= 1.25 + 0.4 = 1.65

Fig. 1 The sketch of the shell-growing mechanism shown on a small sample
network. The red node is the starting node of the shell (with index 0), beige

nodes are its direct neighbors. Nodes are numbered according to their
distance from the starting node. Shell S6

0 contains all nodes with index up
to 6. The characteristic quantities for this shell (j = 0, l = 6): the values of

the total outgoing degree Kl
j , total edge number M l

j , and the relative

number of external edges κl
j are listed near the figure, together with a

sample distance measure calculation

Here we note, that the original shell-growth stopping

condition of Bagrow and Bollt [26] that counted for the change
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in the total external degree ΔKl
j =

Kl
j

Kl−1
j

has been replaced

in order to adopt the method for citation networks. In case

of these networks the ΔKl
j quantity, except for a very short

transition region, is fluctuating around 1. Accordingly, this

cannot be used to compare to a threshold. At the same time,

a clear trend in the relative number of external edges has

been observed (even with a strong minimum in case of some

networks) which makes it comparable to predefined thresholds.

The other important ingredient of the LCD algorithm is the

distance measure. In order to find a proper distance measure

we have to keep in mind that our task is to detect clusters in

a citation network starting from a certain article. Accordingly,

the distance has to deliver information about how strongly

neighboring nodes are connected to each-other. In this sense

one possible option would be the use of the Edge Clustering

Coefficient (ECC) Ci,j . This was first introduced by Radicchi

[27] and is defined as the total number of triangles zi,j an

edge connecting the nodes i and j belongs to, divided by the

number of triangles that might potentially include it (given

by the degrees of the two adjacent nodes ki and kj). In

order to handle leaf nodes, when the number of triangles is

zero, an additional constant has been added to the expression.

Accordingly, ECC is computed as

Ci,j =
zi,j + 1

min[(ki − 1), (kj − 1)]
. (1)

Then, the distance measure used in the proposed algorithm

may be defined as the reciprocal value of ECC.

di,j =
1

Ci,j
. (2)

We trust this distance measure, because it has already been

successfully used in a network clustering algorithm based on

graph Voronoi diagrams [28]. This measure is defined for

neighboring nodes i and j, therefore the distance between any

pair of nodes needs to be calculated as the length of shortest

path in the network. Then, in each shell-growth step l only one

single node having the shortest distance to the initial node is

added to the expanding shell Sl
j . In case of distance-equality

the nodes are randomly sorted.

In order to illustrate the shell-growing mechanism, in Fig.

1 the shell S6
0 is shown on a sample network. The node labels

are ordered according to their distance to the initial node 0.

As a result, in this simple example the label of a node shows

us the shell-growth step number l at which it was added or it

will be added later to the shell.

First, we tested the LCD algorithm on a small benchmark

network of N = 200 nodes and M = 4585 edges. The

network is generated by the benchmark software framework

provided by Lancichinetti et al. [29]. For this first trial, the

mixing parameter, which sets the rate of edges inside and

between clusters is selected to be a small value of μ = 0.1.

The network layout shown in Fig. 2a was created by the

ForceAtlas2 algorithm of the Gephi network visualization

software [30].

The panels b-f of Fig. 2 show the shell-growth process

for different shell sizes of 25, 50, 75, 90 and 175 nodes,

respectively. As it is immediately observable, after the whole

cluster is detected at growth step 90, the shell-growing process

continues by including nodes from multiple other clusters.

Fig. 2 The shell-growth process on the small benchmark network with
N = 200, M = 4585 and μ = 0.1. The different panels show the different

stage of the shells containing (a) 0, (b) 25, (c) 50, (d) 75, (e) 90, (f) 175
nodes

In order to find the growth step at which the shell-growing

process has to stop, the relative number of external edges κl
j

of the shell is calculated. The results are presented in Fig.

3, where different curves represent results for shells started

from different initial nodes of the same cluster. Results show

for each curve a first sharp minimum at the shell-growth step

l = 90, which means, that in case of each starting node l, the

same cluster has been constructed.

Accordingly, in case of benchmark networks a well defined

shell-growth stopping condition is found. Namely, in order to

detect the cluster to which a node j belongs, the shell-growth

process has to be started with the respective node and it has

to be stopped when the relative number of external edges of

the shell κl
j reaches its first local minimum.

For further testing the LCD clustering of the Political

blogosphere network [31] is also constructed and it is

presented in Fig. 4. The network contains N = 1490 nodes

and M = 19025 edges. Here, two different starting nodes j
are selected randomly from the two clusters showed separately

by the ForceAtlas2 layout of the Gephi network visualization

software [30]. On the right panel of the figure, the obtained

shells are colored by red and blue, respectively. According

to LCD the yellow nodes belongs to both clusters, and the

cyan nodes belongs to none of these two clusters. The κl
j

curve is shown in the left panel of Fig. 4. In order to remove
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Fig. 3 The relative number of external edges of the shell κl
j as a function of

the number of nodes l added to the shell. The different curves represent
shells started from different nodes (j) of the same cluster. Results are

presented for the sample network shown in Fig. 2

small fluctuations the κl
j values are averaged by a moving

window of size 10. The shell-growth stopping conditions are

marked by vertical dashed lines on the κl
j graph. The exact

position of these two lines is shown on the magnified inset

graphs, as well. By the LCD algorithm two large clusters are

successfully detected from two starting nodes that belong to

different clusters. We see that even in this case, the κl
j curves

have a well-detectable minima which can be used as a stopping

condition for the shell-growth process.

The LCD method has been tested on many other real-world

networks, as well. The shell-growth stopping condition is not

so straightforward in all cases, especially when clusters are

not se well separated (network with lower modularity). In

contrast to the Political blogosphere network, there are some

cases, where the κl
j curve has no well-detectable minimum.

Accordingly, in such conditions, an arbitrary shell-growth

stopping condition has to be applied. Namely, we have to

choose a threshold value β for the relative number of external

degrees. This is done by setting the threshold value low enough

to get clusters with a number of nodes that can be treated

statistically. As we will show later, the results are not too

sensitive on the selection of threshold value.

B. Calculation of Article Indicators

A few selected article indicators, like the citation number,

the P-index (h-index of individual articles) [18], and a local

version of the PageRank [17] indicator (PageRank calculated

on the sub-graph corresponding to a specific domain) will be

considered later for normalization. Here, these indicators are

shortly described.

The citation of one article by another is characteristic in

science. Therefore, the number of citations of an article reflects

its impact in the scientific community [32]. Accordingly,

the citation number may be considered as the most simple

bibliometric indicator of a published article. In the citation

network of articles this is equal with the in-degree of nodes.

The PageRank [17] on a graph is a probability distribution

that represents the likelihood that a random walker visiting the

graph through its edges will arrive at any particular vertex.

Unlike for webpage networks, in case of scientific citation

networks due to the time ordering of the link creation there

is no possibility for loop formation which may be considered

as “rank sink”. Accordingly, it is enough to operate with a

simplified version of the PageRank [17] which is equivalent

to the eigenvector centrality where this “rank sink” loops are

not treated. This simplified PageRank of an article is calculated

through iterative steps. Initially, each vertex u has a PageRank

value of R(u) = 1. Then, in each iteration step the new

PageRank of each vertex u is calculated as

R(u) =
∑

v∈Nu

R(v)

deg(v)
,

where Nu represents the set of neighboring vertices of u,

while deg(v) denotes the degree of vertex v. These iteration

steps will be continued until convergence is reached. The local
PageRank refers to PageRank values calculated only on a local

cluster of the graph.
The Hirsch index (h-index) has been defined for the

evaluation of scientists or scientific groups [5]. The h-index

of a scientist is the maximal number h such that he/she has

at least h publications, which have at least h citations each.

This may be adopted to individual publications, as well. The
P-index of a publication is the maximal number P such that

the publication is cited by at least P publications, which have

at least P citations each [18].

III. SCIENTOMETRIC INDICATOR NORMALIZATION

Citation practices vary between different fields of science

[4], [14], [33]. The most simple way to characterize the

average citing behavior in a field is through the statistics

of different article indicators. The probability distribution

of an article indicator shows us the occurrence probability

of articles with certain article indicator values. Accordingly,

these probability distributions may be characteristic to

the citation behavior in different scientific domains. The

scientometric distribution functions have been intensively

studied in the last decades [7], [34]. The field variation

of these distributions affect the cross-disciplinary evaluation

of individual publications, journals and researchers, as

well. Accordingly, there is an intensive effort to obtain

field-independent indicators [35], [36] or to normalize the

existing article indicator distributions across different scientific

fields [7].
First, let us study the in-degree (citation) distributions on

clusters of two different modular benchmark networks [29]

bmn-1 and bmn-2. These networks are composed by 50 000
nodes each, the mixing parameter of both is μ = 0.1. These

networks differ only on the average degree of nodes. For

bmn-1 and bmn-2 networks, the average out-degree is 30

and 120, respectively. From both networks three different

clusters are constructed using the LCD algorithm starting from

randomly selected nodes. The in-degree distribution of each

cluster is represented in panel A of Fig. 5.
It is immediately observable, that in-degree ni, or citation

distribution functions of different clusters on the same network

falls to a single straight curve on the log-log plot. Accordingly,

the distribution function can be described by the

p(ni) = Anα
i (3)
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Fig. 4 LCD clustering of the Political blogosphere network [31]. On the left panel the κl
j graphs are shown on which the vertical dashed lines represent the

l value at which the shell-growth process is stopped. The magnified inset graphs show the exact position of these vertical lines. On the right side the
detected clusters are colored

Fig. 5 In-degree distributions (A) and normalized in-degree distributions (B) on different clusters of two benchmark networks

power-law, where A is a normalizing constant. Here, the

exponent was found to be α = −1.0. For a visual check,

the p(ni) = n−1
i curve is drawn by solid line in Fig. 5.

The distribution functions of clusters taken from different

networks have the same exponent α, and they differ only by

the value of normalizing constant A, which has values about

A = 1.73− 1.78 for clusters of bmn-1, and A = 8.2− 8.6 for

clusters of bmn-2. The numerical values of fitting parameters

are summarized in columns 2-7 of Table I. The R2 > 0.96
(correlation coefficient) values indicates the goodness of the

fits. The average out-degree of the represented clusters varies

between 〈d〉 = 28 − 29 for bmn-1, and 〈d〉 = 124 − 136 for

bmn-2. Thus, the normalizing constant looks to be somehow

connected to the out-degree of the clusters. This behaviour has

also been tested in case of other benchmark networks having

different mixing parameter values μ.

This finding encourages us to assume that the citation

behavior (i.e. the average number of citation in a scientific

field) is influencing the distribution of citations only by

a scaling factor. Accordingly, the normalization of article

indicators that are based on the citation number may be

realized using this factor. In case of our benchmark networks

one option would be to normalize each distribution to A = 1
(solid line in Fig. 5). Accordingly, each in-degree has to be

multiplied by a scaling factor ξ = A1/α, as follows:

p(ni) = Anα
i = (A1/αni)

α = (ξni)
α . (4)

The normalized distributions and citation scaling factors

are shown in panel B of Fig. 5. Here one single power-law

function has been fitted to all normalized distribution data. The

numerical values of fitting parameters are presented in column

8 (bmn-all) of Table I. The high value for the R2 correlation

coefficient indicates that we have succeeded the normalization

procedure.

In the following, these assumptions on article indicator

scaling are tested on different real citation networks. First, let

us show article indicator distributions on different clusters of

the collaboration network of scientists posting preprints on the

condensed matter archive at the arXiv database (CONDMAT).

This is based on preprints between January 1, 1995 and March
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TABLE I
FITTING PARAMETERS FOR THE DATA IN FIG. 5, FOR DIFFERENT BENCHMARK DATA, CONSIDERING (3). THE R2 CORRELATION COEFFICIENT VALUES

ARE ALSO INDICATED FOR EACH FIT

bmn-1, cl 1 bmn-1, cl 2 bmn-1, cl 3 bmn-2, cl 1 bmn-2, cl 2 bmn-2, cl 3 bmn-all
A 1.77 1.75 1.73 8.58 8.36 8.21 1.00
α -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
R2 0.980 0.977 0.969 0.998 0.996 0.995 0.983

31, 2005 [23] and it contains 39 576 nodes and 175 692 links.

The citation number, the local PageRank, and the P-index

article indicator distributions are presented in Fig. 6. These

distributions are calculated for four different clusters of the

CONDMAT network detected by the LCD algorithm starting

from randomly selected nodes. We have to note that for this

network no automatic shell-growth stopping condition (i.e.

detecting minima of some relevant parameter) has been found.

Accordingly, an arbitrary selected threshold value β = 0.4 has

been applied. The effect of this β parameter on article indicator

distributions will be described later.

Looking at panel A of Fig. 6, it can be easily recognized

that the in-degree or citation distributions fall almost on the

same curve as in case of clusters from one single benchmark

network. Accordingly, in case of this network no scientific

indicator normalization is needed. This conclusion can be

understood, if we take into account that the CONDMAT

network is a citation network of the Condensed Matter

scientific field, where one expects sub-domains with quite

similar citation practices. In order to check this, we have

counted the average citation numbers in the studied clusters

and it was found that these values are in a narrow interval

〈k〉 = 5− 8.

It is well known that citations have fat-tailed distributions

with tails often described in terms of power-laws [37], [38].

In agreement with this, the tail of citation distribution of

different clusters of the CONDMAT network looks to be a

power-law for a range of two orders of magnitude. For visual

comparison the power-law trend with exponent −2 is shown

with solid line in Fig. 6A. This power-law trend has been

recently criticized showing that the power-law hypothesis is

rejected for around half of the Scopus fields of science [39].

We do not want to contribute to this debate, because in case

of our study the domains are detected by the LCD algorithm

and no pre-defined scientific sub-domain structures are used.

This may alter our citation distributions from those found by

other previous studies.

Up to our vision, this fat-tail trend may be useful in citation

normalization that may be realized by scaling the citations in

such way that these tail-distributions fall onto the same curve.

Such article indicator scalings will be illustrated below in case

of another citation network.

Beside the citation distributions, we have looked at the

local PageRank distributions in panel B and the P-index

distributions in panel C of Fig. 6. Similarly to the case of

the citation indicator, all distributions constructed on different

clusters fall almost onto the same curve, so no normalization

is needed in this particular case. However, the power-law-type

fat-tail trend in case of P-index is not detectable and for

this indicator we have to find another way to realize the

cross-disciplinary normalization. The proposed solution will

be discussed below in case of another citation network in

which distributions in different clusters do not fall onto the

same curve, therefore normalization of the P-index will be

needed.

Further, we have used a citation network from the

Web of Science database [15] that contains 771 914 nodes

(publications) connected by 7 779 703 links (references). It has

to be noted that the present network is a complete subgraph

of the Web of Science network, and it contains a significant

number of nodes and links which enables us to use our

statistical approach.

The WoS-net has been clusterized using the Louvain

algorithm [40], which found a number of 59 large clusters.

In this network, different scientific fields are present which

are not necessarily sub-fields of a single scientific domain as

in case of our CONDMAT network studies. Accordingly, here

different article indicator distribution scalings are expected.

This presumption is further supported by the wider distribution

of average citation numbers in these clusters. The average

out-degree values fall in the interval 〈k〉 = 2 − 20 in a few

studied clusters of the network.

The article indicator distributions are represented for four

different clusters detected by the LCD algorithm starting from

randomly selected nodes in the left panels of Fig. 7. Again,

as in case of the CONDMAT network the arbitrarily selected

β = 0.4 threshold value has been used.

As in case of our previous studies, the citation (in-degree)

distributions in panel A of Fig. 7 have a fat-tailed distribution,

and in agreement with our expectation the distributions of

different clusters differ considerably. Here, for simplicity, the

fat-tail of the citation distributions will be fitted again by the

power-law distribution function (3). The exponent is found to

be close to α = −1.0. The normalization to A = 1 (solid line

on Fig. 7B) can be realized following the same procedure

described previously in case of benchmark networks. The

normalized citation distributions and the corresponding scaling

factors ξ are represented in Fig. 7B. The wider range of scaling

factors ξ = 0.6 − 2.05 shows us that in case of WoS-net it

make sense to scale the citation numbers in order to obtain

cross-disciplinary normalization of this article indicator.

If one looks to the local PageRank distributions presented

in panel C of Fig. 7, the same conclusions can be drawn.

The tail of the distribution function can be fitted by a

power-law and the normalization procedure can be realized.

Here, the PageRank values are scaled to the distribution

function p(ni) = 10−7n−1.4
i . The result of this scaling and the

scaling factors are shown in panel D of the same figure. Due

to the different nature of the local PageRank article indicator

(i.e. it is calculated only on a local cluster of the citation
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Fig. 6 In-degree (A), local PageRank (B) and P-index (C) distributions on different clusters of the CONDMAT network [23]

network) the obtained scaling factors differ significantly from

those obtained in case of citation.

Finally, the P-index distributions are studied, as well. Here,

the power-law trend is not so evident and as a consequence, we

cannot realize the normalization according to distribution tails.

However, a method used for normalizing the H-index [7] can

be successfully adopted. We propose, to realize an approximate

normalization based on the already studied citation indicator.

The P-index of an article is actually calculated by ranking

in descending order by the number of citations the articles

that cite the article in focus. In this list the total number

of items is equal to the citation number of the article. The

same procedure can be realized taking into account the citation

numbers scaled by a factor ξ. Here, our main presumption is

that the majority of citing articles belong to the same scientific

field as the article in focus and accordingly, the same scaling

factor can be used for all of them. Then, in order to get the

total number of items in the list equal to the scaled citation

number of the article, the ranking index has to be scaled

by ξ. Therefore, the P-index of the article will be scaled

approximately by the same factor ξ. P-indices scaled by the

factor obtained for citations is shown in Fig. 7F. In contrast

to the original, unscaled values shown in panel E of Fig. 7,

the scaled indicator distribution functions are much closer to

each other. Accordingly, using the same scaling factors as

in case of citations, the cross disciplinary normalization of

P-indices can be approximated. Moreover, we think that this

method can be generalized for other scientometric indicators

(like journal impact factor) that are based on citation numbers,

as well. Cross-disciplinary normalization can be obtained for

such indicators if their calculation would be realized with

already scaled citation numbers.

In the presented case-studies, we used the LCD cluster

detection algorithm with an arbitrary selected shell-growth

stopping threshold β = 0.4. In order to study the robustness

of the proposed cross-disciplinary normalization procedure

regarding to this threshold we realized another study. The

same starting node as in case of cluster 3 of the previously

studied WoS-net citation network has been selected and three

local clusters have been constructed by LCD using thresholds

β = 0.3, 0.4, and 0.5. The obtained citation distributions are

presented in panel A of Fig. 8. From the figure it is obvious,

that the distribution functions fall to the same curve, except

the β = 0.5 case, where major fluctuations can be detected.

This is attributed to the fact that in case of large threshold

values the obtained clusters are small and the small number of

citation data can lead to fluctuations in distribution functions.

Accordingly, we can state, that if we deal with clusters

large enough to be treated statistically, the resulted citation

distributions do not depend strongly on the β parameter of

the LCD algorithm. On the contrary, local PageRank indicator

distributions represented on panel B of Fig. 8 show a stronger

dependence on the parameter β. This trend can be understood,

if we take into account that the citation data is calculated on the

whole network, while the local PageRank values by definition

are calculated only on the cluster in focus.

IV. CONCLUSION

A cross-disciplinary scientometric indicator normalization

procedure was presented based on the structural properties of

citation networks. For the identification of scientific domains

a local cluster detection algorithm has been used which is

capable to treat large citation networks. The algorithm was

used to detect the scientific field of the article in focus. Then,

the article indicator distribution function has been constructed

in this sub-graph, and the fat-tail trend of the distribution was

used for the article indicator normalization.

The proposed procedure has been tested on benchmark

graphs and on a complete subgraph of the Web of

Science citation network. We found that the procedure is

capable to successfully normalize globally calculated simple

article indicators. In case of more complex indicators the

cross-disciplinary normalization has been obtained if the

calculation of these article indicators was realized based

on some already scaled basic indicators. In this sense the

normalization of the P-index has been shown based on the

citation number basic indicator. Based on these results we

believe, that the method used for P-index may be generalized
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Fig. 7 In-degree (A), local PageRank (C) and P-index (E) distributions on different clusters of a citation network extracted from the Web of Science
(WoS-net) [15]. The normalized article indicators and scaling factors are presented in the right-side panels (B, D, F) of figure

even for impact factor normalization, as well, because it is a

measure reflecting the yearly average number of citations to

recent articles published in that journal.
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Fig. 8 In-degree (A) and local PageRank (B) distributions of the cluster 3 of WoS-net used in Fig. 7 for different shell-growth stopping thresholds β
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